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HYPERSTABILITY OF A MIXED TYPE CUBIC-QUARTIC
FUNCTIONAL EQUATION IN ULTRAMETRIC SPACES

YOUSSEF ARIBOU ", HAJIRA DIMOU AND SAMIR KABBAJ

Abstract. In this paper, we present the hyperstability results of a mixed type cubic- quartic func-
tional equations in ultrametric Banach spaces.

1. Introduction

The starting point of studying the stability of functional equations seems to be
the famous talk of Ulam [25] in 1940, in which he discussed a number of important
unsolved problems. Among those was the question concerning the stability of group
homomorphisms.

Let Gy be a group and let Gy be a metric group with a metric d(.,.). Given
€ > 0, does there exists a 8 > 0 such that if a mapping h : G| — G, satisfies the
inequality d(h(xy),h(x)h(y)) < &, for all x,y € Gy, then there exists a homomorphism
H: Gy — Gy with d(h(x),H(x)) <&, forall x € G, ?

The first partial answer, in the case of Cauchy equation in Banach spaces, to Ulam
question was given by Hyers [18]. Later, the result of Hyers was first generalized by
Aoki. And only much later by Rassias [23] and Géavruta [16]. Since then, the stability
problems of several functional equations have been extensively investigated.

We say a functional equation is hyperstable if any function f satisfying the equa-
tion approximately (in some sense) must be actually a solution to it. It seems that the
first hyperstability result was published in [8] and concerned the ring homomorphisms.
However, the term hyperstability has been used for the first time in [21]. Quite often
the hyperstability is confused with superstability, which admits also bounded functions.
Numerous papers on this subject have been published and we refer to [4], [11]-[14],
[171, [21], [22], [24].

Throughout this paper, N stands for the set of all positive integers, Ny := NU{0},
Ny, the set of integers > mgy, Ry = [0,0) and we use the notation Xy for the set
X\ {0}.

Let us recall (see, for instance, [20]) some basic definitions and facts concerning
non-Archimedean normed spaces.
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DEFINITION 1. By a non-Archimedean field we mean a field K equipped with a
function (valuation) |- | : KK — [0, ) such that for all r,s € K, the following conditions
hold:

1. |r] =0 if and only if r =0;
2. Jrsl = Irllsl;
3. |r+s| <max{|r|,|s|}.
The pair (K, |.|) is called a valued field.

In any non-Archimedean field we have |1| =|—1| =1 and |n| < 1 for n € Ny. In any
field K the function |- |: K — R, given by

x| = 0,x=0,
Tl 1, x#0,

is a valuation which is called trivial, but the most important examples of non-Archime-
dean fields are p-adic numbers which have gained the interest of physicists for their
research in some problems coming from quantum physics, p-adic strings and super-
strings.

DEFINITION 2. Let X be a vector space over a scalar field K with a non-Archi-
medean non-trivial valuation |- |. A function ||-||, : X — R is a non-Archimedean norm
(valuation) if it satisfies the following conditions:

1. ||x|l« =0 if and only if x =0;
2. x|l = 7| Ix]]« (reK,xeX);
3. the strong triangle inequality (ultrametric), namely

b+ yll < max {|lx]l.. ]l }, xy € X.

Then (X, || - ||«) is called a non-Archimedean normed space or an ultrametric normed
space.

DEFINITION 3. Let {x,} be a sequence in a non-Archimedean normed space X .

1. A sequence{x,}; , in a non-Archimedean space is a Cauchy sequence iff the
sequence {X,1 —X,};_, converges to zero.

2. The sequence {x,} is said to be convergent if, there exists x € X such that, for
any € > 0, there is a positive integer N such that ||x, — x|, < €, forall n > N.
Then the point x € X is called the limit of the sequence {x,}, which is denoted
by limy,_—coXxpy = x.

3. If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space or an ultrametric Banach
space.
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In 2013, A. Bahyrycz and al. [3] used the fixed point theorem from [9, Theorem
1] to prove the stability results for a generalization of p-Wright affine equation in ul-
trametric spaces. Recently, corresponding results for more general functional equations
(in classical spaces) have been proved in [5], [6], [26] and [27].

