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SOME RESULTS ON SUM AND PRODUCT OF RELATIVE
GROWTH FACTORS OF COMPOSITE ENTIRE FUNCTIONS

SANIJIB KUMAR DATTA*, BANANI DUTTA AND NITYAGOPAL BISWAS

Abstract. In this paper we study about the sum and product of relative (p,q,7)L-th type and
relative (p,q,7)L-th lower type of an entire function with respect to another entire function in
the light of a special type of non-decreasing, unbounded function V.

1. Introduction, definitions and notations

We assume that reader is familiar with the fundamental results and the standard
notations of the Nevanlinna’s theory of meromorphic functions ([7]). Let C be the set
of finite complex numbers and f be an entire function defined on C. To characterize the
growth of an entire function a special growth scale called maximum modulus function
on |z| = r is introduced as

M(r, f) = max|f(z)|.

|z|=r

Some times the symbol M(r, f) can also be written as My(r). It plays an important role
in the theory of entire functions. If f is a non-constant entire function, the its maximum
modulus M(r, f) increases as r increases and is continuous therefore there exists its
inverse function M : (J£(0)],00) — (0,°0) with }L%Mgl (r) = oo. Again the sum of

proximity function and counting function is denoted by 7 (r, ), known as Nevanlinna’s
characteristic function. Further a non-constant entire function f is said to have the
Property (A) if for any ¢ > 1 and for all sufficiently large r, [M f(r)]2 < My (r°)
holds (see [2]).

Many authors like Datta et al. (cf. [1], [6], [5] and [11]) investigated about the
growth of entire functions. This investigation can be made using slowly changing func-
tion also. A positive continuous function L(r) is said to be slowly changing function if
L(ar) ~ L(r) as r — oo, i.e. limy_e LL(( )) = 1. Somasundaram and Tamizharasi [13]

introduced the notion of L-order and L-lower order.
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DEFINITION 1. Let f be an entire function. The order p; and lower order A of
an entire function f is defined as

2] 2]
log” M(r.f) . 1d A ;= liminf o€ M)
logr r—oo logr

)

py = limsup
F—o0
where loglx = log(log*~x), for k=1,2,3,... and logl%x=x.

Juneja, Kapoor and Bajpai [8, 9] introduced the idea of (p,q)" -order

. logl” M T
pr(p.q) =1lim supg#](f)
r—oo log!'r

where p,q are positive integers and p > ¢g. Clearly, when p =2, =1 it reduces to
order py.

When the growth of an entire function is defined with respect to another entire
function, this is known as relative growth. Ruiz et al. [10], introduced the concept
of relative (p,q)"* -order and relative (p,q)™ -lower order of an entire function with
respect to another entire function in the light of index pair.

Recently, Biswas [3] introduced the idea of relative (p,q, t)th — L order and relative
(p.q,1)"™ — L lower order of an entire function as follows:

DEFINITION 2. Let f, g be two entire functions. Then the relative (p,q,7)L" -
order and relative (p,q,t)L"" -lower order of f with respect to the function g is defined
as

1 [P]Mle .
pIE’P#N)L (f) — lim sup 0g g (r f)
r—e logld r+expll L(r)

and

log” M "M (r,
AP (f) = timinf—2 ¢ nf)
== Jogll r+ expl] L(r)

where, p,g € N, t e NU{-1,0}.

Chyzhykov et al. [4], introduced the definition of ¥ -order of a meromorphic function
on single variable in the unit disc. For details about ¥ -order, one may see [4] and [12].

REMARK 1. ([12]) Throughout this paper, we assume that V' : [0,00) — (0,00) is
anon-decreasing unbounded function and always satisfies the following two conditions:
@ .
P
lim 287" _g
r=elogld W (r)

and
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(ii)
loglh ¥ (or)

im =1, for some o > 1.
r—e logld ¥ (r)

Now we give the following classical definitions of growth indicators of f with the
help of the function ¥ :

DEFINITION 3. Let f, g be two entire functions. Then the relative - (p,q)" -
order and relative - (p,q)"* -lower order of f with respect to the function g is defined
as

logl”! M 'M(r, f) log”! M 'M(r, f)

(p.q) . g Mg ' (p.a) o 08T Mg ’
=limsup————=2——= and A =liminf——2%——~

Py (f) m Sup log¥ ¥ (r) v (f) == logldp(r)

where p,q are positive integers with p > q.

