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NEW INTERESTING EULER SUMS

AMRIK SINGH NIMBRAN AND ANTHONY SOFO ∗

Abstract. We present here some new and interesting Euler sums obtained by means of related
integrals and elementary approach. We supplement Euler’s general recurrence formula with two

general formulas of the form ∑
n�1

O(m)
n

(
1

(2n−1)p + 1
(2n)p

)
and ∑

n�1

On
(2n−1)p(2n+1)q , where O(m)

n =

n
∑
j=1

1
(2 j−1)m . Two formulas for ζ (5) are also derived.

1. Evolution of Euler sums

Euler, the most prolific and versatile mathematician, made notable contributions
to all branches of mathematics but much of his significant work involves infinite series,
especially his zeta function.

1.1. Euler sums

In response to a letter of 24th December, 1742 from Goldbach, Euler investigated
sums involving zeta function and harmonic numbers and published his results many
years later in [7] using a cumbersome notation:

∫
1
zm

(
1
yn

)
= 1+

1
2m

(
1+

1
2n

)
+

1
3m

(
1+

1
2n +

1
3n

)
+ . . . .

Classical Euler sum BW (p,q) is thus an infinite sum whose general term contains gen-

eralized harmonic number H(p)
n =

n

∑
k=1

1
kp in numerator and nq with q � 2 in denom-

inator. That is, BW (p,q) =
∞

∑
n=1

H(p)
n

nq . The number p+ q is the weight of BW (p,q) .

In the said paper, Euler employed three methods (which he called Prima Methodus,
Secunda Methodus and Tertia Methodus) to discover formulas representing these sums
in terms of zeta values. First, he multiplied the involved series to obtain the reflection
formula: ∫

1
zm

(
1
yn

)
+
∫

1
zn

(
1
ym

)
=
∫

1
zm

∫
1
zn +

∫
1

zm+n
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which can be written as: BW (n,m)+BW (m,n) = ζ (m)ζ (n)+ ζ (m+n)

and straightway leads to the sum:
∞

∑
n=1

H(m)
n

nm =
1
2

ζ 2(m)+
1
2

ζ (2m). Euler gave a general

formula (without proof) expressing EU (m) = BW (1,m) in terms of zeta values. We
find in [7, §22] a list of formulas which, for m � 2, can be written as:

EU (m) =
∞

∑
n=1

Hn

nm =
m+2

2
ζ (m+1)− 1

2

m−2

∑
k=1

ζ (m− k)ζ (k+1), m = 2,3,4, . . . . (1.1)

1.2. Post-Euler development

These recurrence relations hold [21]:

ζ (2m) =
2

2m+1

m−1

∑
k=1

ζ (2k)ζ (2m−2k), m = 2,3,4, . . . ,

(1−2−2m)ζ (2m) =
2

2m−1

m

∑
k=1

ξ (2k−1)ξ (2m+1−2k), m = 1,2,3, . . . ,

where ξ (2m+1) := ∑∞
n=1(−1)n−1 1

(2n−1)2m+1 .

Nielsen [11, pp.47–49] built on and supplemented Euler’s work by supplying proof
of the general formula using the method of partial fractions.

Georghiou and Philippou [9] established formula (1.1) and

∞

∑
k=1

Hk

k2n+1 =
1
2

2n

∑
j=2

(−1) j ζ ( j)ζ (2n+2− j), n � 1. (1.2)

For odd weight p+q = 2r +1, Borweins [3] (see[8, Theorem 3.1]) established a
correct version of Euler’s formula relating to exponent � 2 of the harmonic series:

BW (p,q) =
∞

∑
n=1

H(p)
n

nq =
1
2

[
1− (−1)p

(
2r
p

)
− (−1)p

(
2r
q

)]
ζ (2r+1)

+
1− (−1)p

2
ζ (p)ζ (q)+ (−1)p

�p/2�
∑
k=1

(
2r−2k
q−1

)
ζ (2k)ζ (2r+1−2k)

+ (−1)p
�q/2�
∑
k=1

(
2r−2k
p−1

)
ζ (2k)ζ (2r+1−2k+1).