Let X, Y be normed spaces. A function f: X — Y is mixed type cubic-quartic
provided it satisfies the functional equation

Af (x+y)+4f(x—y)+3f(2y) =241 (y)+6f(x)+ f(x+2y) + f(x—2y), forall x,yeX,

(D
and we can say that f: X — Y is mixed type cubic-quartic on X if it satisfies (1) for
all x,y € Xo suchthat x+y#0 and x—y#0 .

In 2009 Eshaghi Godji et al.[15] proved the solution and stability of a mixed type
cubic and quartic functional equation in quasi-Banach spaces. The stability of general
form of (1) has been studied by A. Bodaghi et al. [15] in 2017.

In this paper, by using the fixed point method derived from [4] and [11] , we
present some hyperstability results for the equation (1) in ultrametric Banach spaces.
Before proceeding to the main results, we state Theorem | which is useful for our
purpose. To present it, we introduce the following three hypotheses.

(H1) X is anonempty set, Y is an ultrametric Banach space over a non-Archimedean
field, fi,...,fx: X — X and Ly,...,L; : X — R are given.

(H2) .7 :YX — YX is an operator satisfying the inequality

Hﬁf@%—ﬁﬂ@m*égﬁﬁﬂd@”%@hﬁ—wwﬁ@MhL&uEY&xeX

(H3) A:RY — RX isalinear operator defined by

AS(x) := max {Li(x)8 (f;(x))}, 6 e R¥ xeX.

1<i<k

THEOREM 1. Let hypotheses (HI )-(H3) be valid and functions € : X — Ry
and ¢ : X —Y fulfill the following two conditions

| Tox) - o)« <e(x), xeX
lim A"e(x) =0, x€ X.

n—oo

Then there exists a unique fixed point w € YX of T with

llo(x) — w(x)]|« < sup A"e(x), x € X.
neNy
Moreover
y(x):=lim T"¢(x), xe X.

n—oo
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2. Main results

In this section, using Theorem 1 as a basic tool to prove the hyperstability results
of the cubic functional equation in ultrametric Banach spaces.

THEOREM 2. Let (X,||-||) and (Y,||-||«) be normed space and ultrametric Ba-
nach space, respectively, ¢ 20, p,q € R, p+q#0 andlet f:X — Y satisfy

|4f(x+y) +4f(x—y)+3f(2y) =241 (y) —6f(x) — f(x+2y) — f(x—2y) ||,
<e lx]1” 11, @

forall x,y € Xo. Then, f is mixed type cubic-quartic on Xj.

Proof. Firstcase: p+¢g<O0.
Take m € N such that

-1 p+q
Oy = (mT) <1 and m > 6.

Since p+¢g < 0, one of p,q must be negative. Assume that p < 0 and replace y by

(L) x and x by (241 x in (2). Thus,

() () ) o (7))o (7))

m+1 m+1\? (m—1\1
—or (("54) ) s - < (M) (M) e
Define operators .7, : YX0 — YX0 and A, : Rf’ — Rf’ by

s ((=2)) o ((2)3) - ((5)
(o)) o{(55)) s rren

ot =m0 ((¥52) <) 2((%5%) ) 5 (("57)+).
5(("1)) o (")) s}, serbixen,

q
e (x) i= ) (’" 1) 79, x € Xo. @

3)

And write
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It is easily seen that A,, has the form described in (H3) with k =6,

700 = (P55 )5 20 = (M52 )5 o = (’”T‘l)
) = (") st = (P4 ) o) =

and

Lyi(x) = Lp(x) = L3(x) = La(x) = Ls(x) = Le(x) = L.

Further, (3) can be written in the following way

”znf(x) ( )H gm( ) x € Xop.

Moreover, for every &, i € YX0, x € Xy

1T (x u)ll.

