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A BOUNDS TAUBERIAN THEOREM

ALLEN STENGER

Abstract. We weaken the hypothesis and the conclusion of a Hardy–Littlewood Tauberian the-
orem, and apply the new theorem to deduce asymptotic behavior of the coefficients of an expo-
nentiated lacunary series.

1. Introduction

Most Tauberian theorems state an asymptotic condition on a function as the hy-
pothesis and an asymptotic condition on a related function as the conclusion. It is
sometimes useful to weaken the hypothesis and the conclusion. We prove the following
Tauberian theorem and give an application.

THEOREM 1. Suppose cn � 0 for all n , that f (x) = ∑∞
n=0 cnxn converges for |x|<

1 and that for some number α � 0 and some positive constants k1 , k2 we have that

k1

(1− x)α < f (x) <
k2

(1− x)α (0 � x < 1).

Then there are positive constants k3 , k4 such that

k3n
α <

n

∑
k=0

ck < k4n
α (n � 1).

The asymptotic version of this theorem is a 1914 Tauberian theorem of G. H. Hardy
and J. E. Littlewood [2, Theorem 8]. We cite the following form of their theorem, given
in Korevaar [3, Theorem I.7.4]:

THEOREM 2. (Hardy–Littlewood) Suppose cn � 0 for all n , that f (x)= ∑∞
n=0 cnxn

converges for |x| < 1 and that for some number α � 0 and some number C we have
as x → 1− that

f (x) ∼ C
(1− x)α .

Then we have as n → ∞ that

n

∑
k=0

ck ∼ C
Γ(α +1)

nα .
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2. Proof of Theorem 1

This argument is modeled on Titchmarsh [6, §7.52], that is the case α = 1.

Proof of Theorem 1.
First we need bounds for 1− e−u . For 0 < u < 1 we have by the Mean value

theorem that 1−e−u = e0−e−u = ue−v for some v with u < v < 1. In the range u � 1
we have trivially 1− e−u < 1 � u . Therefore we get inequalities for each range:

1− e−u >
u
e

and so
1

1− e−u <
e
u

(0 < u < 1); (1)

1− e−u < u and so
1

1− e−u >
1
u

(1 < u < ∞). (2)

Write sn = ∑n
k=0 ck . To find an upper bound for sn we observe

f (x) �
n

∑
k=0

ckx
k � xn

n

∑
k=0

ck = xnsn. (3)

Using this with x = e−1/n , the hypothesis and (1) we have

e−1sn � f (e−1/n) <
k2

(1− e−1/n)α < k2(en)α .

Setting k4 = k2eα+1 we have sn < k4nα .
Let n be fixed. To find a lower bound for sn we start with the just-proved upper

bound, and observe that sn is non-decreasing, to get

f (x) = (1− x)
∞

∑
m=0

smxm � (1− x)sn

n

∑
m=0

xm + k4(1− x)
∞

∑
m=n+1

mαxm

� sn + k4(1− x)
∞

∑
m=n+1

mαxm. (4)

We will bound the last sum above with an integral. Let λ be a large number, to be
picked later, that is independent of n and such that λ > α . We take x = e−λ/n . The
function uαe−λu/n is decreasing for u � n , because the derivative of its logarithm is
α/u−λ/n � α/n−λ/n = (α −λ )/n < 0. Therefore mαe−λm/n <

∫ m
m−1 uαe−λu/n du

and so
∞

∑
m=n+1

mαxm =
∞

∑
m=n+1

mαe−λm/n <
∫ ∞

n
uαe−λu/n du

(
substitute u =

n
λ

v
)

=
∫ ∞

λ

nα

λ α vαe−v n
λ

dv =
( n

λ

)α+1∫ ∞

λ
vαe−v dv =

( n
λ

)α+1
I(λ ) (say).

Using this with (4) and (2) we get

f (x) < sn + k4(1− x)
( n

λ

)α+1
I(λ ) = sn + k4(1− e−λ/n)

( n
λ

)α+1
I(λ )

< sn + k4

(
λ
n

)( n
λ

)α+1
I(λ ) = sn + k4

( n
λ

)α
I(λ ). (5)
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We also deduce from the hypothesis and (2) that

f (x) >
k1

(1− x)α =
k1

(1− e−λ/n)α > k1

( n
λ

)α
. (6)

Combining (5) and (6) we get sn > (n/λ )α(k1−k4I(λ )) . Taking λ so large that I(λ ) <
k1/k4 , we conclude that there is a k3 > 0 such that sn > k3nα , as claimed. �

3. An application

George Stoica [4, 5] proposed the following as Problem 11849 in the Problems
column of the American Mathematical Monthly: Define numbers a0,a1, · · · by

exp

(
∞

∑
k=0

x2k

)
=

∞

∑
n=0

anx
n.

Prove that

liminf
n→∞

lnan

lnn
� 1

ln2
−1 � limsup

n→∞

lnan

lnn
. (7)

We will use Theorem 1 to show that there are positive constants k3 and k4 such
that

k3n
1/ ln2 <

n

∑
k=0

ak < k4n
1/ ln2. (8)

Then we will show that this estimate implies (7).
Let’s write F(x) = ∑∞

k=0 x2k
. We will apply Theorem 1 to the function f (x) =

expF(x) , so that cn = an . First we will show that an � 0 for all n . We observe that F
satisfies the functional equation

F(x) = x+F(x2)

and so f satisfies the functional equation

f (x) = ex f (x2).