Using the functions ¥ and L(r), we introduce the relative (p,q,7)"”" — L order of
an entire function.

DEFINITION 4. Let f, g be two entire functions. Then the relative (p,q,7)L" -
order and relative (p,q,t)L"" -lower order of f with respect to the function g is defined
as

. log” M, 'M(r, f)
Pyt () = timsup—
’ r—es log W (r) +expl! L(r)

and

log” M 1M(r,
AL (£) = liminf— o8 nf)
& == logld W(r) + expll L(r)

where, p,g € N, t e NU{-1,0}.

DEFINITION 5. Let f, g be two entire functions. Then the relative (p,q,7)L" -
type and relative (p,q,t)L""-lower type of f with respect to the function g is defined
as

(pa)L log[p_l]Mg’lM(r,f)

Oy (f) = limsup »r
: == [l (). expl+ll L (r)Pe )
and

log” 1M, ' M(r. f)

o () = limint

llogl (). explit1] L ()P ()

where, p,g € N, t € NU{-1,0}.
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DEFINITION 6. Let f, g be two entire functions. Then the relative (p,q,t)L" -
weak type and relative (p,q,t)L" -growth indicator of f with respect to the function g
is defined as

10 [p_l] M*lM 3
Tg(.lzi‘Q7t)L (f) = liminf g . M(r.f) —
| o [log[‘]_”‘P(r).exp[t+1]L(r)]lgyp' (f)

and
log? M, ' M(r, f)

b

Ty (f) = limsup —
! rosee [1oglq—lhp(r).explt+l1L(r)}%(@” 0

where, p,g e N, t e NU{-1,0}.

In this paper we will discuss about some property of sum and product of different
growth factors of an entire function with respect to another entire function such as
relative (p,q,t)-L'" type, relative (p,q,t)-L'"* lower type, relative (p,q,t)-L" weak
type etc.

2. Lemmas

Now we state some lemmas which will be needed in the proof of the theorems.

LEMMA 1. [2] Suppose f be an entire function and o, 3 be such that o > 1 and
0< B < a. Then
My (our) > BMy (r).

LEMMA 2. [2] Let f be an entire function satisfying the Property (A). Then for
any positive integer n and for all sufficiently large r

My (r)]" < My ()
holds, where 6 > 1.

LEMMA 3. ([7], p. 18) Let f be an entire function. Then for all sufficiently large
values of r

Ty (r) < logMp (r) < 3Ty (2r).

3. Main results

Next we will establish some results using sum and product of type and lower type
of entire functions.

THEOREM 1. (Main) Let f1, f>, g1 and g, be entire functions such that
L : )L : .
Pl (), PG (), P () and p" (f1) are non zero finte.
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(i) 1 (Pg:t) ( )> (p.gt)L ( ) (i .):(1 2) (2 1) "
! fpg fi Pe,w fi), for (i, ] ,2) or (2,1), then
o (fi+ o) = ol (i) and I (i ) = TG ().

(ii) 1f pPg™" () < pg" (A), for (1,7) = (1,2) or (2,1), fi is of regular rela-

tive growth with respect to gj, then

7 L L — (p,gt)L
o (1) = ok (1) and TN (R) = B (A).
(iii) If
(a) plgp gL (f) < péi’ffjt)L (f1), fi is of regular relative growth with respect
10 gj,
(b) pg(pq[ () < pgpff,’ (f2), fa is of regular relative growth with respect
10 gj,
(c) plg”’ (fi) > pg”’ (f1): Py ”’ () > pg”’ (f;) holds simultane-
ously,
(d)
p.g.t)L 1)L
DPU (1) — man min{p, 4" ()P4 O0)
ms L qd. L A ) )
& mm{P:,ﬁff;t) (fz)mf,f;fu") (fz)}
then
gffg;\y(flifz) ; ?p) (1),

Proof. From the Definition of Gg(f ig”)L (fx) and ﬁg ’f{,’[)L (f) we have, for all suf-
ficiently large values of r, '

