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POWER MEANS OF THE HURWITZ ZETA

FUNCTION OVER LARGE INTERVALS

A. C. L. ASHTON

Abstract. In this note we derive asymptotic formulas for power means of the Hurwitz zeta func-
tion over large intervals.

1. Introduction

Throughout we use s = σ + it with t > 1 and set 2πxy = t , with x � 1 an integer.
For σ > 1 and α > 0 the Hurwitz zeta function is defined by

ζ (s,α) = ∑
m�0

(m+ α)−s

and by analytic continuation for s �= 1. The modified Hurwitz zeta function will be
defined as

ζx(s,α) = ∑
n�x

(n+ α)−s = ζ (s,α)− ∑
n<x

(n+ α)−s,

with ζ0(s,α) = ζ (s,α) . Here and throughout a sum over n < x is to be interpreted
as a sum over positive integers less than x . Much is known about the power means of
ζ1(s,α) over the interval (0,1) . We investigate power means of ζ1(u,α) over a large
α -interval, i.e. the integrals

∫ t/2π

0
|ζ1(σ + it,α)|2 dα.

The asymptotic behaviour of ζ1(s,α) is very simple for α > t/2π , so computation of
power means over longer intervals would be very straightforward. Note that if t/2π is
an integer then this can be written

∫ t/2π

0
|ζ1(s,α)|2 dα = ∑

x�t/2π

∫ x

x−1
|ζ1(s,α)|2 dα = ∑

x�t/2π

∫ 1

0
|ζx(s,α)|2 dα
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and when t/2π is not an integer the same expression holds up to an error term, which is
asymptotically smaller than the expression on the right hand side. This naturally leads
us to the study of the integrals and sums of the form

Ix(s) =
∫ 1

0
|ζx(s,α)|2 dα, ∑

x�t/2π
Ix(s).

The integrals have already been the subject of much attention. For instance, in [12]
using a careful application of the Euler-Maclaurin theorem it was shown that

Ix(s) = |K(s)|2 ∑
n�y

n2σ−2 +O(x−2σ )+O

(
x2−2σ

t

)
, (1)

where K(s) = (−2π i)s−1Γ(1− s) . This estimate is not useful when1 x � t in the im-
portant case σ = 1

2 . Indeed, applying Stirling’s estimate one finds

|K ( 1
2 + it

) |2 ∑
n�y

1
n

= logy+ γ +o(1), t → ∞.

So when x � t the leading order term is logy = O(1) , which is the same size as the
error term O(x/t) . We require a sharper estimates to deal with the sums of interest, in
which the range x � t is present. It transpires that sharper estimates required depend
heavily on ‖y‖ = dist(y,Z) .

The asymptotic expansion of I1(s) is well understood. A comprehensive deriva-
tion of results in this direction, based on Atkinson’s disection [3], can be found in [10].
See also [1, 4, 7, 9, 12] and references therein. In [10] it is shown that for σ ∈ (0,1)
and σ �= 1

2

I1(s) =
1

2σ −1
+2Γ(2σ −1)ζ (2σ −1)ℜ

[
Γ(1−σ + it)

Γ(σ + it)

]

−2ℜ ∑
n�0

(σ + it)n

(1−σ + it)n+1
ζ1(σ + it +n,1).

Each term in the sum as asymptotically smaller than the preceding one, so this serves
as a complete asymptotic expansion of I1(s) when σ �= 1

2 . By setting σ = 1
2 + ε in

this formula and taking the limit ε → 0, the authors obtain the remarkable asymptotic
result

I1( 1
2 + it) = log

( t
2π

)
+ γ −2ℜ

ζ ( 1
2 + it)

1
2 + it

+O

(
1
t

)
.

