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ON GENERALIZED GEOMETRIC DIFFERENCE OF SIX

DIMENSIONAL ROUGH IDEAL CONVERGENT OF TRIPLE

SEQUENCE DEFINED BY MUSIELAK–ORLICZ FUNCTION

A. ESI AND N. SUBRAMANIAN ∗

Abstract. We introduce a rough ideal convergent of triple sequence spaces defined by Musielak-
Orlicz function, using an six dimensional infinite matrix, and a generalized geometric difference
Zweier six dimensional matrix operator Bp

(abc) of order p . We obtain some topological and
algebraic properties of these spaces.

1. Introduction

The idea of statistical convergence was introduced by Steinhaus and also indepen-
dently by Fast for real or complex sequences. Statistical convergence is a generalization
of the usual notion of convergence, which parallels the theory of ordinary convergence.

Let K be a subset of the set of positive integers N×N×N, and let us denote
the set {(m,n,k) ∈ K : m � u,n � v,k � w} by Kuvw. Then the natural density of K is

given by δ (K) = limu,v,w→∞
|Kuvw|
uvw , where |Kuvw| denotes the number of elements in

Kuvw. Clearly, a finite subset has natural density zero, and we have δ (Kc) = 1− δ (K)
where Kc = N\K is the complement of K . If K1 ⊆ K2, then δ (K1) � δ (K2) .

Throughout the paper, R denotes the real of three dimensional space with metric
(X ,d) . Consider a triple sequence x = (xmnk) such that xmnk ∈ R,m,n,k ∈ N.

A triple sequence x = (xmnk) is said to be statistically convergent to 0∈R, written
as st− lim x = 0, provided that the set{

(m,n,k) ∈ N
3 : |xmnk,0| � ε

}
has natural density zero for any ε > 0. In this case, 0 is called the statistical limit of
the triple sequence x.

If a triple sequence is statistically convergent, then for every ε > 0, infinitely many
terms of the sequence may remain outside the ε− neighbourhood of the statistical
limit, provided that the natural density of the set consisting of the indices of these terms
is zero. This is an important property that distinguishes statistical convergence from
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ordinary convergence. Because the natural density of a finite set is zero, we can say
that every ordinary convergent sequence is statistically convergent.

If a triple sequence x = (xmnk) satisfies some property P for all m,n,k except a
set of natural density zero, then we say that the triple sequence x satisfies P for almost
all (m,n,k) and we abbreviate this by a.a. (m,n,k) .

Let
(
xmin jk�

)
be a subsequence of x = (xmnk) . If the natural density of the set

K =
{
(mi,n j,k�) ∈ N3 : (i, j, �) ∈ N3

}
is different from zero, then

(
xmin jk�

)
is called a

non thin sub sequence of a triple sequence x .
c ∈ R is called a statistical cluster point of a triple sequence x = (xmnk) provided

that the natural density of the set{
(m,n,k) ∈ N

3 : |xmnk − c|< ε
}

is different from zero for every ε > 0. We denote the set of all statistical cluster points
of the sequence x by Γx.

A triple sequence x = (xmnk) is said to be statistically analytic if there exists a
positive number M such that

δ
({

(m,n,k) ∈ N
3 : |xmnk|1/m+n+k � M

})
= 0.

The theory of statistical convergencehas been discussed in trigonometric series, summa-
bility theory, measure theory, turnpike theory, approximation theory, fuzzy set theory
and so on.

The idea of rough convergence was introduced by Phu [12], who also introduced
the concepts of rough limit points and roughness degree. The idea of rough convergence
occurs very naturally in numerical analysis and has interesting applications. Aytar [1]
extended the idea of rough convergence into rough statistical convergence using the
notion of natural density just as usual convergence was extended to statistical conver-
gence. Pal et al. [11] extended the notion of rough convergence using the concept of
ideals which automatically extends the earlier notions of rough convergence and rough
statistical convergence.

Let (X ,ρ) be a metric space. For any non empty closed subsets A for which
Amnk ⊂ X

(
m,n,k ∈ N3

)
, we say that the triple sequence (Amnk) is Wijsman statisti-

cal convergent to A is the triple sequence (d (x,Amnk)) is statistically convergent to
d (x,A) , i.e., for ε > 0 and for each x ∈ X

limr,s,t
1
rst

|{m � r,n � s,k � t : |d (x,Amnk)−d (x,A)| � ε}| = 0.