(ngfig’t)L (fk)+£) . -
P~‘1<th s .
: (10g[q_1]‘1’(r) ~exP[I+1]L(r)>pgz~‘l‘ (fe)
(504" (i) —e)
-(10 =1 () . expl+1] Péf,’u?”
g (r)-exp™ U L(r)

and for a sequence of values of r tending to infinity

(o () —e)
(p.a,)L (3.3)
Ji )
: (10g[q_1]‘1’(r) ~exP[I+1]L(r)>pgz~‘l‘ (fe)

(r fk) A/ exp[p—l]

M(r, fe) > Mg, |expl?™! 0L (3:2)

M(r, f) > My, |expl?™!
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(B (fi)+e)

M(r, fi) < My |expl?™"
. <log[‘1’1] W(r)-exp! T L(r)

>pgf¢'>%fk> TS

for k,l =1,2.
Case1: Let pgfff,’ (f1) > p[’1 o )L (f2) . For arbitrary & > 0, and from equation
(3.1), for sufficiently large values of r,

My +p, < My, + My,

0L
(o™ () +e)
< Mgl eXp[p_l] P(p’w)L(fl)
. <10g[(171]\P( ) exp[t"l‘l]L( )) s
(ol () +e)
+M,, exp[pil] pPEIL (1)
. <log[‘1’1] ¥(r) -exp[’“]L(r)) o
. (s () +e)
iy foxp? o || 0+al

(ra
-(log[’i’”‘P( ) exp[’H]L(r))

As pg(f 7’fff)L (f1) > Pglf ff, ( fz) and for all large values of r, @ is very small. Let

o=1+w, then o0 — 1+,

Mflifz < MA’I [exp[ﬁl] [ (Gglp\g7 (fl) —|—8>

(p.q.t)L
f
: (log[qfl]‘l’(r) ~exp[’+l]L(r))pg1‘\y ( I)H 0.

Then we get that

logP~YUnm'm r
Jim sup g gl Yfith (r) < Ggf(g.,t)L (f1).

oo (pa,
<log[‘1’l]‘1‘(r)-exp[f“]L(r)) o

Therefore
[ [
ol (fi+ ) <ol ().
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(P )L (p.qt)
Now let f = fi£ f2, as p,l'y (/1) > P,y " (2), then

oM (1) = ol (£ ) < ol ().
As fi = f+£ f2, then
P (N> " (1)
then by above result

ol (f) < ofPE (F) = oiP O (£ ).

Hence,
ol () = o (i) = o () = o (i £ ).

Thus case 1 is established. Similarly the result can be proved when p£ ff, L (f1) <

)L
P (1),
Case 2: Let p,! pqt (fi)>p pff,t (f2). From equations (3.1) and (3.4) we get
for a sequence of Values of r tendmg to infinity

(B () +e)

My 1p, < My, eXp[pil] p(p{/l;
. (]()g[ll—l]\p(r) .exp[tJrl]L(r)) 81

iy | | ol

where

M [exp [ ) +¢) - (logd™ 1w (r) - explt*! L(,»))Pgl % <fz>H

Me, [GXP [ 8) : <10g[‘1*1]‘P(r) 'exp[r+1]L(r)>pg1 ¥ (fl)H

W) =

As pé’f ’ffjt)L (f1) > pgf ff, (f2) and for all large values of r, @ is very small. Let
o=14+w;, then o — 1+, i.e.,

—(p.q.t)L
, (B4 (h)+e)
(p.gt)L (fl) <O

My +p, < Mg, exp[p_
. (10g[t171] ¥(r) _exp[t-H] L(r)>pg1>‘*’

In a similar way, we obtain that

1] A y—
liminf log!” ]Mgllelifz (r)

F—so0

(Pt
o < O U1
<log[‘1’1] W(r)-expltllL (r)) ‘o
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Hence we obtain that

1L

o (it ) <ol ().
For the equality part proceeding as case 1, we get that
1L

ol (£ ) =T ().

So the proof of first part of the theorem is done.