(1.3)

The sum BW (p,q) also admits of representation in terms of zeta values when: p =
q, and (p, q) = (2, 4)or(4,2). For alternating Euler sums, Sitaramachandra Rao [15]
gave the identity:

S (p,q) :=
∞

∑
n=1

(−1)n+1 H(p)
n

nq ,
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when p = 1 and for odd weight 1+q as,

2S (1,q) = (1+q)η (1+q)− ζ (1+q)−2

q
2−1

∑
j=1

η (2 j) ζ (1+q−2 j). (1.4)

Flajolet and Salvy [8] also gave the integral

S (1,1+2q) =
1

(2q)!

∫ 1

0

ln2q (x) ln(1+ x)
x(1+ x)

dx.

In the case where p and q are both positive integers and p+q is an odd integer, they
also [8] gave the identity:

2S (p,q) =(1− (−1)p)ζ (p)η (q)+2(−1)p ∑
i+2k=q

(
p+ i−1

p−1

)
ζ (p+ i) η (2k)

+ η (p+q)−2 ∑
j+2k=p

(
q+ j−1

q−1

)
(−1) j η (q+ j) η (2k) , (1.5)

where η (0) = 1
2 , η (1) = ln2, ζ (1) = 0, and ζ (0) = − 1

2 in accordance with the ana-
lytic continuation of the Riemann zeta function. We define the alternating zeta function
(or Dirichlet eta function) η (z) as

η (z) :=
∞

∑
n=1

(−1)n+1

nz =
(
1−21−z)ζ (z) .

Sofo [17], further, developed the half integer Euler sums. For positive integers m, p and
odd weight m+ p ,

W (m, p) = ∑
n�1

H(m)
n
2

np = (−1)p
m

∑
r=1

2m−1
(

m+ p−1− r
m− r

)⎛⎝BW (r,m+ p− r)

−S (r,m+ p− r)

⎞
⎠

+(−1)p+1
m

∑
r=2

1
2p−r

(
m+ p−1− r

m− r

)
ζ (r)ζ (m+ p− r) (1.6)

+(−1)p+1
p−1

∑
k=2

(−1)k

2p−k

(
m+ p−1− k

p− k

)
ζ (k)ζ (m+ p− k).

Also, since

∑
n�1

H(m)
n

np = 2p−1 ∑
n�1

H(m)
n
2

np

(
1− (−1)n+1

)
,

we obtain the alternating Euler identity at half integer value,

AW (m, p) = ∑
n�1

(−1)n+1 H(m)
n
2

np = W (m, p)−21−pBW (m, p) . (1.7)
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It is interesting to note that for (1.6) or (1.7) we can evaluate the difference (or sum) of
two terms, in the following way. Let (m, p,r) be positive integers, with p � 2, then

F (m, p,r) = W (m, p,r)−W (m, p,r+2) = ∑
n�1

H(m)
n
2

(n+ r)p − ∑
n�1

H(m)
n
2

(n+ r+2)p

= 2mζ (m+ p)−2mη (m) , for r = 0.

For r > 0

2−mF (m, p,r) =(−1)m+1
p

∑
j=1

(
m+ p−1− j

p− j

)
H( j)

r

rm+p− j − η (m)
(1+ r)p

+(−1)m
p

∑
j=2

(
m+p−1− j

p− j

)
ζ ( j)

rm+p− j +(−1)m
m

∑
k=2

(
m+p−1−k

m− k

)
ζ (k)

rm+p−k .

F (5,4,0) =32ζ (9)−30ζ (5) ,

F (2,4,2) =ζ (4)+ ζ (3)+
79
81

ζ (2)− 31
8

.

2. Euler sums involving odd harmonic numbers

Let On :=
n

∑
k=1

1
2k−1

. Then On = H2n− 1
2
Hn.