In this case, we write St − limm,n,kAmnk = A or Amnk −→ A(WS) . The triple se-
quence (Amnk) is bounded if supmnkd (x,Amnk) < ∞ for each x ∈ X .

A triple sequence (real or complex) can be defined as a function x : N×N×N→
R(C) , where N,R and C denote the set of natural numbers, real numbers and complex
numbers, respectively. The different types of notions of triple sequence was introduced
and investigated at the initial by Sahiner et al. [13,14], Esi et al. [3], Dutta et al.
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[4],Subramanian et al. [15], Debnath et al. [5], Aiyub et al. [2] and Zweier sequence
was introduced and investigated at the initial by Fadile Karababa et al. [6], Khan et al.
[8] many others.

Throughout the paper let β be a nonnegative real number.
A triple sequence x = (xmnk) is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k < ∞.

The space of all triple analytic sequences are usually denoted by Λ3 . A triple
sequence x = (xmnk) is called triple gai sequence if

((m+n+ k)! |xmnk|)
1

m+n+k → 0 as m,n,k → ∞.

The difference triple sequence space was introduced by Debnath et al. (see [5]) and is
defined as

Δxmnk =xmnk − xm,n+1,k− xm,n,k+1 + xm,n+1,k+1− xm+1,n,k + xm+1,n+1,k

+ xm+1,n,k+1− xm+1,n+1,k+1,

Δ0xmnk =〈xmnk〉 .
The generalized difference triple notion has the following binomial representation

Bp
(abc) =

m

∑
r=0

n

∑
s=0

k

∑
t=0

(
m
r
)(

n
s
)(k

t

)
μ (m−r)+(n−s)+(k−t)ηr+s+tx(m−ar)(n−bs)(k−ct).

Let X and Y be two nonempty subsets of the space w of complex sequences. Let

A =
(
ai j�

mnk

)
,(m,n,k = 1,2,3, · · · .) be an six dimensional infinite matrix of complex

numbers. We write Ax = (A(x)) if

A(x) =
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnkxmnk (1)

converges. If x = (xmnk) ∈ X ⇒ Ax = (A(x)) ∈ Y. We say that A defines a matrix
transformation from X → Y and we denote it by A : X → Y.

The triple sequence y = (ymnk) which is frequently used as the Z transforma-
tion of the triple sequence x = (xmnk) i.e., ymnk = αxmnk +(1−α)xm−1,n−1,k−1, where
xm−1,n−1,k−1 = 0; m,n,k 
= 0; 1 < (m,n,k) < ∞ and Z denotes the matrix Z =

(
z�(mnk)

)
defined by

z�(mnk) =

⎧⎪⎨
⎪⎩

α, if � = m = n = k,

1−α, if �−1 = m = n = k,

0, otherwise.

The Zweier sequence spaces Z as follows: Z =
{
x = (xmnk) ∈ w3 : Z (x) ∈ X

}
.

In the area of non-Newtonian calculus pioneering work was carried out by Gross-
man and Katz which we call as multiplicative calculus. The operations of multiplicative
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calculus are called as multiplicative derivative and multiplicative integral of different
types of non-Newtonian calculi and its applications. An extension of multiplicative cal-
culus to functions of complex variables.
Nowadays geometric calculus is an alternative to the usual calculus of Newton and
Leibnitz. It provides differentiation and integration tools based on multiplication in-
stead of addition. Almost all properties in Newtonian calculus has an analog in mul-
tiplicative calculus. Generally speaking multiplicative caluculus is a methodology that
allows one to have a different look at problems which can be investigated via calcu-
lus. In some cases, mainly problems of price elasticity, multiplicative growth etc. the
use of multiplicative calculus is advocated instead of a traditional Newtonian one. Top
know better about non-Newtonian calculus, we must have idea about different types of
arithmetics and their generators.