Case 3: Let pjfp GOL (1) < p&2 o JL(f1) and fiis of regular relative growth with
respect to go.Let

(
Me, [exp[Pl] [( g1 ‘I’ (fl) ) : <10g[q_1]‘1’(r) .exp[tJrl]L(r)) 81 ¥ (m‘|‘|
) = ‘| |

(p
Mq, [exp[f’” [( g () —e) - (log W) -explIL(r))
Now
[p—1] pqt [g—1] [t+1] Pé’; \qyt)L(fl)
Mgy [exp? ™ | (04 (1) ) - (1ogt 1w (r) - expl 1L (1))
PG ()
< M, |explP~ ! < (p.g1) (fl)—£>-<log[‘1_1]‘l’(r)-exp[t“]L(r)) -

P (o la=1] +1] PG ()
+M,, |exp?? <Gg1;‘1" (f1) —g) . <1qu () - exp L(r)) .

We can make @, very small for sufficiently large values of r. we take 1+ @, = a, then
o — 1+ . Now by using Lemma 3 for a sequence of values of r tending to infinity

(p.g.t)L
f
explr 1! [( () (fl)—:‘)) (log[q_”‘l’(r).exP[t+ﬂL(r)>pg1‘P ( I)H

< oMy (I")7

My, +q,

ie.,
IOg[F I glztgszl( )

(
(log[q_l] W(r) -expl+1] L(r)) S

Therefore we obtain

lim sup

F—so0

o) g Ggh (fl)

a0 (f1) = G (fl)

Qltgy ¥

For the equality part proceeding as case 1, we get that G(f fg?ﬁ, (fi ) = Gg(f v ().

Similarly, the result can be proved if we consider p:p SOE(f) > Pery ().
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Case 4: Let p;p GOL £y < pl? o & JL(f1) and fiis of regular relative growth with

respect to g». Let

Me: leXp[pl] l( 7 () - )'(log[q_”‘l’(r)~exp[f+1]L(r))pg1‘1‘ (fl)H

“ = p“"@'” (f1)
My, explr=11 | (G247 () —€) - (logh 11 w(r) - expl 11 L(r))

Now

PP (1)
Mg+, [CXP[p ]l( pqt (f1)— ) (log[q_”‘l’(r)-exp[‘ﬂ]L(r)) gn‘P IH
Og1¥

(p.g.t)L
(1)
< Mg, [exp[p 1] [( pqt (f1) - )-<log[‘1_”‘l’(r)-exp[’“]L(r))pgl”’ 1 H

p G (1)
+Mg, eXp[p_l] [( 1511) ?Pt (f1) _3> <10g[q_1]‘f‘(r) -eXp[t‘H]L(r)) %’1‘1’ 1 ‘|‘| .

We can make @3 very small, by choosing sufficiently large values of r. We take 1+
o3 = a, then oo — 1+ . Now by using Lemma 2, for all sufficiently large values of r
we have

g1,

g ()
( g (fl)—3> (log[q_”‘{’(r).exp[tﬂ] L(r)> <1

My, +g, lexp[p_l]

< oMy, (r),
i.e.,
o lo g[ M lztgszl (r) —=(p.qt)L
hrnlg}lf (p,qﬁl)L(fl) Z Og W (f1)

<10g[4—1] Y(r) -exp[t‘*‘l] L(,,))‘)gl“*’

Therefore we get
—(p.gq:t)L !
GG (fi) = “\tift (f1)-

gl:tg27\ll

For the equality part proceeding as case 1, we get Gg id gtiL\I, (fi) = p [ (f1). Sim-

o,
ilarly, the result can be proved if we consider p(p GOL(f) > p f{, ( f1). Thus the
second part of the theorem is proved. We can easﬂy prove the th1rd part by using part
A, part B. So the proof is omitted.
This proves the theorem. [J

THEOREM 2. (Main) Let fi, f2, g1, 82 be entire functions such that p| pqt (f1),

pg(iqt) (f2), pgfff,t (f2) and pé(,pqt) (f1) are non zero finite. Also, let p,q €N,
te NU{-1,0}.
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(i) If lgp a1 (f,) > lgfff,t (fj) and f; is of regular relative growth with respect
o g1, for(z,J) (1,2) or (Z,I)Jhen

(flifz)—T s “(f) and T gfq\yt (fitfo)= E ().
(ii) 1 258 (A1) < 4787 (R), for (i) = (1,2) or (2,1), then

gL gL —(p.qt)L —(p.q)L
PG (f) =T (A) and TPEDN (F) = 208N ().