Our aim is to provide a sharper estimate than in (1) valid for σ ∈ (0,1) . We do
this in two ways. In section one we show that the order O(x2−2σ/t) can be replaced
with a sharper one that depends on an auxillary parameter η ∈ (0,1/2) . This error term
vanishes if x (recall 2πxy = t ) does not belong to the set

A(t,η) =
{

1 � x � t
2π

: ‖y‖ < η
}

,

1We say f � g , as t → ∞ , if A f � g � B f , for some B > A > 0 , for t sufficiently large.
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where ‖y‖ = dist(y,Z) and η ∈ (0,1/2) . Using the results from [14] we can estimate
the size of A(t,η) and by choosing η = o(1) we show that the contribution from the
sum over 0 < x � t/2π for which x ∈ A(t,η) is negligible. This gives the estimate
∫ t/2π

0
|ζ1(σ + it,α)|2 dα =

( t
2π

)2−2σ
ζ (3−2σ)+O

(
t1−σ)+O

(
t7/4−2σ logt

)
,

valid for σ ∈ (0,1) – see Theorem 3.

2. Statement of results useful for small x

These first results are largely generalisations of those found in [10], for x > 1.
Whilst these results are helpful in the regime x = o(t) , as t → ∞ , they fail to be of use
when x � 1 and for that regime we refer to §3. Throughout this section we refer to the
set

E =
{
(u,v) ∈ C2 : u+ v∈ {2,1,0,−1,−2, . . .}∨u∈ Z∨ v ∈ Z

}
and use the Pochhammer symbol (s)n = Γ(s+n)/Γ(s) , for any integer n . We will use
the notation

Jx(u,v) =
∫ 1

0
ζx(u,α)ζx(v,α)dα,

so that Is(s) = Jx(s, s) . We write A � B if A � CB , for some C > 0. If the implied
constant depends on a parameter β , we write A �β B . The following result is a direct
generalisation of Theorem 1 in [10], although our derivation is rather different and more
direct.

THEOREM 1. Let N � 1 be an integer, u,v ∈ C with −N + 1 < ℜu < N + 1 ,
−N +1 < ℜv < N +1 and (u,v) /∈ E . Then

Jx(u,v) =
x1−u−v

u+ v−1
+
[

Γ(1−u)
Γ(v)

+
Γ(1− v)

Γ(u)

]
Γ(u+ v−1)ζ (u+ v−1)

−SN(u,v;x)−SN(v,u;x)−TN(u,v;x)−TN(v,u;x),

where

SN(u,v;x) =
N−1

∑
n=0

(u)nxn+1−v

(1− v)n+1
ζx(u+n,1),

TN(u,v;x) =
(u)NxN+1−v

(1− v)N

∞

∑
l=1

l1−u−v
∫ ∞

l
β u+v−2(x+ β )−u−N dβ .

In addition, for any M � 0

TN(u,v;x)
xN+1−v =

M

∑
m=1

(−1)m−1 (2−u− v)m−1(u)N−m

(1− v)N

∞

∑
l=1

l−m(x+ l)−u−N+m

+(−1)M (2−u−v)M(u)N−M

(1− v)N

∞

∑
l=1

l1−u−v
∫ ∞

l
β u+v−M−2(x+β )−u−N+M dβ .
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Following [10], we note that if N0 is chosen such that −N0 + 1 < ℜu < N0 + 1
and −N0 +1 < ℜv < N0 +1, for given (u,v) /∈ E , then for N � N0 we have∣∣∣∣∣

∞

∑
l=1

l1−u−v
∫ ∞

l
β u+v−2(x+ β )−u−N dβ

∣∣∣∣∣
�(x+1)−N+N0

∞

∑
l=1

l1−ℜ(u+v)
∫ ∞

l
β ℜ(u+v)−2(x+ β )−ℜu−N0 dβ

�(x+1)−N+N0
∞

∑
l=1

l1−ℜ(u+v)
∫ ∞

l
β ℜ(u+v)−2β−ℜu−N0 dβ � (x+1)−N+N0

∞

∑
l=1

l−ℜu−N0

�(x+1)−N,

where the implied constant depends on x , ℜu , ℜv and N0 , but is independent of N .
Using Stirling’s approximation we then find that, as N → ∞ ,

TN(u,v;x) = O
(
Nℜ(u+v)−1εN

x

)
, εx =

x
x+1

< 1.

