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RATE OF CONVERGENCE OF GUPTA–SRIVASTAVA

OPERATORS BASED ON CERTAIN PARAMETERS

RAM PRATAP AND NAOKANT DEO ∗

Abstract. In the present paper, we consider the Bézier variant of the Gupta-Srivastava operators
[14] and discuss some direct convergence results by using of Lipschitz type spaces, Ditzian-Totik
modulus of smoothness, weighted modulus of continuity and for functions whose derivatives
are of bounded variation. In the end some graphical representation for comparison with other
variants have been presented.

1. Introduction

In the year 2003, Srivastava et al. [15] proposed a sequence of positive linear
operators, containing some well-known operators as special cases and they studied the
convergence properties. After a gap of two year Ispir and Yüksel proposed an impor-
tant Bézier variant of Srivastava-Gupta operators and discussed the rate of convergence
for the functions of bunded variation in the interval [0,∞) . Several researchers have
proposed different generalizations of the Srivastava-Gupta operators (see for instance
[1], [4], [10], [11], [16], [17], etc.). One of them, Yadav [17] studied a modification of
Srivastava-Gupta operators which preserve the constant functions as well as linear func-
tions, established the Voronovskaya type theorem and statistical convergence. In 2017,
Neer et al. [12] proposed the Bézier variant of the operators, which were introduced by
Yadav [17] and discussed several convergence properties.

Recently, Gupta and Srivastava [7] proposed a general family of a positive linear
operator, which preserve constant functions as well as linear functions for all c ∈ N∪
{0}∪ {−1} . They have considered the general sequence of positive linear operators
containing some well-known operators as special cases. For m ∈ Z, and c ∈ N∪{0}∪
{−1} operators defined in [7] are given as:

Lc
n,m ( f (t) ;x) ={n+(m+1)c}

∞

∑
k=1

pn+mc,k(x;c)
∞∫

0

pn+(m+2)c,k−1(t;c) f (t)dt

+ pn+mc,0(x;c) f (0),

(1)
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where

pn,k (x;c) =
(−x)k

k!
φ (k)

n,c (x)

and

φ (k)
n,c (x) =

⎧⎨
⎩

e−nx, c = 0,
(1− x)n, c = −1,

(1+ cx)
−n
c , c = 1,2,3, . . . .

Very recently, Pratap and Deo[14] studied some approximation properties of these op-
erators and termed these operators as Gupta-Srivastava operators.

Inspired from the recent work depending upon some parameter α � 1, we propose
here the following sequence of operators (also called Bézier variant) (1) as follows:

Fc,α
n,m ( f (t) ;x) ={n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc(x;c)

∞∫
0

pn+(m+2)c,k−1(t;c) f (t)dt

+Q(α)
n+mc,0(x;c) f (0),

(2)

where Q(α)
n+mc,k(x;c)=

(
Jn+mc,k(x,c)

)α −(
Jn+mc,k+1(x,c)

)α
, α � 1, with Jn+mc,k(x,c)=

∞
∑
j=k

pn+mc,k(x,c), where k < ∞ and otherwise zero. It is obvious that the operators

Fc,α
n,m (.;x) are the linear positive operator. For α = 1 the operators (2) immediately

reduce to the form (1).
The special cases of operators (2) are given below:

(i) For c = 0, α = 1 and φn,0(x) = e−nx , we get Phillips operators

L0
n,m ( f (t) ;x) = n

∞

∑
k=1

pn+mc,k(x;0)
∞∫

0

pn+mc,k−1(t;0) f (t)dt + pn,0(x;0) f (0),

where

pn,k(x,0) =
e−nx(nx)k

k!
and x ∈ [0,∞).