(iii) If

(a) lgfff,’ (f;) > lgfff,’ (fj), fj is of regular relative growth with respect
o g1,

(b) ?L;i’ffjt)L (fi) > ?Léiffjm (fj), fi is of regular relative growth with respect
10 &2,

(c) Aéffq‘f”)L (fi) < ALEDE (£, ALPEDE (£) < L (2) holds simultane-
ously,

(d)

(i) = min{max{p 8" (£, 08" (£)),
maX{Pgl’tn) (f1). pg(iqr) T
for lm=1,2, then
gffgtz\y(flj:f) gi,qt)L(fz),

L
W (i) =T ().
Proof. We omit the proof as its proof runs parallel to the proof of Theorem 1. [

THEOREM 3. (Main) Let fi, f, g1 and gy be entire functions and p,q € N,t €
NU{-1,0}.
(i) If either o."§"" (f ) ;A P () or PG (1) £ (f) and
PG (1) = P& (£2), then

) =8 () = pgfff;L(fz).

(ii) If either o, 4" (1) # 04" (f) or TG (£1) # TG (). fiis of

regular relative growth with respect to g1 or g> and péf_ff,t)L (fl) pgff,t)L (f1),
then

Pt (1) =pg" (A) =P ().
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Proof. First part: As P;MZ) (fi)= ngff:t (f2). As ngqt (fitf) <
max{pgp SOl (f, pg(fff} (f2)}, we obtain that

PG (i 1) <pE () =8 ().

; 1)L ,q;t)L 1)L
I possivl, e P (1) < pg (1) = P (12). Let ol (1) #
J ff, (f2), then, by Theorem 1, we get that

ol"G (f1) = oG (fi £ fF ) = ol (f),

which is a contradiction. Then
PG (i) =p G () =P ().

Similarly, the result can be proved by using the condition G(p L () £G AI: fﬁ, (/).
This proves the first part of the theorem.

Second part: As p(p L (£) = pg fff (f1) and f; is of regular relative growth

81
with respect to gror 2. As p\"#%, (f1) = min{pl"&"" (£1).p 8" (f1)}. we get

that
pg(fﬂggtz\y(fl) >pgpq’ (fi)= ngfff (R
If possible, let p" =%, (1) > piP 4" (1) = p 8" (f1). Let 08" (£1) #

gf‘tll‘t (f1). Then, by Theorem 1,

(p.at)L _ _(pgr)L _ _(pgt)L
Og. ¥ (f1) = Og1+00700.¥ (f1) = O ¥ (/1)
which is a contradiction. Then

pEG (1) = pE " (1) = g ().

Similarly, the result can be proved by using the condition & G ( fi)#0 0' ( fi).
This proves the theorem. [J

THEOREM 4. (Main) Let f1, f», g1 and g» are entire functions and p (f,)
are all finite and non zero for i,j=1,2, p,g € N, t e NU{—1,0}.
(A) If
(i) pG () > pPE (). (1) = (1,2) or (2,1),
(ii) g1 satisfies Property (A),

then
(fiep) = G;T}LIIIJ)L (fi),
(i h) =308 ().
Similarly, if
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(i) % is entire,

(i) p" G () > g (), (.) = (1,2) or (2,1),
(iii) g1 satisfies Property (A),

then
ol (£) = als™ .
e (%) =58 ()
(B) If

() P (1) <TG (1) . (1) = (1.2) or (1),
(ii) gi, g1 and g, satisfies Property (A),

(iii) f1 is of regular relative growth with respect to g;,

then

Similarly, if

(i) pLE (1) < pTe (). (1) = (1.2) or (2.1),
(ii) gi, g1 and g, satisfies Property (A),
(iii) f1 is of regular relative growth with respect to g;,

(iv) i—; is entire function,

then
ol (1) = o ().
8’
S (h) =olE ().
827
€ If

(i) g1-g&> satisfies Property (A),

(ii) pgpqt (fi) < pgfqt (f1), /1 is of regular relative growth with respect to
gj» (i,j) = (1,2) or (2,1),

(iii) pgpqt () < pg‘qut (f2), f2 is of regular relative growth with respect

to gj, (i,j) = (1,2) or (2,1),
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(i) pPG (1) > e (1) L e () > e (1),

(v)
G (fi) = max{min{p"E"" (1), p 06" (A1)},
min{p”4"" (£2).pL 8" ()11,
then
oL (fi- f2) = oL ().
P (fi- ) = PN ().