1.1. α− generator and geometric real field

A generator is a one-to-one function whose domain is R (the set of all real num-
bers) and range is a set A ⊂ R. Each generator generates exactly one arithmetic and
each arithmetic is generated by exactly one generator. For example, the identity func-
tion generates classical arithmetic, and exponential function generates geometric arith-
metic. As a generator, we choose the function α such that whose basic algebraic oper-
ations are defined as follows:

(i) α− addition x+ y = α
[
α−1 (x)+ α−1 (y)

]
,

(ii) α− subtraction x− y = α
[
α−1 (x)−α−1 (y)

]
,

(iii) α− multiplication x× y = α
[
α−1 (x)×α−1 (y)

]
,

(iv) α− division x/y = α
[
α−1 (x)/α−1 (y)

]
,

(v) α− order x < y ⇔ α−1 (x) < α−1 (y) ,

for x,y ∈ A, where A is a range of the function α .
If we choose exp as an α− generator defined by α (z) = Inz and α− arithmetic

turns out to geometric arithmetic:

(i) α− addition x⊕ y = α
[
α−1 (x)+ α−1 (y)

]
= e[Inx+Iny] = x.y, geometric addi-

tion;

(ii) α− subtraction x y = α
[
α−1 (x)−α−1 (y)

]
= e[Inx−Iny] = x÷ y,y 
= 0, geo-

metric subtraction;

(iii) α− multiplication x� y = α
[
α−1 (x)×α−1 (y)

]
= e[Inx×Iny] = xIny, geometric

multiplication;

(iv) α− division x� y = α
[
α−1 (x)/α−1 (y)

]
= e[Inx÷Iny] = x

1
Iny ,y 
= 1, geometric

division.
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It is obvious that In(x) < In(y) if x < y for x,y ∈R+. That is, x < y⇔ α−1 (x) <
α−1 (y) . So, without loss of generality, we use x < y instead of the geometric order
x < y.

Defined the sets of geometric integers, geometric real numbers and geometric com-
plex numbers Z(G) ,R(G) and C(G) , respectively, as follows:

(i) Z(G) = {ex : x ∈ Z} ,

(ii) R(G) = {ex : x ∈ R} = R+ \ {0} ,

(iii) C(G) = {ez : z ∈ C} = C\ {0} .

REMARK 1. (R(G) ,⊕,�) is a field with geometric zero 1 and geometric identity
e , since:

(i) (R(G) ,⊕,�) is a geometric additive abelian group with geometric zero 1,

(ii) (R(G)\ 1,�) is a geometric multiplicative abelian group with geometric identity
e ,

(iii) � is distributive over ⊕ .

But (C(G) ,⊕,�) is not a field, however, geometric binary operation � is not associa-
tive in C(G) .

1.2. Geometric limit

Geometric limit of a positive valued function defined in a positive interval is same
to the ordinary limit. Here, we defined geometric limit of a function with the help of
geometric arithmetic as follows:

A function f , which is positive in a given positive interval, is said to tend to the
limit l > 0 as x tends to a∈ R, if, corresponding to any arbitrary chosen number ε > 1
and r be a positive real number, however samml (but greater than 1), there exists a
positive number δ > 1, such that

1 < | f (x) l|G < ε,

for all values of x for which 1 < |xa|G < δ . We write

G− limx→a f (x) = l or f (x)G− l.

Here, |xa|G < δ ⇒ ∣∣ x
a

∣∣G < δ ⇒ 1
δ < x

a < δ ⇒ a
δ < x < aδ . Similarly, | f (x) l|G <

ε ⇒ l
ε < f (x) < lε. Thus, f (x)G− l means that for any given positive real number

ε > 1, no matter however closer to 1, ∃ a finite number δ > 1 such that f (x)
(

l
ε , lε

)
for every x ∈ ( a

δ ,aδ
)
. It is to be note that lengths of the open intervals

(
a
δ ,aδ

)
and(

l
ε , lε

)
decreases as δ and ε respectively decreases to 1, f (x) becomes closer and

closer to l , as well as x becomes closer and closer to a as δ decreases to 1. Hence,
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l is also the ordinary limit of f (x) . i.e. f (x)G− l ⇒ f (x) → l. In other words, we
say that G− limit and ordinary limit are same for bipositive functions whose functional
values as well as arguments are positive in the given interval only difference is that in
geometric calculus we approach the limit geometrically, but in ordinary calculus we
approach the limit linearly.
A function f is said to rough tend to limit l as x tends to a from the left, if for
each ε > 1 and r be a positive number (however small), there exists δ > 1 such that
| f (x) l|G < r+ ε when a

δ < x < a. In symbols, we then write

G− limx→a f (x) = l or f (a−1) = l.

Similarly, a function f is said to rough tend to limit l as x tends to a from the right, if
for each ε > 1 (however small), there exists δ > 1 such that | f (x) l|G < r+ ε when
a < x < aδ . In symbols, we then write

G− limx→a+ f (x) = l or f (a+1) = l.