Consequently, limN→∞ TN = 0 and we arrive at the first of our corollaries.

COROLLARY 1. For (u,v) /∈ E

Jx(u,v) =
x1−u−v

u+ v−1
+
[

Γ(1−u)
Γ(v)

+
Γ(1− v)

Γ(u)

]
Γ(u+ v−1)ζ (u+ v−1)

−
∞

∑
n=0

(u)nxn+1−v

(1− v)n+1
ζx(u+n,1)−

∞

∑
n=0

(v)nxn+1−u

(1−u)n+1
ζx(v+n,1).

When u,v are complex conjugates, with u = σ + it , we can get a simple estimate on
TN(u,v;x) using∣∣∣∣∣ℜ

∞

∑
l=1

l1−2σ
∫ ∞

l
β 2σ−M−2(x+ β )−σ−it−N+M dβ

∣∣∣∣∣
=

∣∣∣∣∣1t
∞

∑
l=1

l1−2σ
∫ ∞

l

β 2σ−M−2

(x+ β )σ+N−M−1

d
dβ

sin(t log(x+ β ))dβ

∣∣∣∣∣
�1

t

∞

∑
l=1

1
lM+1(x+ l)σ+N−M−1 � x1−N−σ+M

t

valid for M > 0. In the second line we applied the second mean value theorem for
integrals and in the third we compared the sum to an appropriate integral since the
summand is positive and monotonically decreasing, i.e.

∞

∑
l=1

1
lM+1(x+ l)σ+N−M−1 � (x+1)−σ−N+M+1 +

∫ ∞

1
l−M−1(x+ l)−σ−N+M+1 dl
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� x−σ−N+M+1 + x−σ−N−1
∫ ∞

1/x
l−M−1(1+ l)−σ−N+M−1 dl.

The latter integral can be easily controlled by making a substitution l′ = l/x splitting the
resulting integral over the intervals (1/x,1) and (1,∞) and estimating them separately.
In an analogous fashion∣∣∣∣∣ℑ

∞

∑
l=1

l1−2σ
∫ ∞

l
β 2σ−2(x+ β )−σ−it−N dβ

∣∣∣∣∣� x1−N−σ+M

t
,

so on noting that ∣∣∣∣(2−2σ)M(σ + it)N−M

(1−σ + it)N

∣∣∣∣�N,σ t−M,

we arrive at the asymptotic estimate for M > 1

TN(u,v;x) =
M

∑
m=1

(−1)m−1 (2−u− v)m−1(u)N−m

(1− v)N
xN+1−v

∞

∑
l=1

l−m(x+ l)−u−N+m

+ON,M,σ

(
x2−2σ+M

tM+1

)
.

This gives asymptotic expansion for Ix(s) , as t → ∞ .

COROLLARY 2. For N � 1 , −N+1 < σ < N+1 and 2σ−1 /∈{1,0,−1,−2, . . .}

Ix(s) =
x1−2σ

2σ −1
+2Γ(2σ −1)ζ (2σ −1)ℜ

[
Γ(1−σ + it)

Γ(σ + it)

]

−2ℜ
N−1

∑
n=0

(σ + it)nxn+1−σ+it

(1−σ + it)n+1
ζx(σ + it +n,1)+ON,σ

(
x2−2σ

t

)
.

We see that the error term here is comparable to the leading order term when x � t ,
in exactly the same way that the error term in (1) is. So these generalisations of the
results of [10] are not sufficient to get leading order estimates for the power mean of
ζx(s,α) over large intervals. However, this estimate is significantly sharper than (1) in
the regime x � 1.