Similarly, if

(i) %, % is entire function,

(ii) g—l having Property (A),

(iii) péff{,’ (f1) # pgp &) ( 1), f1is of regular relative growth with respect

10 &2,
(iv) pgp &) ( H) < pg 7’\?}[)L (f2), f2is of regular relative growth with respect
fo &2,
) G () <Pl (1), PG () < PGt (1),
(vi)
() = max{min{p "G (1) pL & (1)),
min{p\"&"" (£2).p"E"" ()},
then

" (F) ol

2
—(panL (J1) _ =(painL
b (5) =7 o,

Proof. Case 1: Let péf’fff)L (f1) > pgffff (f2). By equation 3.1, for all suffi-
ciently large values of r, we get

My,.1, (r) < My, (r) - My, (r)

(p.q.t)L
(1)
< Mg, [exp[p 1] l( pqt (fi)+ )_<log[q_1]\l,(r)_exp[tH]L(r))Pgl\p 1 H

P (o ‘ la=1] +1] e ()
X Mg, |exp” (GXI;\PV (f2)+5> . <log‘1 ¥(r)-exp L(r)) 1. 7
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then as r — oo,

P(p'?llt)L (f1)
(o4 (f)+5) - (10 () -exp L (1))

—)00,

o5 (1)
< gf‘% (f2)+ %) : (log[q_”‘P(r).exp[tJrl]L(r)) 81

ie.,
_ (p=1] (a1l £ la—1] +1] Pt (1)
M, |exp (Ggl,‘l’ (f1)+§> : <log ¥(r)-exp (r)>
(Gg(i’ff}[)L (f2)+ %)
>]Wg1 CXp[P*l] p(P~$f)L(f2) (3.5)
. (log[‘ffl]‘P(r) -exp[’Jrl]L(r)) 51

Then

My, (r)

(p.g:t)L 2
P (1)
< {Mg1 [exp[p_” [(Gg}‘fjm (fi)+ %) : <log[q_1]‘1’(r) ~exp[t+”L(r)> ¥ H } :

Now

s O Ute
= (F?qvt)L £ =1L

Therefore we get that

(pa.t)L
p (f1)
explr—2 [(Gg(i’ff}t)L (f1) +8> . <log[‘1’l]‘l’(r) -exp[’“]L(r)) ¥ ]

=0 (say)> 1.
L B PG (1)
explr—2| [( gfg, (f1)+ §> . (10g[q 1]\{;(,) -exp[“rl]L(r)) 1
(3.6)
Combining equations (4) and (3.6) and using Lemma 2, we get for all sufficiently
large values of r that

My, .f, (r)
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As pPEE (7)) > p 0 (f) and pP G (fi- f2) <max{p P (£1) . P8 (1))
we get for all sufﬁc1ently large Values of r that

My, .5, (r) < Mg, lexp[p_l] l <O-A’f‘tll’t (f1)+ 8)

Pt (ot
: (IOg[q_H‘{’(r) -exp[”’l]L(r)) a e UL Z)H.

Therefore we get

A (fi- ) <o (). 3.7)

Next for the equality part let /2, hy,h; and k be four functions, h = 72, ¢ > 1 and k

satisfies Property (A). Without any loss of generality let p,Ep 0L (y ) < p,Ep AL ().
Now
T (r) = Th_z (r) < Th2 (r) + Thl (r) .

hy

Proceeding as above and using Lemma 3, we get

logM:,Tz (r) <3[Ty, (2r)+ Ty, (2r)] .

Hence .

[Mhz (%)} ' <My, (r) - M, (1).