If f (x) is negative valued in a given interval, it will be said to rough tend to a limit
l < 0 if for ε > 1,∃δ > 1 such that f (x) ∈ (lε, l

ε
)

whenever x ∈ ( a
δ ,aδ

)
.

1.3. Geometric continuity

A function f is said to be geometric continuous at x = a if:

(i) f (a) i.e., the value of f (x) at x = a, is a definite number,

(ii) the geometric-limit of the function f (x) as xGa exists and is equal to f (a) .

Alternatively, a function f is said to rough Geometric-continuous at x = a, if for arbi-
trarily chosen ε > 1, however small, there exists a number δ > 1 such that

limx→a
f (x)
f (a)

= 1.

It is easy to prove that

w(G) = {(xmnk) : xmnk ∈ R(G) for all m,n,k ∈ N}

is a vector space over R(G) with respect to the algebraic operations ⊕ addition and �
multiplication:

⊕ : w(G)×w(G) → w(G) , (x,y) → x⊕ y = (xmnk)⊕ (ymnk) = (xmnkymnk) ,

� : R(G)×w(G) → w(G) , (αy) → α � y = α � (ymnk) =
(
α Inymnk

)
,

where x = (xmnk) ,y = (ymnk) ∈ w(G) . Then the definitions follow.
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2. Definitions and preliminaries

DEFINITION 1. An Orlicz function ([see [7]) is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for x > 0
and M (x)→∞ as x→∞ . If convexity of Orlicz function M is replaced by M (x+ y)�
M (x)+M (y) , then this function is called modulus function.

Lindenstrauss and Tzafriri ([9]) used the idea of Orlicz function to construct Orlicz
sequence space.

A sequence g = (gmnk) defined by

gmnk (v) = sup{|v|u− ( fmnk) (u) : u � 0} ,m,n,k = 1,2, · · ·
is called the complementary function of a Musielak-Orlicz function f . For a given
Musielak-Orlicz function f , (see [10]) the Musielak-Orlicz sequence space t f is de-
fined as follows

t f =
{

x ∈ w3 : I f (|xmnk|)1/m+n+k → 0 as m,n,k → ∞
}

,

where I f is a convex modular defined by

I f (x) =
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

fmnk (|xmnk|)1/m+n+k ,x = (xmnk) ∈ t f .

We consider t f equipped with the Luxemburg metric

d (x,y) =
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

fmnk

(
|xmnk|1/m+n+k

mnk

)

is an extended real number.

DEFINITION 2. A triple sequence x = (xmnk) of real numbers is said to be statis-
tically convergent to l ∈ R3 if for any ε > 0 we have d (A(ε)) = 0, where

A(ε) =
{
(m,n,k) ∈ N

3 : |xmnk − l| � ε
}

.

DEFINITION 3. A triple sequence x = (xmnk) is said to be statistically convergent
to l ∈ R3, written as st− limx = l, provided that the set{

(m,n,k) ∈ N
3 : |xmnk − l|� ε

}
has natural density zero, for every ε > 0.

In this case, l is called the statistical limit of the sequence x .

DEFINITION 4. Let x = (xmnk)m,n,k∈N×N×N
be a triple sequence in a metric space

(X , |., .|) and r be a non-negative real number. A triple sequence x = (xmnk) is said to be
r−convergent to l ∈X , denoted by x→r l, if for any ε > 0 there exists Nε ∈N×N×N

such that for all m,n,k � Nε we have

|xmnk − l| < r+ ε.

In this case l is called an r− limit of x .
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REMARK 2. We consider r− limit set x which is denoted by LIMr
x and is defined

by

LIMr
x = {l ∈ X : x →r l} .

DEFINITION 5. A triple sequence x = (xmnk) is said to be r− convergent if LIMr
x


= φ and r is called a rough convergence degree of x . If r = 0 then it is ordinary
convergence of triple sequence.

DEFINITION 6. Let x = (xmnk) be a triple sequence in a metric space (X , |., .|)
and r be a non-negative real number is said to be r− statistically convergent to l ,
denoted by x →r−st3 l, if for any ε > 0 we have d (A(ε)) = 0, where

A(ε) =
{
(m,n,k) ∈ N

3 : |xmnk − l| � r+ ε
}

.

In this case l is called r− statistical limit of x . If r = 0 then it is ordinary statistical
convergent of triple sequence.