(ii) For c∈N , α = 1 and φn,c(x)= (1+ cx)−
n
c , we get genuine Baskakov-Durrmeyer

type operators. These operators are similar to (1) except for c = {0,−1} , called
summation integral type of operators, where

pn,k(x;c) =

(
n
c

)
k

k!
(cx)k

(1+ cx)
n
c +k

and (n)i denotes the rising factorial given by

(n)i = n(n+1)(n+2)...(n+ i−1) & (n)0 = 1(i ∈ N).
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(iii) For c = −1, α = 1 and φn,−1(x) = (1− x)n , we have a sequence of Bernstein-
Durrmeyer operators

L−1
n,m ( f ,x) =(n−m−1)

n−m−1

∑
k=1

pn−m,k (x,−1)
1∫

0

pn−m−2,k−1 (t,−1) f (t)dt

+ pn−m,0 (x,−1) f (0)+ pn−m,n−m (x,−1) ,

(3)

where

pn,k(x;−1) =
(

n
k

)
xk(1− x)n−k.

The purpose of this article is to investigate the approximation results by using of Lip-
chitz type space, Ditzian-Totik modulus of smoothness, weighted modulus of continuity
and functions of bounded variation.

2. Basic results

In this section, we give some auxiliary results and with help of these results we
study our main results.

Let C[0,∞) denotes the space of all continuous functions in [0,∞) and let CB[0,∞)
be the space of all continuous and bounded functions in [0,∞) .

LEMMA 1. Let f (t) = ei = ti , i = 0,1,2,3,4, c ∈ N∪{0}∪{−1} and m ∈ Z ,
then we have:

(i) Lc
n,m (e0;x) = 1 ;

(ii) Lc
n,m (e1;x) = x;

(iii)

Lc
n,m (e2;x) =

(n+(m+1)c)
(n+(m−1)c)

x2 +
2

(n+(m−1)c)
x;

(iv)

Ln,c (e3;x) =
(n+(m+1)c)(n+(m+2)c)
(n+(m−1)c)(n+(m−2)c)

x3 +
6(n+(m+1)c)

(n+(m−1)c)(n+(m−2)c)
x2

+
6

(n+(m−1)c)(n+(m−2)c)
x;

(v)

Ln,c (e4;x) =
(n+(m+1)c)(n+(m+2)c)(n+(m+3)c)
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)

x4
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+
12(n+(m+1)c)(n+(m+2)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x3

+
36(n+(m+1)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x2

+
24

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x.

All the moments of operators (1) can be obtained in terms of hyper geometric function
of order r ∈ N . For details see [7].

LEMMA 2. The central moment of the operators (1) are given as

μc
n,s(x) = Ln,c((t− x)s;x),

for s = 2,4 , then we have:

(i)

μc
n,2(x) =

2x(1+ cx)
(n+(m−1)c)

;

(ii)

μc
n,4(x) =

12c2(n+(m+7)c)
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)

x4

+
24c2(13n+(13m+1)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x3

+
12(n+(m+9)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x2

+
24

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)
x.

REMARK 1. If n is sufficiently large, then the central moment of the operators (1)
are

μc
n,2(x) � C

x(1+ cx)
n

and

μc
n,4(x) � C

(x(1+ cx))2

n2 ,

where C > 0 is constant.

REMARK 2. We know that
∞
∑
j=0

pn+mc, j(x,c) = 1 and from (2), we have

Fc,α
n,m (1;x) ={n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc(x;c)

∞∫
0

pn+(m+2)c,k−1(t;c)dt +Q(α)
n+mc,0(x;c)
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=
∞

∑
k=0

Q(α)
n+mc(x;c) = (Jn+mc,0(x,c))

(α) =

(
∞

∑
k=0

pn+mc, j(x,c)

)(α)

= 1.

LEMMA 3. For each f ∈CB[0,∞) then we have∣∣Fc,α
n,m ( f (t);x)

∣∣ � ‖ f‖ .

Proof. It is easy to prove the above result by using Remark 2, therefore we skip
the proof. �

LEMMA 4. For every f ∈CB[0,∞) then we have∣∣Fc,α
n,m ( f (t);x)

∣∣ � αLc
n,m (‖ f‖ ;x) .

Proof. For 0 � c � d � 1, α � 1, using the inequality

|cα −dα | � α |c−d| ,

from the definition of Q(α)
n+mc,k(x;c) , for all k ∈ N∪{0} , we get

0 <
(
Jn+mc,k(x,c)

)α − (
Jn+mc,k+1(x,c)

)α � α
(
Jn+mc,k(x,c)− Jn+mc,k+1(x,c)

)
= α pn+mc(x,c).