Therefore we get that

g 5) <ot

From equation (3.6) we have

(p.g:t)L
p (h2)
My (3 ) <M lexp“”—” l(oé’if I () +e) - (log () - exp L ()" ] ] ,

h
ie.,
h
ol () = o5 (i) <ol (). (3.8)
Let f = fi-fo. pyrg" (£2) < P g (1) =Py 4"" (). then by equation (3.7)., we

obtain that . . .
g, .4, .q,t
ol (1) = P (- ) < ol ().
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As f1 = %, then by equation (3.7), we get that

oG () <o () = oG (i 1)

Hence,
oPE (1) = P (1) = P (fi ) = 0P (1),

provided ¢ > 1. Similarly, the result can be proved if we consider p o1, ( f1) <
P,,(I;qt) (f2).
Subcase 1: Let plgi’fff) (f) < pgffff (f1). Now we have
: )L
P (7)< pgrd (R) =P ().

As fi = [ f2, then

. a L (S
Géi\;{lt)L (fi) = Gigf,/\tlift)L (f) = Gj’f\lf, (f;) ,

where g > 1. Thus subcase 1 is established.
Subcase 2: Let p(pqt) (f) > pg’fffﬂ“ (f1). Again we have

P (1) <l () =R 8 ().
By (3.8) we get that
fi
G”"\P ( ) gf\tllft (f2)-

12
Again f, = f L 50 we have
G(P7‘17I)L (f ) < G(pqut)l‘ ﬁ
o1, 273 Py 5
So,
(p,gt)L fi 1)L
oy (%)= oty ),
where g > 1.

Case 2: Let p;ff ff, (fi) > pgf ff, (f2), g1 having Property (A). By equations
(3.1) and (3.4), we get for a sequence of values of r — oo

My,.1, (r) < My, (r) - My, (r)

(p.g.n)L
/i
< M l‘”“’[” ]l< P40 (1) + 2 - (1og () -expt L ()1 <1>H
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XMy, [exp[p_”

then as r — oo

171

]

(p.q.)
Affff ) . <log[q_1]‘l’(r) ~exp[t+1]L(r)> ¥

(f2) +

(

f1)

l(o_éi,\cfjt)L (fi) + %> <10g[ 1]\{1(,») 'CXp[t"'l]L(r))pgl ¥ E(h ‘|
el o — oo,

l(céif{{ftm (f2) + %> <10g[ 1]‘}’(1’) .exp[t+1]L(r)> o (2 ]

ie.,

Mgl

Then

My, .1, (r)

{Mg1 [exp[pl]

<

X

lexp[z? 1] l

> My, lexp[l’l] [

(fl)

s
G

81‘1’

(fz)

81‘1’

(p.at)L € P4 (1) ?
(o™ (7 + 5) - (108 () -expl 1 .)) |

Proceeding in the way used in case 1 we can prove the result

Similarly, if we take P,

where g > 1.

T (- f) = ;@ (i),
L[ f t
s (2) ~ s .
(p q’ (f ) < pgf ff, (f2), then we can prove the result
Hihop) =508 (R,

Then the first part (part A) of the theorem is proved.

Case 3: Let pé’l’_’ff;[)L (f1)

f1 is of regular relative growth w.r.t. g;. As Pg, w

large values of r,

expl? 1] [(

(psqt)L
Ogy ¥

(p.at)L

<Py,  (f1) and g1-g>, g1 satisfy Property (A) and

(Pl £y < pé’fff (f1), then for all

[ _1] [t-‘rl] pég%’l)L (fl)
() —e) - (log~1W(r) -exp L (r))
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[p=1] | ( 5(Pa)L la—1] it-+1] e (1)
> eXp (Ggl,\lf (f1) —8> : (log W(r)-exp L(r))
[g—1] [t+1] gzxy (fl)
—e) - (1o~ w(r) - exp L(r>>

f
> M,, [exp[I’l [ —8) . <log[‘1’”‘l’(r) 'eXp[’H]L(r)> glxy ( 1)H '
Then by equations (3.2) and (3.3) and above we get for a sequence of values of r — o
)
Mg, ¢, lexp[l’” l(o'g(i’\‘l];t)L (fi)— 8) . <10g[q71]‘l’(r) -exp[’H]L(r))pgn e H

<My, ().