DEFINITION 7. A class I of subsets of a nonempty set X is said to be an ideal in
X provided:

(i) φ ∈ I ;

(ii) A,B ∈ I implies A∪B ∈ I ;

(iii) A ∈ I,B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X /∈ I .

DEFINITION 8. A nonempty class F of subsets of a nonempty set X is said to be
a filter in X . Provided:

(i) φ ∈ F ;

(ii) A,B ∈ F implies A∩B ∈ F ;

(iii) A ∈ F,A ⊂ B implies B ∈ F .

DEFINITION 9. I is a non trivial ideal in X , X 
= φ , then the class

F (I) = {M ⊂ X : M = X\A for some A ∈ I}
is a filter on X , called the filter associated with I .

DEFINITION 10. A non trivial ideal I in X is called admissible if {x} ∈ I , for
each x ∈ X .

REMARK 3. If I is an admissible ideal, then usual convergence in X implies I
convergence in X .
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REMARK 4. If I is an admissible ideal, then usual rough convergence implies
rough I− convergence.

DEFINITION 11. Let x = (xmnk) be a triple sequence in a metric space (X , |., .|)
and r be a non-negative real number is said to be rough ideal convergent or rI− con-
vergent to l , denoted by x →rI l , if for any ε > 0 we have{

(m,n,k) ∈ N
3 : |xmnk − l| � r+ ε

} ∈ I.

In this case l is called rI− limit of x and a triple sequence x = (xmnk) is called rough
I− convergent to l with r as roughness of degree. If r = 0 then it is ordinary I−
convergent.

REMARK 5. Generally, a triple sequence y = (ymnk) is not I− convergent in usual
sense and |xmnk − ymnk| � r for all (m,n,k) ∈ N3 or{

(m,n,k) ∈ N
3 : |xmnk − ymnk| � r

} ∈ I,

for some r > 0. Then the triple sequence x = (xmnk) is rI− convergent.

REMARK 6. It is clear that rI− limit of x is not necessarily unique.

DEFINITION 12. Consider rI− limit set of x , which is denoted by

I−LIMr
x =

{
L ∈ X : x →rI l

}
,

then the triple sequence x = (xmnk) is said to be rI− convergent if I−LIMr
x 
= φ and

r is called a rough I− convergence degree of x .

DEFINITION 13. A triple sequence x = (xmnk) ∈ X is said to be I− analytic if
there exists a positive real number M such that{

(m,n,k) ∈ N
3 : |xmnk|1/m+n+k � M

}
∈ I.

DEFINITION 14. A point L ∈ X is said to be an I− accumulation point of a triple
sequence x = (xmnk) in a metric space (X ,d) if and only if for each ε > 0 the set{

(m,n,k) ∈ N
3 : d (xmnk, l) = |xmnk − l| < ε

}
/∈ I.

We denote the set of all I− accumulation points of x by I (Γx) .

DEFINITION 15. Let β be a non-negative real number. A triple sequence x =
(xmnk) ∈ X is said to be geometric difference of rough Iq− convergent 0 if for all
q ∈ Q and all ε > 0,{

(m,n,k) ∈ N
3 : qG

(
Δxmnk, 0

)
� β + ε

}
∈ I. (2)

In this case we can write Iq− limGΔxmnk = 0. We denote

Iq =
{{

(m,n,k) ∈ N
3 : qG

(
Δxmnk, 0

)
� β + ε

}
∈ I
}

. (3)
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Note: If the triple sequence of X is Hausdorff, then the limit of rough ideal convergent
sequence is unique.

DEFINITION 16. Let β be a non-negative real number. A triple sequence x =
(xmnk)∈ X is said to be geometric difference of rough Bp

(abc) (Iq)− convergent to 0 ∈X
if for all qp ∈ Q and all ε > 0,{

(m,n,k) ∈ N
3 : qG

(
Bp

(abc)Δxmnk, 0
)

� β + ε
}
∈ I. (4)

In this case we can write Iq− limGBp
(abc) (Δxmnk) = 0. We denote

Bp
(abc) (Iq) =

{{
(m,n,k) ∈ N

3 : qG

(
Bp

(abc)Δxmnk, 0
)

� β + ε
}
∈ I
}

, (5)

where

Bp
(abc)Δxmnk=

m

∑
r=0

n

∑
s=0

k

∑
t=0

(
m
r

)(
n
s

)(
k
t

)
α(m−r)+(n−s)+(k−t)(1−α)r+s+tΔx(m−ar)(n−bs)(k−ct).