One can compute the following sums with little effort:

∞

∑
n=1

Hn

(2n−1)(2n+1)
= ln2; (2.1)

∞

∑
n=1

On

(2n−1)(2n+1)
=

3
8

ζ (2); (2.2)

∞

∑
n=1

On

n2 =
7
4

ζ (3). (2.3)

This sum noted in [15, p.14, eq(4.16)]:
∞

∑
n=1

(−1)n+1 On

n2 = πG− 7
4

ζ (3) when added to

(2.3) gives a nice double sum:

∞

∑
n=1

1
(2n−1)2

2n−1

∑
k=1

1
2k−1

= 1+
1
32

(
1+

1
3

+
1
5

)
+ · · · = πG

2
,

where G = ∑∞
n=1

(−1)n+1

(2n−1)2 is Catalan’s constant. After some manipulation we can also

isolate the identity,
∞

∑
n=1

H4n−2

(2n−1)2 =
21
32

ζ (3)+
πG
2
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and the alternating double sum

∞

∑
n=1

(−1)n+1

n

n

∑
k=1

(−1)k+1

2k−1
= 1(1)− 1

2

(
1− 1

3

)
+

1
3

(
1− 1

3
+

1
5

)
−· · ·= G.

Sofo derives this formula [16, Corollary 1] for real α �= −1,−2,−3, . . .:

2
∞

∑
n=1

Hn

(n+ α +1)m =2ζ (m,α +1)Hα +mζ (m+1, α +1)

−
m−2

∑
k=1

ζ (k+1,α +1)ζ (m− k, α +1),

which leads to

∞

∑
n=1

Hn

(2n+1)m =− (2m −1)
2m−1 ζ (m) ln2+

m(2m+1−1)
2m+1 ζ (m+1)

−
m−2

∑
k=1

(2k+1−1)(2m−k −1)
2m+1 ζ (k+1)ζ (m− k).

If we, let κ (m) = 1
2 (ζ (m)+ η(m)) = ∑k�1

1
(2k−1)m , and for even m only upon simpli-

fication one obtains

∞

∑
n=1

Hn

(2n+1)m = m κ (m+1)−κ (m) ln2− 1
2

m−2

∑
k=1

κ (k+1) κ (m− k) . (2.4)

By shifting index one gets sums with powers of (2n−1) in the denominator, therefore
we are able to obtain an identity for ∑∞

n=1
Hn

(2n−1)m .

2.1. Formulas with On in numerator and odd factors in denominator

The following formulas, valid only for even m∈N , have been adapted from Jordan
[10, 1]:

U(m) :=
∞

∑
n=1

On

(2n)m =
2m+1−1

2m+2 ζ (m+1)− 1
2m+1

m
2 −1

∑
k=1

(2m−2k+1−1)ζ (2k)ζ (m−2k+1).

(2.5)

Also, for even m only

V (m) :=
∞

∑
n=1

On

(2n−1)m =
1
2

κ (m+1)+ κ (m) ln2

− 1
2m+1

m
2 −1

∑
k=1

(22k −1)ζ (2k)ζ (m−2k+1). (2.6)
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From (2.6), we know that

∞

∑
n=1

On

(2n−1)2m =
∞

∑
n=1

H2n− 1
2Hn

(2n−1)2m ,

hence we have the new identity

∞

∑
n=1

H2n

(2n−1)2m =
1
2

∞

∑
n=1

Hn

(2n−1)2m +
22m+1−1

22m+2 ζ (2m+1)+
22m−1

22m ζ (2m) ln2

− 1
22m+1

m−1

∑
k=1

(22k −1)ζ (2k)ζ (2m−2k+1).

We found a remarkable recurrence for odd powers with k ∈ N :

∞

∑
n=1

On

(2n−1)2k+1 +
∞

∑
n=1

On

(2n)2k+1 (2.7)

=
1
2

κ (2k+2)+ κ (2k+1) ln2−
k−1

∑
j=1

22 j+1−1
22k+2 ζ (2 j +1)ζ (2k−2 j +1).

Ramanujan [12, Ch.IX, p.104, 11.ii][2, p.257, (11.3)] recorded a wrong result:

∞

∑
n=1

On

(2n)3 =
π
4

∞

∑
k=0

(−1)k

(4k+1)3 −
π

3
√

3

∞

∑
k=0

1
(2k+1)3 .

Sitaramachandrarao [15] notes:

∞

∑
n=1

On

(2n)3 =
3
16

ζ (4)− 1
4

∞

∑
n=1

(−1)n+1 H(2)
n

(n+1)2 .

The last term involves the constant

A4 =
∞

∑
n=1

(−1)n+1 1
(n+1)2

n

∑
k=1

1
k2 ≈ 0.1626546673974.