Now using Lemma 2, we get for a sequence of values of r — oo,

(p.q.t)L
p (f1) 1
Mg, g, Hexp[f’_” [(G;,Eﬁgjt)L (fi) = 8) . (log[q_”‘l’(r) -exp[t+1]L(r)> 21 H 31

<Mf1 (r)

= My, [eXp[” -1 [(o;;’, 4 (h)
H(ora™ ()

Now making § — 1+

(p.q.t)L

_ P (f1)
( glp\tI]‘t (fl) _ 8) (log[q 1]\P(r) .exp[t-‘rl]L(r)) (54 ] < log[p l]Mg gszl (r) )

As € > 0 is arbitrary, we have that

"éf?ﬁ (fi)=o gl Pt (). (3.9)

Next for the equality part let &, hy, hy and k be four entire functions, h = h—2 p>1
and £ satisfies Property (A) and & is regular relative growth with respectto i, . Without
any loss of generality let ph(p L (k) < ph(f ff,t)L (k). Now

T, (7‘) = T’LZ (}") < Th2 (7‘) + Thl (7‘) .

hy

Proceeding as above proof and using Lemma 3, we have that

IOth_2 (r) <3 [Thl (27’) + Thz (27‘)] , l.e.,
hy

|:Mh2 (%)} % < My, (r) - Mp, (7).

iy
Using same method as in the above proof we have

o (6 = o0 () > 0§ (k). (3.10)
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Let g=g1-22, pg(p 0L (f :pg(’l’:f{;’)L (f1) <pg§ff} (f1), then by equation (3.9), we
have

L )L 1
o () = ol (1) > o 78" ().
As g1 = % so by equation (3.10) we get that
: L s
o"g (1) = ol (1) = o ().

Hence we get that
p.q.t)L p.q.t)L p.q.t)L p.q.t)L
Gé;_i;ql) (fl) = O'Eh'.q{,'t) (fl) = Gél.gz'i\y) (fl) - Gél;\yqrt) (fl) )

provided ¢ > 1. Similarly, the result can be proved if we consider p o1, ( f1) <
Pg(f’qt) (f2)-

Subcase 1: Let pgff{,t (fi) > pgff{,t (f1). We have
()= el (f) < plE " ().

As g1 =g g,
al"E" () = o (1) = ogl ),

where p > 1. Thus subcase 1 is established.
Now let g = % and we will prove the following subcases.

Subcase 2: Let pé(,f”f{,’t)L (fi) < pgff{,t (f1), then we have

P () = P (h) < P ().

By equation (3.10), we obtain that

()< gzxy ).

Again g, = %‘ so we have

gf,qt (fi) < Gz’fii; (f1).

So,
ot (h) = o i (1),

where p > 1.

Case 4: Let pg(’; :f{,’t)L (f1) < pgg ff, (f1) and g;-g> and g having Property (A),
1 is of regular relative growth w.r.t. g,.
g g 8
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As pg(p AL () < pggff} (f1), then for all large values of r we have that

(Pl P (1)
expl” ! (6;27:?1; (fl)_8> : <1Og[q7”‘1’(r)~eXp[’+”L(r)> 62
(p.q.t)L
/i
> exP[P*I] l<6g:?1f)L (fi) _8> . <log[‘1*1]‘P(r) .exp[zH]L(r))Pglgy ( 1)]
/i
= Mg2 lexp[ﬁ 1] l( pqt (fl) —8) (10g[q71]‘l’(r) _exp[tJrl]L(r))sz\y ( 1)‘|‘|

(p.q.t)L
(f1)
> Mg2 |f:pr’ 1] l( pqt (fl)_8> (log[q—l]\l,(r) 'eXp[H_l]L(r))pgl\y 1 ‘|‘| .

Then by equation (3.2) and above we get for all sufficiently large values of r — oo that

(p.g:1)L
_ Py (f1)
Mg, ¢, lexp[p ! l( 511?7% (f1) —8> ' (log[q Ty (r) -exp[tH]L(r)) st H

<My (0]

Now by applying the method using in case 3 we can easily get the required result
—(p.gt)L —(p.git)L
Sy (1) =35 (),

L () =T ()

where i = 1,2. Similarly, if we consider péf’ffjt)L (fi) > pgfff,’ (f1), then we can
prove

—(p.gt)L

G,E,IZIZ;)\II (fi) = qu ).
So the second part (part B) of the theorem is proved.

Part 3: This part is a combined form of Part A and Part B. So the proof is omitted.
This completes the proof of the theorem. [
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