(= () ()
(e
=),

(52 (22)) e (22) ],
o229 +((=2)]
(")) ()]
(")) =57
(7)) -l
e(("50)x)-u(("57)2)] - vt}

So, (H2) is valid.
By using mathematical induction, we will show that for each x € Xy we have

—1\1 1\?
Mea) = ¢ (") (M) e ®)

where o5, = (271)” "4 Erom (4), we obtain that (5) holds for n = 0. Next, we will

assume that (5) holds for n = k, where k € N. Then we have,

AbHle, (x) = A (A]fnSm (x))
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3 -1
_max{Ak En (( )x) , A’fn&‘m ((m_:— )x) , Af;em ((—mz )x) ,
1
(252 e (251)) e
1 m+1 3m+ 1\ (m43\PT (m— 1\
— P4 ok il -
() () e () (2) ()
+ +
EDRCO
4 ) 2 b
—1\? 1
=c (mT) (%) |[x]|P+9 okt x € Xy,

This shows that (5) holds for n = k+ 1. Now we can conclude that the inequality (5)
holds for all n € Ny. From (5), we obtain

lim A", (x) =0,

n—oo

for all x € Xy. Hence, according to Theorem 1, there exists a unique solution G, : Xo —
Y of the equation

o (52) e (22)0) e (7))
a(57):) s (25)) -

for all x € Xj such that

—1 P 1 P
170 - Gl < sup { e (") (P50 ) Il s} xex ©
neNy

Moreover,

Cn(x) := lim 71 f(x),

n—00

for all x € Xy. Now we show that

170 f (+2y) + T f (x=2y) + 24750 f () + 6.7,/ f (x) =47, f (x£y)

n n (7
_3‘7111]‘(2)))”* <c (XmHX”p Hy”qv

for every x,y € Xp such that x+y## 0 and x —y # 0. Since, the case n = 0 is just (2),
take k € N and assume that (7) holds for n = k and every x,y € X such that x+y # 0
and x —y#0. Then,
[T (e 29) + T f (e = 29) 424 F (30) + 6707 f () =47 f(x+y)
4T fle=y) =37 F(2y)||,

—Jaztr (255 ) e an) +azir (252 v )
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m_l) (x+2y)) — 2495 f ((mT_l) (x+2y>)

- Zr i) +air () o)

) (

m+3 (x_zy))+3ﬂnff<<m7_l) (x—2y))
2 X

y +96£§f(<mTH)y)+729rff<<mT_l)y>

*

<max{<%n57<7m6a<7m77 %8,9m9,<7m10}

3m4 1\ 74 m+3\""
<max{ca;;||xp||yq (—) e a7l 7

4 2

+q r+q
k m—1\" k m—1
caballe () oot (M)

2
+q
X m+1\7? r
COCm||pr||q< > ) , € Oy [[x||P ]| 7 mP+4
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kPl 3m+ 1\ (mE 3N m— 1\
= cop,[|x][”[|y|* max A=) ==

p+q
) P\ < ol Py,
With

= (5 ) v + g (2257 ) -2

ugar (2o romr ((*52))

a7 (5 ) —ar (257 ) 6-n)

7 ((457))].

Zr ("33 o)+ 70 (M52 ) -2

e (2] reme (7)) - (%57 ve)

- () o) o7 (7))

(252w (7))
(22 o (52)) (5 )
g (("5) ) -3 7 -1

| (") ) < e (M) 6-2)

() om( (£ - (52

(2 )en) (52

a0 ("5 ) v+ 7 (M5 ) 020

() o (£2)) - (252

3
D+

=7m6 =
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and

Tmo =17 f (m(x+2y)) + F1 f (m(x = 2y)) +24.7,/f (my)
+67,f (mx) =47, f (m(x+y)) =47, f (m(x =)
=37, fCmy)|.,

for all x,y € Xy such that x4y # 0 and x — y # 0. Thus, by induction we have shown
that (7) holds for every n € Ny. Letting n — oo in (7), we obtain that

Con (X +2y) +Cp (x — 2y) = 4C(x +y) +4C(x — y) — 24Cpu(y) — 6Cp(x) + 3Cin(2y),

for all x,y € Xy such that x4y # 0 and x —y # 0. In this way we obtain a sequence
{Cin}m=m, of a mixed type cubic-quartic functions on X such that

_ q p
170 - Gutoll < swp { e (") (M) e b ve

neNy

This implies that

R e N e N

It follows, with m — oo, that f is a mixed type cubic-quartic on Xj.
Second case: p+¢q > 0.
In a similar way we can prove the second case. Take m € N such that

m—2 r+q
Oy i = P <1 and m > my.