To obtain the result in the important case on the critical line σ = 1
2 , we set 2σ =

1+ ε and take a limit ε → 0, as in [10]. In doing this we use the facts

x1−2σ

2σ −1
=

1
ε
− logx+o(1), Γ(2σ −1) =

1
ε
− γ +o(1)

and

ζ (2σ −1) = −1
2
− ε log

√
2π +o(ε),

Γ(1−σ + it)
Γ(σ + it)

= 1−ψ( 1
2 + it)ε +o(ε),

as ε → 0, where ψ = Γ′/Γ is the digamma function. We also use the standard asymp-
totic expansion of the digamma function ψ( 1

2 + it)= logt+O(t−2) . Using these results
with N = 1 in Corollary 2 we obtain the third of our corollaries.
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COROLLARY 3. For x � 1 an integer and 2πxy = t

Ix( 1
2 + it) = logy+ γ −2ℜ

x
1
2 +itζx( 1

2 + it,1)
1
2 + it

+O
(x

t

)
.

3. Statement of results useful for large x

The results in this section are found by calculating Ix(s) in a different way that
allows for a more precise remainder term. This form of remainder allows for the cal-
culation of the power mean of ζ1(s,α) over a large interval. These results serve as a
sharpening of those in [12], though the derivation is significantly different. We remind
the reader of the set

A(t,η) =
{

1 � x � t
2π

: ‖y‖ < η
}

.

THEOREM 2. Let s = σ + it , t > 1 , 2πxy = t with x � 1 an integer, σ ∈ (0,1)
and η ∈ (0,1/2) . Then for x /∈ A(t,η)

Ix(s) = |K(s)|2 ∑
m�y−η

m2σ−2 +O

(
x−2σ

η2

)
+O

(
t−1/2x1−2σ log(y+2)

η

)

and for x ∈ A(t,η)

Ix(s) =|K(s)|2 ∑
m�y−η

m2σ−2 +O

(
x−2σ

η2

)
+O

(
t−1/2x1−2σ log(y+2)

η

)

+
( t

2π

)1−2σ
[y]2σ−2

∣∣∣∣E
(

t,
[y]− y

y

)∣∣∣∣
2

+O

(
x2−2σ

t3/2

)
.

Here [y] denotes the nearest integer to y, E (t,0) = 1/2 and

E (t,a) = H(−a)+ eita−iπ/4sgn(a)(1+a)−it
∫ ∞

0
eiπτ2

e2π iτ
√

t
2π |a| dτ,

with H denoting the Heaviside function.

Note that there is no ambiguity in [y] if x ∈ A(t,η) , since ‖y‖ < η < 1/2.

THEOREM 3. For each σ ∈ (0,1) and t > 1

∫ t/2π

0
|ζ1(σ + it,α)|2 dα =

( t
2π

)2−2σ
ζ (3−2σ)+O

(
t1−σ)+O

(
t7/4−2σ logt

)
.

It is important to reconcile the result in Theorem 2 with that of Corollary 2 in the
previous section. We note from the functional equation

2Γ(2σ −1)ζ (2σ −1) =
ζ (2−2σ)

(2π)1−2σ sin(πσ)
,
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so Stirling’s approximation gives

2Γ(2σ −1)ζ (2σ −1)ℜ
[

Γ(1−σ + it)
Γ(σ + it)

]
=
( t

2π

)1−2σ
ζ (2−2σ)+O

(
t−1−2σ) .

The expression appearing in Corollary 2 can now be written as

Ix(s) =
( t

2π

)1−2σ [ y2σ−1

2σ −1
+ζ (2−2σ)

]
−2ℜ

N−1

∑
n=0

(σ + it)nxn+1−σ+it

(1−σ + it)n+1
ζx(σ + it +n,1)

+ON,σ

(
x2−2σ

t

)
,

where we have absorbed the O(t−1−2σ) into the final error term. Now for σ < 1/2 we
may write

ζ (2−2σ)− ∑
m�y−η

m2σ−2 = ∑
m>y−η

m2σ−2

and by Euler-Maclaurin the following holds

∑
m>y−η

m2σ−2 = − (y−η)2σ−1

2σ −1
+
({y−η}− 1

2

)
(y−η)2σ−2 +

∫ ∞

y−η

{α}− 1
2

α3−2σ dα.