Hence ∣∣Fc,α
n,m ( f (t);x)

∣∣ � αLc
n,m (‖ f‖ ;x) . �

3. Main theorems

For x > 0, t � 0 and 0 < γ � 1, we can see in Özarslan et al. [13], the Lipschitz
type space is defined as:

LipM(γ) :=

{
f ∈C[0,∞) : | f (t)− f (x)| � M

|t− x|γ

(t + x)
γ /2

}
.

Now we estimate the rate of convergence of the function f ∈ LipM(γ) by the operators
Fc,α

n,m (.;x) .

THEOREM 1. (Main) For f ∈ LipM(γ) and γ ∈ (0,1] . Then for x > 0 we have

∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ � αM

(δ c
n,m(x)

x

)γ /2
,

where δ c
n,m(x) =

√
2x(1+cx)

(n+(m−1)c) .
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Proof. Using Lemma 4, we get∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ � Fc,α
n,m (| f (t)− f (x)| ;x) � αLc

n,m (| f (t)− f (x)| ;x)

� αMLc
n,m

(
|t− x|γ

(t + x)
γ/2

;x

)
� αM

x
γ/2

Lc
n,m

(|t− x|γ ;x) .
(4)

Using Hölder’s inequality by taking p = 2/γ and q = 2/(2− γ) , we get

Lc
n,m

(|t− x|γ ;x) �
{

Lc
n,m

(
(t − x)2;x

)} γ
2
.

{
Lc

n,m

(
1

2
(2−γ) ;x

)} (2−γ)
2

�
{

Lc
n,m

(
(t − x)2;x

)} γ
2

=
(
δ c

n,m(x)
) γ

2 .

(5)

From (4) and (5), we get

∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ � αM

(δ c
n,m(x)

x

) γ
2

.

Hence the proof. �
In our next theorem, we estimate the rate of convergence by using of Ditzian-Totik

modulus of smoothness ωφ β ( f ,δ ) and Peetre K− functional Kφ β ( f ,δ ) , 0 � β � 1.

For f ∈CB[0,∞) and φ(x) =
√

x(1+ cx), the Ditzian-Totik modulus of smoothness is
defined as

ωφ β ( f ,δ ) = sup
0�i�δ

sup

x± iφβ (x)
2 ∈[0,∞)

∣∣∣∣∣ f
(

x+
iφβ (x)

2

)
− f

(
x− iφβ (x)

2

)∣∣∣∣∣
and the Peetre K− functional is defined as

ωφ β ( f ,δ ) = inf
g∈Wβ

{
‖ f −g‖− δ

∥∥∥φβ g′
∥∥∥} ,

where Wβ is subspace of the space which is locally absolutely continuous functions g

on [0,∞) , with the normed
∥∥φβ g′

∥∥ � ∞ . In [6, Theorem 2.1.1], there exists a constant
C > 0 such that

C−1ωφ β ( f ,δ ) � Kφ β ( f ,δ ) � Cωφ β ( f ,δ ). (6)

THEOREM 2. (Main) For f ∈CB[0,∞) then we have

∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ � Cωφ β

(
f ;

φ1−β (x)√
n

)
,

for sufficiently large n and C is a positive constant independent from f and n.
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Proof. For g ∈Wβ , we get

g(t) = g(x)+
t∫

x

g′(u)du. (7)

Applying Fc,α
n,m in (7) and using Hölder’s inequality then, we have

∣∣Fc,α
n,m (g(t);x)−g(x)

∣∣ � Fc,α
n,m

⎛
⎝ t∫

x

∣∣g′∣∣du;x

⎞
⎠ �

∥∥∥φβ g′
∥∥∥Fc,α

n,m

⎛
⎝
∣∣∣∣∣∣

t∫
x

du

φβ (u)

∣∣∣∣∣∣ ;x
⎞
⎠

�
∥∥∥φβ g′

∥∥∥Fc,α
n,m

⎛
⎜⎝|t− x|1−β

∣∣∣∣∣∣
t∫

x

du
φ(u)

∣∣∣∣∣∣
β

;x

⎞
⎟⎠ .

