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COUPON COLLECTOR’S PROBLEM WITH UNLIKE PROBABILITIES
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Abstract. In this note we study the coupon collector’s problem with unlike probabilities using
majorization and a Schur concave function.

1. Introduction and results

The coupon collector’s problem, an important example in a course on elementary
probability, can be described as follows: Suppose that there are t types of coupons, and
that each day a collector randomly gets a coupon with probability pi corresponding to
the i th coupon (1 � i � t) . How many days does the collector need to collect in order
to have at least one of each type? There is a lot of literature about this problem (e.g. see
[1, I.2 (b.11))], [2, §4], [3, Example II.3.11], [7]).

Let Xp be a random variable representing the number of days until all kinds of
coupons have been collected, where p = (p1, . . . , pt) is a probability vector, namely

t

∑
i=1

pi = 1 and pi � 0.

Note that the explicit expectation form is known as

E(Xp) =
t−1

∑
q=0

(−1)t−1−q ∑
|J|=q

1
1−PJ

, (1)

where PJ = ∑ j∈J p j (see [2, equation (14b)]). Von Schelling [7, §2] writes the distri-
bution in more generality and with a different notation. When pi is equal to 1

t , for all
1 � i � t , the expectation is well-known,

E
(
X( 1

t ,..., 1
t )

)
= t

t

∑
i=1

1
i
∼ t log t.
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Moreover, the distribution is also well-known, that is,

P
(
X( 1

t ,..., 1
t ) � n

)
=

t

∑
k=0

(−1)k
(

t
k

)(
1− k

t

)n

(see [1, IV.2 equation (2.3)]), which is represented by

P
(
X( 1

t ,..., 1
t )

� n
)

=
t!

{ n
t

}
tn

, (2)

where
{ n

t

}
is Stirling numbers of the second kind (see [3, Example II.3.11]).

In this note, we show that P(Xp � n) is monotone with respect to p in the sense
of majorization. The same setting for the Birthday problem was studied by Joag-Dev
and Proschan [4].

Before stating the main theorem, we define a few terms and introduce some stan-
dard notations (see [6, 8]). For a probability vector p = (p1, . . . , pt) , let p[ j] be the
j th largest value of {p1, . . . , pt} , that is, p[1] � p[2] � · · · � p[t] . A probability vector
p = (p1, p2, . . . , pt) is majorized by a probability vector q = (q1,q2, . . . ,qt) , or p ≺ q ,
if

k

∑
i=1

p[i] �
k

∑
j=1

q[ j],

for all 1 � k � t−1. By definition it is easy to see that
(

1
t , . . . ,

1
t

) ≺ p , for all p . The
symmetric function f (p) defined on probability vectors is Schur convex (resp. concave)
if p≺ q implies f (p) � f (q) (resp. f (p) � f (q)). Under the assumption of symmetry
and differentiability of f , a necessary and sufficient condition for f (p1, . . . , pn) to be
Schur concave is

(p1 − p2)
(

∂ f
∂ p1

− ∂ f
∂ p2

)
� 0 (3)

(see [6, p. 57]). Under these preliminaries we state the main theorem.

THEOREM 1. The probability P(Xp � n) is a Schur concave function of p .

Now a random variable X is stochastically smaller than a random variable Y if P(X >
a) � P(Y > a) , for all real a (see [5, Chap. IV.1.1]).

COROLLARY 1. If p≺ q then Xp is stochastically smaller than Xq . In particular
X( 1

t ,..., 1
t ) is stochastically smaller than Xp , for all p .

Proof. By Theorem 1, if p ≺ q we have P(Xp > n) � P(Xq > n) , for all n . Since( 1
t , . . . ,

1
t

) ≺ p , for all p , we obtain the desired result. �
Thus it is harder to collect all kinds of coupons if there is some bias for the prob-

ability of appearance of coupons.

COROLLARY 2. The expectation E(Xp) is a Schur convex function of p . In par-

ticular E
(
X( 1

t ,..., 1
t )

)
� E(Xp) , for all p .
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Proof. By Corollary 1, if p ≺ q we have

E(Xp) =
∞

∑
n=0

P(Xp > n) �
∞

∑
n=0

P(Xq > n) = E(Xq),

which implies Schur convexity. �
Note that by virtue of Corollary 1 we can prove Corollary 2 without applying

directly the criterion equation (3).

2. Proof of Theorem 1

For convenience, letting f (p) = P(Xp � n) we have

f (p) = ∑
{i1,...,in}={1,...,t}

pi1 · · · pin ,

where the summation runs through all (i1, . . . , in) such that there exists a surjection
g : {1, . . . ,n}→ {1, . . . ,t} satisfying g(k) = ik , for 1 � k � n . Accordingly we have

f (p) = ∑
(l1,...,lt )

(
n

l1; · · · ; lt

)
pl1

1 pl2
2 · · · plt

t = n! ∑
(l1,...,lt)

pl1
1

l1!
· pl2

2

l2!
· · · plt

t

lt !
,

the sum being taken over lk � 1 and ∑t
k=1 lk = n . Note that because of

∑
(l1,...,lt)

(
n

l1; · · · ; lt

)
= t!

{n
t

}
,

we can confirm equation (2) if p1 = · · · = pt = 1/t (see [3, II.3.4]). Hence we have

f (p) = n![zn]
t

∏
i=1

(ezpi −1),

where [zn]A(z) denotes the coefficient of zn for A(z) . Because f is symmetric and
differentiable with respect to p1, . . . , pt , we check equation (3) to show the Schur con-
cavity of f (p) . Since

∂ f
∂ p1

= n![zn]zezp1
t

∏
i=2

(ezpi −1),

we have

∂ f
∂ p1

− ∂ f
∂ p2

= n![zn−1](ezp2 − ezp1)
t

∏
i=3

(ezpi −1) = (p2− p1)h(p),

where h(p) is some positive function. Hence

(p1 − p2)
(

∂ f
∂ p1

− ∂ f
∂ p2

)
= −(p1− p2)2h(p) � 0

yields that f (p) is Schur concave. �
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