The right hand provides an analytic continuation of the left hand side, for σ < 1. We
estimate the integral using the second mean value theorem for integrals

∫ M

y−η

{α}− 1
2

α3−2σ dα = (y−η)2σ−3
∫ M

ξ

({α}− 1
2

)
dα,

for some ξ ∈ (y−η ,M) and the latter integral is O(1) , independently of ξ and M ,
owing to the periodic nature of the integrand and the integral over one period vanishes.
So by binomially expanding the first term in the Euler-Maclaurin estimate, recalling
η ∈ (0,1/2) and y � 1, we find

y2σ−1

2σ −1
+ ζ (2−2σ) = ∑

m�y−η
m2σ−2 +

({y−η}+ η− 1
2

)
y2σ−2 +O(y2σ−3).

Using |K(s)|2 = (t/2π)1−2σ +O(t−1−2σ) we conclude

Ix(s) =|K(s)|2 ∑
m�y−η

m2σ−2−2ℜ
N−1

∑
n=0

(σ + it)nxn+1−σ+it

(1−σ + it)n+1
ζx(σ + it +n,1)

+ON,σ

(
x2−2σ

t

)
,

where we absorbed the O(t1−2σy2σ−2) term into the O(x2−2σ/t) term. So this result
is consistent with Corollary 2, but clearly the estimates in Theorem 2 are sharper when
x � t .
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4. Proof of Theorem 1

Fix an integer N � 1. Let us first assume that 1< ℜu <N+1 and 1< ℜv < N+1.
The more general result will follow from a simple analytic continuation argument. In
this case we have the identity

1
(m+ α)u =

1
Γ(u)

∫ ∞

0
pu−1e−p(m+α) dp,

where Γ(u) denotes the Gamma function. Using this we find

ζx(u,α) =
1

Γ(u)

∫ ∞

0

pu−1e−α pe−(x−1)p

ep−1
dp,

where x � 1. Noting that the function

(p,q,α) 
→ pℜ(u)−1e−α pe−(x−1)p

ep−1
× qℜ(v)−1e−αqe−(x−1)q

eq −1

is absolute integrable (0,∞)× (0,∞)× (0,1) , for ℜu,ℜv > 1, we can apply Fubini’s
theorem to interchange the orders of integration so that

Jx(u,v) =
1

Γ(u)Γ(v)

∫ ∞

0

∫ ∞

0

[
pu−1qv−1e−(x−1)(p+q)

(ep−1)(eq−1)

][
1− e−(p+q)

p+q

]
dpdq

=
1

Γ(u)Γ(v)
lim
ε↓0

∫∫
Dε

[
pu−1qv−1e−(x−1)(p+q)

(ep−1)(eq−1)

][
1− e−(p+q)

p+q

]
dpdq,

where Dε = {(p,q) : p > ε,q > ε} . Following [2] we observe the identity

1
(ep−1)(eq−1)

· 1− e−(p+q)

p+q
≡
[

1
ep−1

+
1

eq−1
+1

]
e−(p+q)

p+q
.

Using this in the previous expression we arrive at

Jx(u,v) = rx(u,v)+rx(v,u)+
1

Γ(u)Γ(v)
lim
ε↓0

∫∫
Dε

pu−1qv−1e−(x−1)(p+q)

[
e−(p+q)

p+q

]
dpdq,

(2)

where we have defined

rx(u,v) =
1

Γ(u)Γ(v)
lim
ε↓0

∫∫
Dε

[
pu−1e−p(x−1)

ep−1

][
e−(p+q)

p+q

]
qv−1e−q(x−1) dpdq.