(8)

Let us take A =
∣∣∣∣ t∫
x

du
φ(u)

∣∣∣∣ , then we get

A �

∣∣∣∣∣∣
t∫

x

du√
u

∣∣∣∣∣∣
∣∣∣∣
(

1√
1+ cx

+
1√

1+ ct

)∣∣∣∣ � 2
∣∣√t−√

x
∣∣( 1√

1+ cx
+

1√
1+ ct

)

� 2
|t − x|√
x+

√
t

(
1√

1+ cx
+

1√
1+ ct

)
� 2

|t− x|√
x

(
1√

1+ cx
+

1√
1+ ct

)
.

(9)

The inequality |a+b|β � |a|β + |b|β , 0 � β � 1, then from (9) we get∣∣∣∣∣∣
t∫

x

du
φ(u)

∣∣∣∣∣∣
β

� 2β |t− x|β

x
β /2

⎛
⎝ 1

(1+ cx)
β /2

+
1

(1+ ct)
β /2

⎞
⎠ . (10)

From (8), (10) and using Cauchy inequality then we get

∣∣Fc,α
n,m (g(t);x)−g(x)

∣∣ �
2β

∥∥φβ g′
∥∥

x
β/2

Fc,α
n,m

⎛
⎝|t− x|

⎛
⎝ 1

(1+ cx)
β/2

+
1

(1+ ct)
β/2

⎞
⎠ ;x

⎞
⎠

�
2β ∥∥φβ g′

∥∥
x
β/2

(
1

(1+ cx)
β/2

(
F(α)

n,c

(
(t− x)2;x

))1/2

+
(
Fc,α

n,m

(
(t − x)2;x

))1/2
.
(
Fc,α

n,m

(
(1+ ct)−β ;x

))1/2
)

.

(11)

If n is sufficiently large then we get

(
Fc,α

n,m

(
(t − x)2;x

))1/2 �
√

2α
n

φ(x), (12)
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where φ(x) =
√

x(1+ cx) . For each x ∈ [0,∞) , Fc,α
n,m

(
(1+ ct)−β ;x

)
→ (1+ cx)−β as

n → ∞ . Thus for ε > 0, there exists n0 ∈ N such that

Fc,α
n,m

(
(1+ ct)−β ;x

)
� (1+ cx)−β + ε, for all n � n0.

By choosing ε = (1+ cx)−β then, we get

Fc,α
n,m

(
(1+ ct)−β ;x

)
� 2(1+ cx)−β , for all n � n0. (13)

From (11) to (13), we have

∣∣Fc,α
n,m (g(t);x)−g(x)

∣∣ � 2β
∥∥∥φβ g′

∥∥∥
√

2α
n

φ(x)
(

φ−β (x)+
√

2x−
β
2 (1+ cx)−

β
2

)

� 2β+ 1
2 (1+

√
2)
∥∥∥φβ g′

∥∥∥
√

α
n

φ1−β (x).

(14)

We may write∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ �
∣∣Fc,α

n,m ( f (t)−g(t);x)
∣∣+ ∣∣Fc,α

n,m (g(t);x)−g(x)
∣∣+ |g(x)− f (x)|

� 2‖ f −g‖+
∣∣Fc,α

n,m (g(t);x)−g(x)
∣∣ .

(15)

From (14) to (15) and for sufficiently large n , we get

∣∣Fc,α
n,m ( f (t);x)− f (x)

∣∣ � 2‖ f −g‖+2β+ 1
2 (1+

√
2)
√

α
n

φ1−β (x)
∥∥∥φβ g′

∥∥∥
� C1

{
‖ f −g‖+

φ1−β (x)√
n

∥∥∥φβ g′
∥∥∥
}

� CKφ β

(
f ,

φ1−β (x)√
n

)
,

(16)

where C1 = max(2,2β+ 1
2 (1+

√
2)
√

α) and C = 2C1 . From (6) and (16), we get the
required result. �

For the estimation of the rate of convergence of the function f ∈C2[0,∞) by using
the weighted modulus of continuity, which was introduced by Ispir and Yüksal [18] as
follows:

Ω( f ;δ ) = sup
x∈[0,∞),0<β<δ

f (x+ β )− f (x)

1+(x+ β )2
. (17)

Many authors have discussed weighted modulus of continuity for various linear positive
operators. For more information (see [2], [3], [5]).