Since p+¢g > 0, one of p,g must be positive; let p > 0 and replace x by (%)x
and y by (4-2)x in (2). Thus,

(2 (52 (C2)) (529
DA )
s (2 ((52)) (529
() (<) e

©))

®)
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q o p
() :=c(5) (’"—2) 7, x € Xo, (10)

m 2m

and

then, (8) takes form
| T f (x) = f(x) ||« < &m(x), x € Xo.

oo (223 6((52)) (252
(52 () (52 oo

Then, it is easily seen that A,, has the form described in (H3) with k=6,

70 = ("5 ) ) = (52 ) x ) = (2 )

ful) = (mz—:nz)x f5(x) = (%) %, folx) = (“_Tm)x

Ly (x) = Lo(x) = L3(x) = La(x) = Ls(x) = Lg(x) = 1.

and

The rest of the proof is similar to the proof of Theorem 2. [J]
It easy to show the hyperstability of a mixed type cubic-quartic equation on the set
containing 0. We present the following theorem and we refer to see [4, Theorem 5].

COROLLARY 1. Let (X,||-||) and (Y,]||-||«) be normed space and ultrametric
Banach space, respectively, c >0, p,g € R, p,q >0 andlet f:X — Y satisfy

[4f(x+y) +4f(x=y) +3/(2y) =241 (y) = 6/ (x) — f(x+2y) — f(x = 2y) . (11
< [lx[|1” [lyll,

forall x,y € Xy.
First case: If f is odd, then f is cubic on Xy. Second case: If f is pair, then f is
quartic on Xgp.

Proof. First case: putting x =0 in (11), we get that
f(2x)=8f(x), xeX.
Second case: putting y =0 in (11), we get that
f@2x)=16f(x), xeX. O

The above theorems imply in particular the following corollary, which shows their sim-
ple application.
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COROLLARY 2. Let (X,||-||) and (Y, -||«) be normed space and ultrametric
Banach space, respectively, G : X*> — Y and G(xo,yo) # 0, for some xo,yo € X and

|Gy, <clxl” Iyl?, xyeX, (12)

where ¢ > 0, p,q € R. Assume that the numbers p,q satisfy one of the following
conditions:

1. p+q<0 and(2) holds, forall x,y € Xp;
2. p+q>0and(2) holds, for all x,y € Xp.
Then the functional equation

FO+2y) +f(x=2y) =4(f(x +y) + f(x—y)) =241 (y) =6/ (%)

13
+37(2y)+G(x,y), x,y€X, (13

has no solution in the class of functions g : X — Y.

In the following theorem, we present a general hyperstability for the mixed type
cubic-quartic equation where the control function is @ (x) + @(y).

THEOREM 3. Let (X,||-||) be a normed space, (Y,||-||.) be an ultrametric Ba-
nach space over a field K and ¢ : X — R be a function such that

U:={neN:o,:=max{A(n), AB3n+1), A(n+1), A(4n+1),

A(2n+1),A(2n)} < 1} 14

is a non-empty set, where A(a) :=inf{t € Ry : ¢(ax) <t¢(x), forallx € X}, for all
a € Ky such that
lim A(a) =0.

a—oo

Suppose that f : X — Y satisfies the inequality

[4f(x+y)+4f(x—y)+3f(2y) —24f(y) — 6f(x) — f(x+2y)

(15)
—fx=2y)[, <o) + o),
forall x,y € Xo. Then, f is a mixed type cubic-quartic on Xy.
Proof. Replacing y by mx and x by (2m+ 1)x, for m € N, in (15) we get
147 ((Bm~+ Dx)+4f((m+ 1)x) +3f(2mx) — 24 f(mx) —6f((2m+ 1)x) 16)

—f((4m+1)x) —f ()|, < @((2m+1)x) + @ (mx),
for all x € Xo. For each m € U we define the operator .7, : YX0 — Y% by

I (x) :=4E((Bm—+ 1)x) +4E ((m+ 1)x) +3E (2mx) — 24& (mx) — 6& ((2m+ 1)x)
—E((4m+1)mx), E e YX0 x e X,.
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Further put

en(®) =0 (2m+1)x)+ o(mx) < (A2m+1)+A(m)) p(x), x € Xo.