For each ε > 0 and (p,q) ∈ Dε we have the identity

e−(p+q)

p+q
=
∫ ∞

1
e−α(p+q)dα.
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Again, owing to the absolute convergence of the relevant triple integrals, we can inter-
change orders of integration so that

1
Γ(u)Γ(v)

lim
ε↓0

∫∫
Dε

pu−1qv−1e−(x−1)(p+q)

[
e−(p+q)

p+q

]
dpdq

=
1

Γ(u)Γ(v)
lim
ε↓0

∫ ∞

1

∫∫
Dε

pu−1qv−1e−(α+x−1)(p+q)dpdqdα =
∫ ∞

1
(α + x−1)−u−vdα

=
x1−u−v

u+ v−1

and similarly

rx(u,v) =
1

Γ(u)Γ(v)
lim
ε↓0

∫ ∞

1

∫∫
Dε

[
pu−1e−p(α+x−1)

ep−1

]
qv−1e−q(α+x−1) dpdqdα

=
∫ ∞

1
(α + x−1)−vζx(u,α)dα =

∫ ∞

x
α−vζ1(u,α)dα.

Using both these results (2) becomes

Jx(u,v) =
x1−u−v

u+ v−1
+
∫ ∞

x
α−uζ1(v,α)dα +

∫ ∞

x
α−vζ1(u,α)dα. (3)

Recall the estimate ζ1(u,α) = O(α1−u) l, as α → ∞ , see [8] and references therein.
It is clear then that both integrands are O(α1−u−v) , for large α , so the corresponding
integrals converge absolutely when ℜu,ℜv > 1. Integrating by parts N times and
repeatedly applying the formula ∂α ζ1(u,α) = −uζ1(u+1,α) we find

∫ ∞

x
α−vζ1(u,α)dα = −SN(u,v;x)+

(u)N

(1− v)N

∫ ∞

x
α−v+Nζ1(u+N,α)dα.

Again, following [2] we have that for ℜb < 1 and ℜ(a+b) > 2

∫ ∞

0
α−bζ1(a,α)dα =

Γ(1−b)
Γ(a)

Γ(a+b−1)ζ (a+b−1).

If 1 < ℜu < N + 1 and 1 < ℜv < N + 1, then this result is valid with the choices
a = u+N and b = v−N , so we find∫ ∞

x
α−v+Nζ1(u+N,α)dα

=
Γ(1− v+N)

Γ(u+N)
Γ(u+ v−1)ζ (u+ v−1)−

∫ x

0
α−v+Nζ1(u+N,α)dα.

Using these results in (3) we find

Jx(u,v) =
x1−u−v

u+ v−1
+
[

Γ(1−u)
Γ(v)

+
Γ(1− v)

Γ(u)

]
Γ(u+ v−1)ζ (u+ v−1) (4)
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−SN(u,v;x)−SN(v,u;x)− (u)N

(1− v)N

∫ x

0
α−v+Nζ1(u+N,α)dα

− (v)N

(1−u)N

∫ x

0
α−u+Nζ1(v+N,α)dα.

For the final terms we write∫ x

0
α−v+Nζ1(u+N,α)dα =

∞

∑
l=1

∫ x

0
α−v+N(α + l)−u−N dα,

the interchange being justified by the uniform convergence of the sum. Making the
substitution α = lx/β gives the first form of TN(u,v;x) and the second form comes
from a simple integration by parts M times. The result in the extended ranges of ℜu,ℜv
follows by analytic continuation. �

5. Proof of Theorem 2

In this section we derive estimates for Ix(s) using a similar approach to [13]. Using
Euler-Maclaurin it can be shown that for σ > 0