There are several properties of weighted modulus of continuity Ω(.;δ ) which are
stated in following Lemma.
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LEMMA 5. [18] For f ∈C2[0,∞) the following properties hold:

(i) Ω( f ;δ ) is monotonically increasing in δ ;

(ii) lim
δ→0+

Ω( f ;δ ) = 0;

(iii) for each r ∈ N , Ω( f ;rδ ) � rΩ( f ;δ );

(iv) for each λ ∈ [0,∞) , Ω( f ;λ δ ) � (λ +1)Ω( f ;δ ) .

THEOREM 3. (Main) Let f ∈C2[0,∞) , α > 0 , for fixed m and sufficiently large
n then we have

sup
x∈[0,∞)

∣∣Fc,α
n,m ( f ;x)− f (x)

∣∣
(1+ x)5/2

� CΩ
(

f ;
1√
n

)
,

where C is positive constant depends on n and f .

Proof. By the definition of the weighted modulus of continuity and Lemma 5, we
have

| f (t)− f (x)| �
(
1+(x+ |t− x|)2

)
Ω( f ; |t− x|)

� 2(1+ x2)
(
1+(t− x)2

)(
1+

|t− x|
δ

)
Ω( f ;δ ).

(18)

Applying Fc,α
n,m (.;x) on both side of (18), we can write

∣∣Fc,α
n,m ( f ;x)− f (x)

∣∣ �
[
1+Fc,α

n,m ((t − x)2;x)+Fc,α
n,m

(
(1+(t− x)2)

|t − x|
δ

;x

)]
. (19)

From Remark 1 and using Cauchy-Schwarz inequality in the last term of (19), we have

Fc,α
n,m

(
(1+(t− x)2)

|t− x|
δ

;x

)
� 1

δ
(
αμc

n,2(x)
)1/2 +

1
δ
(
αμc

n,4(x)
)1/2(αμc

n,2(x)
)1/2

.

(20)

Combining the estimate from (18) to (20) and taking C = 2(1+
√

αC+2C) and δ = 1√
n

then we get the required result. �
In next theorem, we study the rate of convergence of the Bézier variant of Gupta-

Srivastava operators (2) in the class DBV [0,∞) , the class of all absolutely continuous
functions f defined on [0,∞) having a derivative coinciding a.e. with a function of
bounded variation on [0,∞) . It can be seen that for f ∈ DBV [0,∞) , we can write

f (x) =
x∫

0

g(t)dt + f (0),



146 R. PRATAP AND N. DEO

where g(t) is a function of bounded variation on each finite subinterval of [0,∞) . The
operators (2) can be rewritten in the following form:

Fc,α
n,m ( f (t);x) =

∞∫
0

M(α)
n,m,c(x,t) f (t)dt, (21)

where

M(α)
n,m,c(x, t) = {n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc,k(x;c)pn+(m+2)c,k(t,c)+Q(α)

n+mc,0(x;c)δ (t),

where δ (t) is Dirac delta function.

LEMMA 6. For a fixed x ∈ [0,∞) and n sufficiently large then we have:

(i) ζ (α)
n,c (x;y) =

y∫
0

M(α)
n,m,c(x;t)dt � 2αx(1+cx)

n(x−y)2
, 0 � y � x;

(ii) 1− ζ (α)
n,c (x;z) =

∞∫
z
M(α)

n,m,c(x;t)dt � 2αx(1+cx)
n(z−x)2

, x � z � ∞ .

Proof. From (21) and using Remark 1 then we have

ζ (α)
n,c (x;y) �

y∫
0

M(α)
n,m,c(x;t)

(
x− t
x− y

)2

dt � α
(x− y)2

Ln,c

(
(e1− x)2;x

)
� 2αx(1+ cx)

n(x− y)2
.