So putting the value of
∞

∑
n=1

On

(2n)3 in the first formula in the chain, we get:

∞

∑
n=1

On

(2n−1)3 =
9
32

ζ (4)+
7
8

ζ (3) ln2+
A4

4
.

We find this value of the constant in [13]:

A4 =
65
16

ζ (4)− 7
2

ζ (3) ln2+ ζ (2)(ln2)2− 1
6
(ln2)4−4Li4

(
1
2

)
,
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where Li4

(
1
2

)
=

∞

∑
n=1

1
2n n4 ≈ 0.517479061673899. We then have [15, p.3, corrected]:

∞

∑
n=1

On

(2n)3 = −53
64

ζ (4)+
7
8

ζ (3) ln2− 1
4

ζ (2)(ln2)2 +
1
24

(ln2)4 +Li4

(
1
2

)

and

LS (3) :=
∞

∑
n=1

On

(2n−1)3 =
83
64

ζ (4)+
1
4

ζ (2)(ln2)2− 1
24

(ln2)4−Li4

(
1
2

)
, (2.8)

which through shift of index yields

∞

∑
n=1

On

(2n+1)3 =
23
64

ζ (4)+
1
4

ζ (2)(ln2)2− 1
24

(ln2)4 −Li4

(
1
2

)
.

It is possible to generalize further the result (2.7) in the following way.

LEMMA 1. Let (m, p) be positive integers with p � 2 and (m+ p) an odd integer.

Put O(m)
n :=

n

∑
k=1

1
(2k−1)m

. Then

O(m)
n = H(m)

2n − 1
2m H(m)

n =
1
2m H(m)

n− 1
2
+ η (m) . (2.9)

Hence

X (m, p) :=
∞

∑
n=1

O(m)
n

(
1

(2n−1)p +
1

(2n)p

)
= κ (p)η (m)+

1
2mW (m, p)

+
(

2m+p−4
2m+p+1

)
BW (m, p)− 1

2
S (m, p) , (2.10)

where W (m, p) is given by (1.6), BW (m, p) is given by (1.3) and S (m, p) is given by
(1.5).

Proof. Consider, using (2.9)

X (m, p) :=
∞

∑
n=1

O(m)
n

(
1

(2n−1)p +
1

(2n)p

)
=

∞

∑
n=1

⎛
⎝ 1

2m H(m)
n− 1

2
+η(m)

(2n−1)p +
H(m)

2n − 1
2m H(m)

n

(2n)p

⎞
⎠

= η (m)
∞

∑
n=1

1
(2n−1)p +

1
2m

∞

∑
n=1

H(m)
n− 1

2

(2n−1)p +
∞

∑
n=1

H(m)
2n

(2n)p −
1
2m

∞

∑
n=1

H(m)
n

(2n)p

=
1

2m−1 κ (p)η (m)+
1

2m+1

∞

∑
n=1

⎛
⎝H(m)

n
2

np +
(−1)n+1 H(m)

n
2

np

⎞
⎠
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+
1
2

∞

∑
n=1

(
H(m)

n

np − (−1)n+1 H(m)
n

np

)
− 1

2m+p

∞

∑
n=1

H(m)
n

np .

Using (1.7) and simplifying,

X (m, p) = κ (p)η (m)+
1

2m+1

(
2W (m, p)−21−pBW (m, p)

)
+

1
2

(BW (m, p)−S (m, p))

− 1
2m+p BW (m, p) ,

therefore collecting terms, (2.10) follows. �

EXAMPLE 1.

X (2,5)=
∞

∑
n=1

O(2)
n

(
1

(2n−1)5
+

1

(2n)5

)
=

11
32

ζ (4)ζ (3)+
29
16

ζ (5)ζ (2)−635
256

ζ (7) ,

here we have used

∑
n�1

H(2)
n
2

n5 = ζ (4)ζ (3)− 21
16

ζ (5)ζ (2)+
107
64

ζ (7)

and

∑
n�1

(−1)n+1 H(2)
n
2

n5 =
7
8

ζ (4)ζ (3)− 13
8

ζ (5)ζ (2)+
147
64

ζ (7) .