ζ1(s,α) =
α1−s

s−1
− α−s

2
+ ∑

m�=0

(∫ ∞

α
β−se2π imβ dβ

)
e−2π imα ,

where the notation ∑m�=0 implicitly means limN→∞ ∑0<|m|<N . We note from [2] that
for α > t/2π + δ for δ ∈ (0,1) we have∣∣∣∣∣ ∑

0<|m|<N

(∫ ∞

α
β−se2π imβ dβ

)
e−2π imα

∣∣∣∣∣�δ tα−σ−1,

uniformly in N , so that in particular, the function

α 
→ ζ1(s,α)− α1−s

s−1
+

α−s

2

is absolutely integrable on (x,∞) , for σ > 0. We rewrite (3) as

Jx(u,v) =
x1−u−v

u+ v−1
+
∫ ∞

x
α−uζ1(v,α)dα +

∫ ∞

x
α−vζ1(u,α)dα

=
1
2

x1−u−v

u+ v−1
+
∫ ∞

x
α−u

(
α1−v

v−1
− α−v

2

)
dα

+ ∑
m�=0

∫ ∞

x

(∫ ∞

α
β−ve2π imβ dβ

)
α−ue−2π imα dα +(u ↔ v).

Performing the integrals and re-ordering one of the sums we find

Jx(u,v) =
x2−u−v

(u−1)(v−1)
+ ∑

m�=0

∫ ∞

x

(∫ ∞

α
β−ue2π imβ dβ

)
α−ve−2π imα dα
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+ ∑
m�=0

∫ ∞

x

(∫ ∞

α
β−ve−2π imβ dx

)
α−ue2π imα dα.

The α -integrands in the latter terms can be written

− d
dα

[(∫ ∞

α
β−ue2π imβ dβ

)(∫ ∞

α
β−ve−2π imβ dβ

)]
,

so we find

Jx(u,v) =
x2−u−v

(u−1)(v−1)
+ ∑

m�=0

(∫ ∞

x
β−ue2π imβ dβ

)(∫ ∞

x
β−ve−2π imβ dβ

)
(5)

and for the particular case u = s = v we find

Ix(s) =
x2−2σ

t2 +(σ −1)2 + ∑
m�=0

∣∣∣∣
∫ ∞

x
β−se2π imβ dβ

∣∣∣∣
2

. (6)

The first term will be absorbed into the error terms that appear in Theorem 2. Note, a
similar result in the case x = 1 was obtained by an entirely different method in [13]. The
integral in the sum is easy to estimate if either m < 0 or m > y+ η , for η ∈ (0,1/2) .
Indeed, we see that

∫ ∞

x
β−se2π imβ dβ =

1
2π i

∫ ∞

x

β−σ

m− t
2πβ

d
dβ

(
eit(2πmβ/t−logβ )

)
dβ

≡ 1
2π i

∫ ∞

x
F(β )

d
dβ

(
eit(2πmβ/t−logβ )

)
dβ .

Noting that F (−F , respectively), for β ∈ (x,∞) , is positive and monotone decreasing
while m > y+ η (m < 0, respectively), employing the second mean value theorem for
integrals on the real and imaginary parts of this integral we find

∑
m<0

∣∣∣∣
∫ ∞

x
β−se2π imβ dβ

∣∣∣∣
2

= O

(
∑
m<0

x−2σ

(m− y)2

)
= O(x−2σ )

and similarly

∑
m>y+η

∣∣∣∣
∫ ∞

x
β−se2π imβ dβ

∣∣∣∣
2

= O

(
∑

m>y+η

x−2σ

(m− y)2

)
= O

(
x−2σ

η2

)
.