We can prove the second part of Lemma in same way. �

THEOREM 4. Let f ∈DBV [0,∞) then for every x∈ [0,∞) and n sufficiently large
we have

∣∣Fc,α
n,m ( f ;x)− f (x)

∣∣ � 1
α +1

∣∣ f ′(x+)+ α f ′(x−)
∣∣√2αx(1+ cx)

n

+
α

α +1

∣∣ f ′(x+)− f ′(x−)
∣∣√2αx(1+ cx)

n

+
2α(1+ cx)

n

[
√

n]

∑
k=1

x
V

x− x
k

f ′x +
x√
n

x
V

x− x√
n

f ′x

+
2α(1+ cx)

nx
| f (2x)− f (x)− x f (x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

f ′x +
x√
n

x+ x√
n

V
x

( f ′x)+M(γ,r,x)

+
2α(1+ cx)

nx
| f (x)|+

√
2αx(1+ cx)

n
| f (x+)| ,
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where
b
V
a

f (x) denotes the total variation of f on [a,b] , fx is an auxiliary operator

given by

fx (t) =

⎧⎨
⎩

f (t)− f (x−) , 0 � t < x,
0, t = x,
f (t)− f (x+) , x < t < ∞.

(22)

Proof. From Remark 2, Fc,α
n,m (1;x) = 1 and using the alternative form of the op-

erators (21) for each x ∈ [0,∞) then we have

Fc,α
n,m ( f (t);x)− f (x) =

∞∫
0

M(α)
n,m,c(x,t)

(
f (t)− f (x)

)
dt =

∞∫
0

M(α)
n,m,c(x,t)

⎛
⎝ t∫

x

f ′(u)du

⎞
⎠dt.

(23)

For each f ∈ DBV [0,∞) and from (22), we can write

f ′(u) = f ′x(u)+
1

α +1
( f ′(x+)+ α f ′(x−))

+
1
2

(
f ′(x+)+ α f ′(x−)

)(
sgn(u− x)+

α −1
α +1

)
× δx(u)

[
f ′(u)− (

f ′(x+)+ f ′(x−)
)]

,

(24)

where

δx(u) =
{

1, u = x,
0, u 	= x.

From (23) and (24) we have

Fc,α
n,m ( f (t);x)− f (x) =

∞∫
0

M(α)
n,m,c(x,t)

t∫
x

(
f ′x(u)+

1
α +1

( f ′(x+)+ α f ′(x−))

+
1
2
( f ′(x+)+ α f ′(x−))

(
sgn(u− x)+

α −1
α +1

)

×δx(u)[ f ′(u)− 1
2
( f ′(x+)+ f ′(x−)]

)
dudt.

(25)

It is easy to say that

∞∫
0

M(α)
n,m,c(x,t)

t∫
x

[ f ′(u)− 1
2
( f ′(x+)+ f ′(x−)]δx(u)dudt = 0. (26)
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Now

B1 =
∞∫

0

M(α)
n,m,c(x,t)

t∫
x

1
α +1

( f ′(x+)+ α f ′(x−))dudt

=
1

α +1
( f ′(x+)+ α f ′(x−))

∞∫
0

M(α)
n,m,c(x,t)(t − x)dt

=
1

α +1
( f ′(x+)+ α f ′(x−))F (α)

n,c ((t− x);x)

(27)

and

B2 =
∞∫

0

M(α)
n,m,c(x, t)

t∫
x

1
2
( f ′(x+)+ α f ′(x−))

(
sgn(u− x)+

α −1
α +1

)
dudt

=
1
2
( f ′(x+)+ α f ′(x−))

⎛
⎝−

x∫
0

M(α)
n,m,c(x,t)

t∫
x

(
sgn(u− x)+

α −1
α +1

)
dudt

+
∞∫

x

M(α)
n,m,c(x,t)

t∫
x

(
sgn(u− x)+

α −1
α +1

)⎞⎠

� α
α +1

( f ′(x+)+ α f ′(x−))
∞∫

0

M(α)
n,m,c(x,t) |t− x|dt

� α
α +1

( f ′(x+)+ α f ′(x−))
(
F (α)

n,c

(
(e1− x)2;x

)) 1
2
.