We write this out and rearrange it as

f (x) =
∞

∑
n=0

anx
n =

(
∞

∑
r=0

xr

r!

)(
∞

∑
s=0

asx
2s

)
=

∞

∑
n=0

xn ∑
s�n/2

as

(n−2s)!
.

Equating the coefficients of xn on both sides we get a recurrence for an :

an = ∑
s�n/2

as

(n−2s)!
(n � 0).

Note that a0 = exp(0) = 1 and therefore by induction on the recurrence we have an > 0
for all n .

Next we prove the following simple asymptotic estimate for F(x) .



38 A. STENGER

THEOREM 3.

F(x) =
1

ln2
ln

1
1− x

+O(1) (x → 1−).

Proof. We have
1

1− x
F(x) =

∞

∑
n=1

(�log2 n�+1)xn

and
1

1− x
ln

1
1− x

=
∞

∑
n=1

Hnx
n,

where Hn = ∑n
k=1

1
k is the harmonic number. Therefore

1
1− x

(
F(x)− 1

ln2
ln

1
1− x

)
=

∞

∑
n=1

(
�log2 n�+1− 1

ln2
Hn

)
xn.

The coefficients on the right-hand side are O(1) , because Hn = lnn+O(1) , and �log2 n�
= log2 n+O(1) = (1/ ln2) lnn+O(1) . Therefore the right-hand side is O(1/(1− x)) .
Multiplying both sides by (1− x) we have the result. �

We exponentiate this result. The additive error term O(1) becomes a multiplica-
tive factor of exp(O(1)) , and this is bounded above and below by positive constants.
Therefore we have that there are positive constants k1 and k2 such that

k1

(1− x)1/ ln2
< expF(x) <

k2

(1− x)1/ ln2
(0 � x < 1).

Therefore Theorem 1 applies with α = 1/ ln2, and (8) is proved.
Now we will show that (8) implies (7), by showing more generally that:

THEOREM 4. Suppose that cn � 0 for all n and that α � 1 . Suppose there are
positive constants k3 , k4 such that

k3n
α <

n

∑
k=0

ck < k4n
α (n � 1). (9)

Then

liminf
n→∞

lncn

lnn
� α −1 � limsup

n→∞

lncn

lnn
. (10)

Proof. Write sn = ∑n
k=0 ck . Write L = liminfn→∞ lncn/ lnn . If L � 0 there is

nothing to prove, so assume L > 0. Then given ε with 0 < ε < L there is an N such
that we have lncn/ lnn > L− ε (and so cn > nL−ε ) for all n � N . Then for M > N
from the hypothesis we have

k4M
α > sM �

M

∑
n=N

cn >
M

∑
n=N

nL−ε >

∫ M

N−1
xL−ε dx =

ML+1−ε − (N−1)L+1−ε

L+1− ε
.
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Divide both sides by ML+1−ε and let M → ∞ to get limM→∞ k3Mα−L−1+ε � 1/(L +
1− ε) and so α −L−1+ ε � 0 for all ε > 0 and so α −1 � L .

Write U = limsupn→∞ lncn/ lnn . If U = +∞ there is nothing to prove, so assume
U < ∞ . Then given ε > 0 there is an N such that we have lncn/ lnn < U + ε (and so
cn < nU+ε ) for all n � N . Then for M > N from the hypothesis we have

k3M
α < sM =

N−1

∑
n=0

cn +
M

∑
n=N

cn <
N−1

∑
n=0

cn +
M

∑
n=N

nU+ε <
N−1

∑
n=0

cn +MU+1+ε .

Divide both sides by MU+1+ε and let M → ∞ to get limM→∞ k3Mα−U−1−ε � 1 and so
α −U −1− ε � 0 for all ε > 0 and so α −1 � U . �

REMARK 1. The converse of Theorem 4 is not true in general, that is, (10) does
not imply (9). In this sense our result (8) is stronger than the original result (7). To see
that the converse need not hold, consider the example

cn =

{
1, if n is a power of 2,

n, otherwise.

Then liminfn→∞
lncn
lnn = 0 and limsupn→∞

lncn
lnn = 1, so (10) is true for any α in the

range 1 � α � 2. But (writing k = 2r when k is a power of 2)

n

∑
k=0

ck =
n

∑
k=0

k+ ∑
r�lnn/ ln2

(1−2r) = 1
2n2 +O(n).

Therefore (9) is true for α = 2, but not for any other α .

REMARK 2. The series ∑∞
k=0 x2k

is a lacunary series and has been studied by sev-
eral authors. In particular in 1907 G. H. Hardy [1] made an extensive study of this series
(in §12) and the related series ∑∞

k=0(−1)kx2k
. Hardy proved more precise asymptotics

for F(x) , specifically that

F(x) = − ln ln(1/x)
ln2

+ λ (x),

where λ (x) is a bounded, oscillating function. We can rewrite this as

F(x) = − ln(1− x)
ln2

+
1

ln2
ln

1− x
ln(1/x)

+ λ (x) = − ln(1− x)
ln2

+ μ(x) (say).

As x→ 1− we have that (1−x)/ ln(1/x)→ 1, so μ(x) is a bounded function that does
not go to a limit. Writing f (x) = expF(x) = ∑∞

n=0 anxn we have

f (x) =
1

(1− x)1/ ln2
eμ(x).

The factor eμ(x) is bounded above and below by positive constants, but does not go to
a limit, so the hypothesis of Theorem 2 is not met for our function.
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