DEFINITION 17. Let β be a non-negative real number and f be a Musielak Or-

licz function. A triple geometric difference of rough sequence x = (xmnk)∈wI
(
Bp

(abc), f
)

if and only if there exists 0 ∈ X such that for qG ∈ Q and for every ε > 0,{
(i, j, �) ∈ N

3 :
1
i j�

i

∑
m=1

j

∑
n=1

�

∑
k=1

[
fmnk

(
qG

(
Bp

(abc)Δxmnk, 0
))]

� β + ε

}
∈ I (6)

when (2.5) holds we write Δxmnk → 0
(
wI
(
Bp

(abc), f
))

.

2.1. Zweier ideal triple sequence in a locally convex space

Let I be an admissible ideal of N and A =
(
ai j�

mnk

)
be an six dimensional infinite

matrix. Let f be a Musielak-Orlicz function and w(G,X) denotes the space of all X−
valued triple geometric difference sequence spaces of rough. For each ε > 0 for all
qG ∈ Q , we define the following rough triple geometric difference sequence spaces of
rough:[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
=

{
x = (Δxmnk) ∈ w(G,X) :

{
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk

))]
�β + ε

}
∈ I

}
,

[
Z∞

(
G,A,Bp

(abc), f ,q
)]

I
=

{
x = (xmnk) ∈ w(G,X) :

{
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk

))]
� K

}
∈ I

}
.
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The condition (2.5) procides a definition of triple geometric difference sequence of
rough ideal of locally convex space.

3. Main results

THEOREM 1. (Main) Let β be non-negative real number, A =
(
ai j�

mnk

)
be a six di-

mensional regular matrix and f be a Musielak Orlicz function. Then the triple geomet-

ric difference sequence of rough (Δxmnk)→0 (w( f ,A))⇒ (Δxmnk)→0
(
Bp

(abc) (Iq)(A)
)

.

Proof. Let qG ∈ Q. Assume that (Δxmnk) → 0 (w( f ,A)) we have

Glim�→∞

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk, 0
))]

= 0. (7)

Let ε > 0 be given. We define

K (β + ε) =
{
(m,n,k) ∈ N

3 : qG

(
Bp

(abc)Δxmnk, 0
)

� β + ε
}

(8)

and we write

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk, 0
))]

= ∑
(mnk)∈K(β+ε)

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk, 0
))]

+ ∑
(mnk)/∈K(β+ε)

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk, 0
))]

�
(

∑
(mnk)∈K(β+ε)

ai j�
mnk

)
[ fmnk (β + ε)] .

Then we have (Δxmnk) → 0
(
Bp

(abc) (Iq)(A)
)

. �

THEOREM 2. Let β be non-negative real number, A =
(
ai j�

mnk

)
be a six dimen-

sional regular matrix and f be a Musielak Orlicz function. If the triple geometric dif-

ference sequence of rough (Δxmnk) ∈ Λ3
(
Bp

(abc)

)
and (Δxmnk) → 0

(
Bp

(abc) (Iq)(A)
)

,

then (Δxmnk) → 0 (w( f ,A)) .

Proof. Suppose that (Δxmnk) → Λ3
(
Bp

(abc)

)
and (Δxmnk) → 0

(
Bp

(abc) (Iq)(A)
)

.

Then there is a set K ∈ 0
(
Bp

(abc) (Iq)
)

such that

Glim(mnk)∈KqG

(
Bp

(abc)Δx1/m+n+k
mnk

)
= 0. (9)
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Now

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δx1/m+n+k
mnk

))]

= ∑
(mnk)∈K(β+ε)

ai j�
mnk

[
fmnk

(
q
(
Bp

(abc)Δx1/m+n+k
mnk

))]

+ ∑
(mnk)/∈K(β+ε)

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δx1/m+n+k
mnk

))]
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnkχK (mnk)

[
fmnk

(
qG

(
Bp

(abc)Δx1/m+n+k
mnk

))]

+
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

ai j�
mnkχKc (mnk)

[
fmnk

(
qG

(
Bp

(abc)Δx1/m+n+k
mnk

))]
.

If we consider the six dimensional regular matrix of A,KcBp
(abc) (Iq) and analyticness of

triple geometric difference sequence of rough (Δxmnk) right side tends to zero. Hence
(Δxmnk) ∈ 0 (w( f ,A)) . �

The proof of the following theorems is easy to verify. Therefore we omit the
details.