(28)

By using Remark 1 and Lemma 4, from (25)− (28) then we have

Fc,α
n,m ( f ;x)− f (x) �

∣∣∣A(α)
n ( f ′;x)+B(α)

n ( f ′;x)
∣∣∣+ 2α

α +1

∣∣ f ′(x+)+ α f ′(x−)
∣∣ x(1+ cx)

n

+
α

α +1

∣∣ f ′(x+)− f ′(x−)
∣∣√2αx(1+ cx)

n
,

(29)

where

A(α)
n ( f ′;x) =

x∫
0

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠M(α)

n,m,c(x, t)dt

and

B(α)
n ( f ′;x) =

∞∫
x

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠M(α)

n,m,c(x,t)dt.
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To estimate A(α)
n ( f ′;x) , using integration by parts and applying Lemma 6 with y =

x− x√
n , we obtain

A(α)
n ( f ′;x) =

∣∣∣∣∣∣
x∫

0

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠dtζ

(α)
n,c (x;t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

0

ζ (α)
n,c (x; t) f ′x(t)dt

∣∣∣∣∣∣
�

y∫
0

∣∣ f ′x(t)∣∣ ∣∣∣ζ (α)
n,c (x;t)

∣∣∣dt +
y∫

0

∣∣ f ′x(t)∣∣ ∣∣∣ζ (α)
n,c (x; t)

∣∣∣dt

� 2αx(1+ cx)
n

y∫
0

x
V
t

f ′x(x− t)2dt +
x∫

y

x
V
t

f ′xdt

� 2αx(1+ cx)
n

x− x√
n∫

0

x
V
t

f ′x(x− t)2dt +
x√
n

x
V

x− x√
n

f ′x.

(30)

Substituting u = x
x−t , we get

2αx(1+ cx)
n

x− x√
n∫

0

x
V
t

f ′x(x− t)2dt =
2αx(1+ cx)

nx

√
n∫

1

x
V

x− x
u

f ′xdu

� 2α(1+ cx)
n

[
√

n]

∑
k=1

k+1∫
k

x
V

x− x
k

f ′xdu

� 2α(1+ cx)
n

[
√

n]

∑
k=1

x
V

x− x
k

f ′x.

(31)

From (30) and (31) we get

A(α)
n ( f ′;x) =

2α(1+ cx)
n

[
√

n]

∑
k=1

x
V

x− x
k

f ′x +
x√
n

x
V

x− x√
n

f ′x. (32)

We can write

B(α)
n ( f ′;x) �

∣∣∣∣∣∣
2x∫
x

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠dt(1− ζ (α)

n,c (x;t))

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∫
2x

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠dtM

(α)
n,m,c(x,t)

∣∣∣∣∣∣ .
From the second part of the Lemma 6, we get

M(α)
n,m,c(x,t) = dt((1− ζ (α)

n,c (x;t)), for t > x.

Hence
B(α)

n ( f ′;x) = B(α)
n,1 ( f ′;x)+B(α)

n,2 ( f ′;x),
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where

B(α)
n,1 ( f ′;x) =

∣∣∣∣∣∣
2x∫
x

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠dt(1− ζ (α)

n,c (x; t))

∣∣∣∣∣∣
and

B(α)
n,2 ( f ′;x) =

∣∣∣∣∣∣
∞∫

2x

⎛
⎝ t∫

x

f ′x(u)du

⎞
⎠dtM

(α)
n,m,c(x,t)

∣∣∣∣∣∣ .
Using integration by parts, applying Lemma 6, 1− ζ (α)

n,c (x; t) � 1 and taking t = x+ x
u

successively,

B(α)
n,1 ( f ′;x) =

∣∣∣∣∣∣
2x∫
x

f ′x(u)du(1− ζ (α)
n,c (x;2x))−

2x∫
x

f ′x(t)(1− ζ (α)
n,c (x; t))dt

∣∣∣∣∣∣
�

∣∣∣∣∣∣
2x∫
x

( f ′(u)− f ′(x+))du

∣∣∣∣∣∣
∣∣∣1− ζ (α)