X (3,4) =
∞

∑
n=1

O(3)
n

(
1

(2n−1)4
+

1

(2n)4

)
=

127
16

ζ (7)+
45
64

ζ (4)ζ (3)−147
32

ζ (5)ζ (2) .

2.2. Sums with two odd factors in denominator

In this section we develop identities for Euler sums of the form

Y (p,q) =
∞

∑
n=1

On

(2n−1)p(2n+1)q , (2.11)

which in turn we extract further Euler like sums of the type

∞

∑
n=1

H2n

(4n2−1)p . (2.12)

LEMMA 2. For positive integers p,q and p � 4, q � 4 , we have

Y (p,q) =
∞

∑
n=1

On

(2n−1)p(2n+1)q =
3(−1)p+1

2p+q+1

(
p+q−2

p−1

)
ζ (2)



EULER SUMS 17

+
q

∑
k=2

(−1)p+1

2p+q−k

(
p+q− k−1

q− k

)
κ (k+1)

+
q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

)
V (k)

+
p

∑
j=2

(−1)p− j

2p+q− j

(
p+q− j−1

p− j

)
V ( j) , (2.13)

where V (·) is given by (2.6).

Proof. Consider the partial fraction decomposition

1
(2n−1)p(2n+1)q =

(−1)p+1

2p+q−2

(
p+q−2

p−1

)
1

(2n−1)(2n+1)

+
p

∑
j=2

(−1)p− j

2p+q− j

(
p+q− j−1

p− j

)
1

(2n−1) j

+
q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

)
1

(2n+1)k ,

now by summing over the integers n

Y (p,q) =
∞

∑
n=1

On

(2n−1)p(2n+1)q (2.14)

=
(−1)p+1

2p+q−2

(
p+q−2

p−1

) ∞

∑
n=1

On

(2n−1)(2n+1)

+
p

∑
j=2

(−1)p− j

2p+q− j

(
p+q− j−1

p− j

) ∞

∑
n=1

On

(2n−1) j

+
q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

) ∞

∑
n=1

On

(2n+1)k .

Consider the third term in (2.14) and make a change in the summation index, so that

q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

) ∞

∑
n=1

On

(2n+1)k

=
q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

) ∞

∑
n=1

On

(2n−1)k

+
q

∑
k=2

(−1)p+1

2p+q−k

(
p+q− k−1

q− k

)
κ (k+1) . (2.15)

Substituting (2.15) into (2.14), we have

Y (p,q) =
(−1)p+1

2p+q−2

(
p+q−2
p−1

)(
3
8

ζ (2)
)

+
q

∑
k=2

(−1)p+1

2p+q−k

(
p+q−k−1

q− k

)
κ (k+1)
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+
q

∑
k=2

(−1)p

2p+q−k

(
p+q− k−1

q− k

)
V (k)+

p

∑
j=2

(−1)p− j

2p+q− j

(
p+q− j−1

p− j

)
V ( j) ,

where V (·) is given by (2.6), therefore the identity (2.13) follows. �

REMARK 1. While the identity (2.13) is numerically correct for all integer values
p,q � 1, we restrict its application to (p,q) � 4 because we do not have closed form
identities of V (2m+1), for m � 2.

EXAMPLE 2.

Y (2,4) =
∞

∑
n=1

On

(2n−1)2(2n+1)4 =
3
16

ζ (2) ln2− 3
32

ζ (2)+
15
64

ζ (4) ln2− 15
64

ζ (4)

+
1
4
LS (3)− 7

128
ζ (3)− 31

256
ζ (5)− 1

64
ζ (2)ζ (3) ,

Y (4,2) =
∞

∑
n=1

On

(2n−1)4(2n+1)2 =
3
16

ζ (2) ln2− 3
32

ζ (2)+
15
64

ζ (4) ln2+
7

128
ζ (3)

− 1
4
LS (3)+

31
256

ζ (5)− 3
128

ζ (2)ζ (3) .

An important corollary of Lemma 2.13 is the case of q = p.