THEOREM 3.
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
and

[
Z∞

(
G,A,Bp

(abc), f ,q
)]

I
are linear

spaces.

THEOREM 4. Let f = ( fmnk) and g = (gmnk) be two Musielak-Orlicz functions
of triple geometric difference sequence spaces of rough, then the following holds:[

Z0

(
G,A,Bp

(abc), f ,q
)]

I

⋂[
Z0

(
G,A,Bp

(abc),g,q
)]

I
⊆
[
Z0

(
G,A,Bp

(abc), f +g,q
)]

I
.

THEOREM 5. Let f = ( fmnk) and g = (gmnk) be two Musielak-Orlicz functions
of triple geometric difference sequence spaces of rough, then the following holds:[

Z0

(
G,A,Bp

(abc),g,q
)]

I
⊆
[
Z0

(
G,A,Bp

(abc), f g,q
)]

I
.

THEOREM 6. The inclusions[
Z0

(
G,A,Bp−1

(abc), f ,q
)]

I
⊂
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
,

are strict for p � 1. In general[
Z0

(
G,A,Bj

(abc), f ,q
)]

I
⊂
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
,

for j = 0,1,2, · · · p−1 and the inclusions are strict.
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EXAMPLE 1. Let A = [C,1,1,1] , fmnk (Δx) = Δx , for all x ∈ [0,∞) ,(m,n,k) ∈
N . Consider a triple geometric difference sequence spaces of rough x = (Δxmnk) =
(mpnpkp) . Then x = (Δxmnk) ∈

[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
but does not belong to[

Z0

(
G,A,Bp−1

(abc), f ,q
)]

I
because Bp

(abc)Δxmnk = 0 and Bp−1
(abc)Δxmnk = (−α)p−1 (p−1)!.

THEOREM 7. Let f = ( fmnk) be a Musielak-Orlicz function of triple geometric
difference sequence spaces of rough, then the following statements are equivalent:

(i)
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
⊆
[
Z0

(
G,A,Bp

(abc),q
)]

I
;

(ii)
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
⊆
[
Z∞

(
G,A,Bp

(abc), f ,q
)]

I
;

(iii) in f� ∑�
(m,n,k)=1 ai j�

mnk [ fmnk (t)] > 0 (t > 0) .

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii). Suppose
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
⊆
[
Z∞

(
G,A,Bp

(abc), f ,q
)]

I
. We assume

that (iii) does not hold. Then for some t > 0

in f�
�

∑
(m,n,k)=1

ai j�
mnk [ fmnk (t)] > 0 = 0.

We can choose an index sequence (� j) of positive integer such that

� j

∑
(m,n,k)=1

ai j�
mnk [ fmnk (abc)] >

1
j
, j = 1,2,3, · · · . (10)

Define a triple geometric difference sequence spaces of rough x = (Δxmnk) by

Bp
(abc)Δxmnk =

{
j, if 1 � (m,n,k) � � j,

0, if(m,n,k) > � j.

Then by equation (3.4) we have triple geometric difference sequence spaces of rough

x = (Δxmnk) ∈
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
, but x = (Δxmnk) /∈

[
Z∞

(
G,A,Bp

(abc), f ,q
)]

I
which contradicts (ii). Hence (iii) must hold.

(iii)⇒ (i). Let (iii) hold and x ∈
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
. Then for every ε > 0 we

have {
�

∑
(m,n,k=1)

ai j�
mnk

[
fmnk

(
qG

(
Bp

(abc)Δxmnk

))]
� β + ε

}
∈ I. (11)

Suppose that x /∈
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
. Then for some integer ε0 > 0 we have

{
�

∑
(m,n,k=1)

ai j�
mnk

[
fmnk

(
q
(
Bp

(abc)Δxmnk

))]
� β + ε0

}
/∈ I. (12)
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Therefore we have

[ fmnk (β + ε0)] �
[
fmnk

(
q
(
Bp

(abc)Δxmnk

))]
(13)

and consequently, by the relation (3.6), we have

in f�
�

∑
(m,n,k)=1

ai j�
mnk [ fmnk (β + ε0)] = 0, (14)

which contradicts (iii). Hence
[
Z0

(
G,A,Bp

(abc), f ,q
)]

I
⊆
[
Z0

(
G,A,Bp

(abc),q
)]

I
. �
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