n,c (x;2x)
∣∣∣+

∣∣∣∣∣∣
2x∫
x

f ′x(t)(1− ζ (α)
n,c (x; t))dt

∣∣∣∣∣∣
�2α(1+ cx)

nx
| f (2x)− f (x)− x f (x+)|

+
2αx(1+ cx)

n

2x∫
x+ x√

n

t
V
x

f ′x

(t − x)2
dt +

x+ x√
n∫

x

t
V
x

f ′xdt

�2α(1+ cx)
nx

| f (2x)− f (x)− x f (x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

f ′x +
x√
n

x+ x√
n

V
x

( f ′x).

(33)

Using Remark 1 then we have

B(α)
n,2 ( f ′;x) =

∣∣∣∣∣∣
∞∫

2x

⎛
⎝ t∫

x

( f ′(u)− f ′(x+))du

⎞
⎠M(α)

n,m,c(x,t)dt

∣∣∣∣∣∣
�

∞∫
2x

| f (t)− f (x)|M(α)
n,m,c(x,t)dt +

∞∫
2x

|t− x| | f (x+)|M(α)
n,m,c(x,t)dt

�

∣∣∣∣∣∣
∞∫

2x

f (t)M(α)
n,m,c(x,t)dt

∣∣∣∣∣∣+ | f (x)|
∣∣∣∣∣∣

∞∫
2x

M(α)
n,m,c(x,t)dt

∣∣∣∣∣∣ (34)

+ | f (x+)|
⎛
⎝ ∞∫

2x

(e1 − x)2M(α)
n,m,c(x,t)dt

⎞
⎠

1
2
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� M

∞∫
2x

tγM(α)
n,m,c(x,t)dt + | f (x)|

∣∣∣∣∣∣
∞∫

2x

M(α)
n,m,c(x,t)dt

∣∣∣∣∣∣
+

√
2αx(1+ cx)

n
| f (x+)| .

For t � 2x , we get t � 2(t− x) and x � t − x , applying Hölder’s inequality, we have

B(α)
n,2 ( f ′;x) �M2γ

⎛
⎝ ∞∫

2x

(e1 − x)2rM(α)
n,m,c(x,t)dt

⎞
⎠

γ
2r

+
2α(1+ cx)

nx
| f (x)|+

√
2αx(1+ cx)

n
| f (x+)|

=M(γ,c,r,x)+
2α(1+ cx)

nx
| f (x)|+

√
2αx(1+ cx)

n
| f (x+)| .

(35)

From (33) and (35), we get

B(α)
n ( f ′;x) =

2α(1+ cx)
nx

| f (2x)− f (x)− x f (x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

f ′x +
x√
n

x+ x√
n

V
x

( f ′x)

+M(γ,c,r,x)+
2α(1+ cx)

nx
| f (x)|+

√
2αx(1+ cx)

n
| f (x+)| .

(36)

From (29) , (32) and (36) , we get our desired result. �

4. Graphical results and discussion

Figure 1: Comparison between Bézier variant of Srivastava-Gupta operators [8] (red)
with operators (2)(cyan) along with function f (x) .
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Figure 2: Comparison between Bézier variant of Srivastava-Gupta Operators [9] (red)
with operators (2) (cyan) along with function f (x) (blue).

Figure 3: Comparison between Bézier variant of modified Srivastava-Gupta operators
[12] (red) with operators (2) (cyan) along with function f (x) (blue).

In operators (2) by taking m = −1, we obtain Bézier variant of Srivastava-Gupta
operators which were propoesd by Ispir and Yüksel [8] and its modification by Neer et
al.[12]. For m = 1 in (2), we obtain another Bézier form of Srivastava-Gupta operators
considered by Kajla [9]. The proposed operators (2) have generalized form with differ-
ent values of m . Here, we show graphical comparison between operators (2) for m = 20
with above discussed operators ( [8], [9], [12] ) for the function f (x) = x3−2x2 + x .

From the above graphs we observe here that we have better approximation for the
Bézier variant of Gupta-Srivastava operators (2), discussed in the present paper than the
other variants of [15], therefore it is justified to study this form of operators.
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