COROLLARY 1. From (2.13), for the case q = p and p ∈ N\{1} we have

Y (p, p) =
∞

∑
n=1

On

(4n2−1)p =
3(−1)p+1

22p+1

(
2p−2
p−1

)
ζ (2)

+
p

∑
j=2

(−1)p+1

22p− j

(
2p− j−1

p− j

)
κ ( j +1)

+
p

∑
j=2

(−1)p

22p− j

(
2p− j−1

p− j

)(
1+(−1) j

)
V ( j) . (2.16)

REMARK 2. From (2.16) we have,

Y (p, p) =
∞

∑
n=1

On

(4n2−1)p =
∞

∑
n=1

H2n− 1
2Hn

(4n2−1)p

from which we obtain the new identity

∞

∑
n=1

H2n

(4n2−1)p =
1
2

∞

∑
n=1

Hn

(4n2−1)p +
3(−1)p+1

22p+1

(
2p−2
p−1

)
ζ (2)

+
p

∑
j=2

(−1)p+1

22p− j

(
2p− j−1

p− j

)
κ ( j +1)



EULER SUMS 19

+
p

∑
j=2

(−1)p

22p− j

(
2p− j−1

p− j

)(
1+(−1) j

)
V ( j) . (2.17)

We note that identities (2.16) and (2.17) hold for all integer p values bigger than one,
because we do not require identities of V (2m+1) for m � 2.

EXAMPLE 3. Some miscellaneous examples are highlighted.

∞

∑
n=1

Hn

(4n2−1)3 =− 7
16

ζ (3)− π2

64
(5−6ln2)+ ln2, (2.18)

∞

∑
n=1

Hn

(4n2−1)4 =
31
64

ζ (5)− π4

768
(2ln2−1)− ln2− 7

256
ζ (3)(π2 −8)

+
π2

128
(11−10ln2), (2.19)

∞

∑
n=1

On

(4n2−1)4 =
π4

768
(ln2−1)− π2

512
ζ (3)+

5π2

256
(2ln2−1),

∞

∑
n=1

On

(4n2−1)5 =
π6

30720
+

5π4

12288
(3−4ln2)+

5π2

2048
ζ (3)− 35π2

2048
(2ln2−1),

(2.20)
∞

∑
n=1

On

(4n2−1)6 =
(

189
1024

ζ (2)+
315
2048

ζ (4)+
63

2048
ζ (6)

)
ln2− 189

4096
ζ (6)

−
(

189
2048

+
63

4096
ζ (3)+

3
4096

ζ (5)
)

ζ (2)

−
(

105
1024

+
15

4096
ζ (3)

)
ζ (4) ,

∞

∑
n=1

On

(2n−1)3 (2n)3 =
17
8

ζ (4)− 7
8

ζ (3)(3+ ln2)+
π2

24
(2ln2 2−9ln2+12)

− ln4 2
12

−2Li4

(
1
2

)
, (2.21)

∞

∑
n=1

H2n

(4n2−1)3 =
15
128

ζ (4)− 7
32

ζ (3)− 3
32

ζ (2)+
1
2

ln2,

∞

∑
n=1

H2n

(4n2−1)6 =
381
4096

ζ (7)− 63
2048

ζ (6)+
527
2048

ζ (5)+
135
4096

ζ (4)− 1
2

ln2

− 7
1024

ζ (3)+
195
1024

ζ (2)− 3
128

ζ (2)ζ (5)− 15
572

ζ (4)ζ (3)

− 63
512

ζ (2)ζ (3).
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2.3. Euler sums involving powers of harmonic numbers

Euler did not treat sums that involve powers of harmonic numbers. H. F. Sandham,
an Irish mathematician1, introduced the first quadratic double sum in 1948 as a problem
in the American Mathematical Monthly [14].

∞

∑
n=1

(
Hn

n

)2

=
17π4

360
. (2.22)

Apparently, it went unnoticed. It was recorded by Castellanos in his 1988 survey article
[5, I, p.86], rightly attributed to H. F. Sandham but with a wrong entry in the bibliogra-
phy.

De Doelder [6] evaluated this associated sum in 1991 without any reference to
Sandham’s sum:

∞

∑
n=1

(
Hn

n+1

)2

=
11π4

360
. (2.23)

For this, he used the psi function.
The comparison of the terms in the two series in the following expression makes

it clear that
∞

∑
n=1

H2
n

n(n+1)
=

∞

∑
n=1

H2
n

n
−

∞

∑
n=1

H2
n

n+1
=

∞

∑
n=1

H2
n −H2

n−1

n
.