Then the inequality (16) takes the form
| Tnf (x) = f(x)[|« < €m(x), x € Xo.
For each m € U the operator A, : Rio — Rio which is defined by

A6 (x) :=max {8 (mx), §(2mx), 6 ((3m+1)x), 6 ((m+1)x)},
0((2m+1)x), 6 ((4m+1)x)},

where 0 € Rﬁo, x € Xp, which has the form described in (H3) with k =6,
fi(x) =mx, fo(x) =2mx, f3(x) = 3m+ 1)x,
fa(x)=(m+Dx, f5(x) = 2m+ Dx, fo(x) = (dm+ 1)x

and
Li(x) = Ly(x) = Ly(x) = La(x) = Ls(x) = Le(x) = 1,

for all x € Xo. Moreover, for every &, u € YX0,x € X

| 7E 00— Zun)|
=||4&((B3m+ 1)x) +4& ((m+ 1)x) + 3& (2mx) — 24& (mx) — 6 ((2m + 1)x)
—&((Am+1)x)—4u(Bm+1)x) —4u ((m—|— l)x) —3u(2mx) + 241 (mx)
+ou((2m+1)x)+&E((dm+1)x)]],
<max {[[€ (Bm+1)x) = p(BGm+1)x)|l,., || ((m+1)x) —u((m+1)x)
& (2mx) — u(2mx)]|,, ||& (mx) — p(mx) |,
| ((4m+1)x) — u((4m+1)x)]|, }-

%)

((2m+1)x) —u(@m+1)x)||,,

a7)

So, (H2) is valid. By using mathematical induction, we will show that for each x € X

we have
Al en(x) <(A2m+ 1)+ A(m)) o @(x).

(18)

From (17), we obtain that the inequality (18) holds for n = 0. Next, we will assume

that (18) holds for n = k, where k € N. Then, we have
Ak e (x) = A (Aky&m(x))
=max {A],;em (mx), Ak e, ((Bm+1)x), Al e, ((m+1)x), Ak ey ((4m+1)x),

Aben ((2m+ 1)x), Al (2mx) }

S(?L(m)—i—)L(Zm—F1))0551 max{@ (mx) , @ ((B3m+1)x) ,0 ((m+1)x) ,@ ((4m—+ 1)x),
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@ ((2m+1)x), @ (2mx)}
<(A(m)+A(—2m+1)) ek o(x), x € Xo.

This shows that (18) holds for n = k+ 1. Now we can conclude that the inequality (18)
holds for all n € N. From (18), we obtain

lim A", (x) =0,

n—-oo

for all x € Xy and all m € U. Hence, according to Theorem 1, there exists for each
m € U aunique solution G, : Xo — Y of the equation

Cn(x) =4C,((3m+ 1)x) +4Cp((m+ 1)x) 4 3Cp(2mx) — 24C,,(mx)

—6Cn((2m+ 1)x) — Cp((4m+ 1)x), (19)

for all x € Xy, such that

17 = Gl < sup { (Am)+ 2.2m+ D)oo}, x€ X (20)

neNy

Moreover,

Cu(x) == lim (F'f)(x),
Nn—->00
for all x € Xy. Now we show that

1T f (x+2y) + T f (x— 2y)+24 S (V) + 67, f (x) =47, f(x+)
47, f(x=y) =37, f(W). < o, (9(x) + ()
for every x,y € Xo such that x+y # 0 and n € N. Since, the case n =0 is just (15),

take k € N and assume that (21) holds for n = k where k£ € N and every x,y € Xy such
that x+y # 0. Then,

2y

| T (et 29)+ T f (= 29) + 2470 (0) + 6.7 f () =470 fx+)
40 f(x—y) =370 F(2y)],
=477k (Gm+1) (290 + 4787 (mo+1) (x+29) +3 757 @m (v +2)

24T f (m (x+2y)) = 6.7 f (2m+1) (x+2y)) — Tpu f ((4m+1) (x+2y))
H4T [ ((Bm41) (x—2y)) + 4T f (m+1) (x—2y))) + 3T f (2m (x = 2y))
—24F f (m(x—2y)) = 6.7, f (2m+1) (x = 2y)) = T f (4m+1) (x = 2y))
+96. 75 f (Bm+1)y) +96.ZXf (m+1)y)) +72.7% f (2my)

—576.7F f (my) — 14475 (2m+1)y) = 2475 f (4m+1)y)

42475 (Bm+1)x) +24F5 f (m+1)x) + 1875 £ (2mx)

— 14475 f (mx) = 367X F (2m+1)x) —6.ZF £ ((4m+1)x)

—16.7, f ((B3m+1) (x+y)) = 167 f (m+1) (x+y)) — 187, f (2m (x+))
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+96.7%
—167%f
+96.7k ¢
—12.7%f (2

m(x+y))+247% f (2m+1) (x+y)) +4T5 f (4m+1) (x+))

(Bm+1)(x—y)) = 1675 f (m+1) (x—)) — 18F5 f (2m (x—))
m(x—y))+247% f (2m+1)(x—y)) + 4T f (4m+1) (x—y))
(Bm+1)y) = 1275 f (2(m+1)y) —9T% f (4my)

FT2T (2my) + 18T f (22m+ 1)) +375F 2 (4m+1)y) | -
<max { Tuas Tups Tmes Tmds Tme Tmf }
<max{ 3w (9 (Bm+1)x)+ @ ((3m+1)y)) , o, (@((m+1)x) + @((m+1)y)),
0, (9(2mx) + @(2my)) , 04y, (@(mx) + @ (my)),
0 (9((2m+ 1)) + @((2m +1)y)) , o, (9 ((4m+1)x) + <P((4m+1)y))}
<opmax{A(3m+1), A(m+1), A(2m), A(m), 2 (2m+1), (4m+1)} (9(x) + 9 (y))
=0, (9(x) + ().
With

A/_\/_\/_\

Ima = || Ty f (Bm+1)(x+2y)) + 7, f (3m+ 1) (x = 2y)) + 247, f ((3m + 1)y)
6.7, f (Bm+1)x) =47, f (Bm+1)(x+y)) =47, f (Bm+1)(x—y))
=37, f20Gm+1y)l.,

To =1 T f ((m+1)(x+2y)) + Zf (m+ 1) (x = 2y)) + 24T f ((m + 1)y)
F6.7,f ((m+1)x) =47, f (m+ 1)(x+)) =47, f (m+1)(x - y))
=37, fQ20m+1y)l,,

Ime =T f (2m(x+2y)) + T, f (2m(x —2y)) + 24T, f (2my) + 6.7, f (2mx)
—4T,f 2m(x+y)) =47, f (2m(x—y)) =37, f (4my)],.,

Tma = | T f (mlx+2y)) + T f (m(x = 2y)) + 247, f (my) + 6.7, f (mx)
47, f (m(x+y)) =47, f (m(x—y)) =37, f 2my)]..,

Ime =T f (2m+ 1) (x+2y)) + T f (2m + 1) (x = 2y)) + 24T f (2m+ 1)y)
6.7, f (2m+1)x) =47, f (2m+1)(x+y)) =47, f (2m+1)(x—y))
=37, f(4my)|l,

and

Ting =N T f (Am+1)(x+2y)) + T f (4m+1)(x = 2y))+ 247,/ f ((4m+1)y)
+6T, f ((4m+1)x) 4T, f ((4m+1)(x+y)) — 47, f ((4m+1)(x - y))
=37, f2(4m+ Dmy)]|. .

Thus, by induction we have shown that (21) holds for every n € N. Letting n — oo in
(21), we obtain that

Cn (x+2y)+Cpy (x —2y) =4C (x +y) +4Cp(x — y) — 24C,y(y) — 6Cin(x) + 3Cu(2y),
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for all x,y € Xy such that x+y # 0. In this way we obtain a sequence {Cp }mey of
mixed type cubic-quartic functions on Xy such that

1/ () = Cu(¥) [l < sup {(A(2m+1) + A (m)) o, 0(x)}, x € Xo.

neNy

This implies that
1F () = ()« < (A(m) + A (2m + 1)) @(x), x € Xo.

It follows, with m — oo, that f is mixed type cubic-quartic on Xy. [
The following corollary is a particular case of Theorem 3 where @(x) := ¢ ||x||?,
with ¢ > 0 and p < 0.

COROLLARY 3. Let (X,||-||) and (Y,]|-||«) be normed space and ultrametric
Banach space, respectively, ¢ 20, p <0 andlet f: X — Y satisfy

[4f(x+y)+4f(x—y)+3f(2y) —24f(y) —6f(x) — f(x+2y) — f(x—2y)]|,

(22)
<e (P + 1y 17,

forall x,y € Xo. Then f is mixed type cubic-quartic on Xg.
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