Now H2
n −H2

n−1 = (Hn−Hn−1)(Hn +Hn−1) = 1
n (2Hn− 1

n ) = 2Hn
n − 1

n2 . Hence, we get

∞

∑
n=1

H2
n

n(n+1)
= 2

∞

∑
n=1

Hn

n2 −
∞

∑
n=1

1
n3 = 3ζ (3). (2.24)

We also have:
∞

∑
n=1

H2
n+1

n(n+1)
= ζ (2)+3.

We can deduce De Doelder’s sum from that of Sandham as follows. On comparing the
terms of the two series, we notice that

∞

∑
n=1

(
Hn

n

)2

−
∞

∑
n=1

(
Hn

(n+1)

)2

=
∞

∑
n=1

H2
n −H2

n−1

n2 .

Therefore,

∞

∑
n=1

(
Hn

n

)2

−
∞

∑
n=1

(
Hn

(n+1)

)2

= 2
∞

∑
n=1

Hn

n3 −
∞

∑
n=1

1
n4 =

3
2

ζ (4) =
π4

60
.

1Henry Francis Sandham (1917–1963) studied mathematics at Trinity College, Dublin (Ireland) and
Queen’s University Belfast, received a Ph.D. in 1958 on his thesis Products of the Hypergeometric Func-
tions, and taught at Trinity College. In September 1952, he joined the School of Theoretical Physics as a
lecturer under the Nobel laureate Erwin Schrödinger at Dublin Institute for Advanced Studies which he left
in 1956 to work with English Electric Labs (Staffordshire) until his death in April 1963. In addition to half a
dozen papers and problems published in various journals, he presented a note on the Perimeter of an Ellipse
at the International Congress of Mathematicians, Amsterdam, September 2–9, 1954.
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Sandham’s sum was conjectured in April 1993 by Enrico Au-Yeung, a student of J.
Borwein at the University of Waterloo, on the basis of his computations and was estab-
lished (by means of generating functions and Parseval’s identity for Fourier series) by
Borweins [4], who referred to De Doelder’s paper but not to Sandham. Other related
identities for Euler sums are available in [18], [19] and [20].

2.4. Few miscellaneous sums

De Doelder’s formulas [6, (15) and (22)] are worthy of note:

∞

∑
k=1

ψ( 1
2 ± k)−ψ( 1

2)
k2 =

7
2

ζ (3),
∞

∑
k=1

(ψ( 1
2 ± k)−ψ( 1

2))
2

k2 =
π4

16
.

Now On =
1
2

(
ψ
(

n+
1
2

)
−ψ

(
1
2

))
. Thus we get [4]:

∞

∑
n=1

On

n2 =
7
4

ζ (3),
∞

∑
n=1

(
On

n

)2

=
π4

32
.

The first occurs in Ramanujan’s Manuscript2 [12, Ch. IX, p.104, Entry12, Ex.iii]. We
have this associated sum:

∞

∑
n=1

On

(2n−1)2 =
7
16

ζ (3)+
3
4

ln2ζ (2).

We could obtain:
∞

∑
n=1

On

n4 =
31
4

ζ (5)− 7
2

ζ (3)ζ (2),

as well as
∞

∑
n=1

H2n−1

(2n−1)4 =
155
64

ζ (5)− 3
4

ζ (3)ζ (2),
∞

∑
n=1

H2n

(2n)4 =
37
64

ζ (5)− 1
4

ζ (3)ζ (2)

and
∞

∑
n=1

H2n−1

(2n)4 =
35
64

ζ (5)− 1
4

ζ (3)ζ (2),
∞

∑
n=1

H2n

(2n+1)4 =
93
64

ζ (5)− 3
4

ζ (3)ζ (2).

The previous four results yield two nice formulas:

∞

∑
n=1

(1+(−1)n2)Hn

n4 = −11
16

ζ (5); (2.25)

∞

∑
n=1

(1− (−1)n2)Hn

(n+1)4 =
3
16

ζ (5). (2.26)
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