For 1 � m < y−η we write∫ ∞

x
β−se2π imβ dβ =

∫ ∞

0
β−se2π imβ dβ −

∫ x

0
β−se2π imβ dβ

= K(s)ms−1− 1
2π i

∫ x

0

β−σ

m− t
2πβ

d
dβ

(
eit(2πmβ/t−logβ )

)
dβ ,
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where K(s) = (2π/i)s−1Γ(1− s) . Stirling’s approximation gives

|K(s)|2 =
( t

2π

)1−2σ
+O

(
t−2σ−1) , as t →∞,

so again employing the second mean value theorem for integrals we find

1
2π i

∫ x

0

β−σ

m− t
2πβ

d
dβ

(
eit(2πmβ/t−logβ )

)
dβ = O

(
x−σ

m− t
2πx

)
= O

(
x−σ

y−m

)
,

since the function β 
→ −F(β ) , for β ∈ (0,x) , is positive and monotone increasing
when 0 < m < y−η . So we have the estimate

∑
m<y−η

∣∣∣∣
∫ ∞

x
β−se2π imβ dβ

∣∣∣∣
2

= |K(s)|2 ∑
m<y−η

m2σ−2 + ∑
m<y−η

O

(
|K(s)|m

σ−1x−σ

y−m
+

x−2σ

(y−m)2

)

= |K(s)|2 ∑
m<y−η

m2σ−2 +O

(
t1/2−σyσ−1x−σ log(y+2)

η

)
+O

(
x−2σ

η2

)

=
( t

2π

)1−2σ
∑

m<y−η
m2σ−2 +O

(
t−1/2x1−2σ log(y+2)

η

)
+O

(
x−2σ

η2

)
.

In the final line we absorbed an error term of O
(
t−2σy2σ−1

)
= O(t−1x−2σ ) into the

third error term appearing on the right hand side. In the second line we used the simple
estimate

∑
m<y−η

mσ−1

y−m
= O

(
yσ−1

η

)
+ ∑

m<y−η−1

mσ−1

y−m

and the latter sum can be estimated by first splitting into ranges in which the summand
is increasing/decreasing, then estimating each part by comparing to an appropriate in-
tegral. We conclude

∑
m<y−η

mσ−1

y−m
= O

(
yσ−1

η

)
+O

(
yσ−1 log(y+2)

)
= O

(
yσ−1 log(y+2)

η

)
.

An alternate method for the same estimate is as follows: noting that y/η > 1, for the
sum to contribute anything we have by interchanging order of summation

∑
m<y−η

mσ−1

y−m
=

1
y ∑

n�0

y−n

(
∑

m<y−η
mσ−1+n

)

� 1
y ∑

n�0

y−n
(

(y−η)σ−1+n +
∫ y−η

1
xσ−1+n dx

)
,
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the latter estimate coming from the standard integral comparison test, since the sum-
mand is monotone increasing in the inner-summation. Performing the integral and
carrying out the n -summation, the same estimate is achieved.

To estimate the sum in (6) on the (possibly empty) range |m− y| � η , more care
is needed because of the stationary point at β = t/2πm . It will be convenient to make
a change of variables that fixes the stationary point at the origin. So we set

β ′ =
(

2πm
t

)
β −1,

which gives, after dropping the primes,∫ ∞

x
β−se2π imβ dβ = eit

( t
2πm

)1−s ∫ ∞

a
(β +1)−σeit(β−log(β+1)) dβ , (7)

where we have defined
a =

m− y
y

.

Note that |a| < 1, for |m− y| � η , and |a| can come very close to zero, which is the
location of the stationary point. For this reason we need an estimate which is uniform
with respect to the distance of the stationary point from the end-point of integration.
Uniform asymptotics of integrals of this kind are dealt with in [15] (c.f. also [5]) and
the relevant form of the appropriate lemma is as follows.

LEMMA 1. Fix b > 0 . For g,h ∈ C∞[0,b] with g(0) = 1 , h(0) = h′(0) = 0 ,
h′′(0) = 1 and h′(β ) > 0 for 0 < β � b it holds that

∫ a

0
g(β )eith(β ) dβ =

1
2
eiπ/4

√
2π
t

[
1− eith(a)Ψ

(√
t

2π
a

)]
+O

(
1
t

)
,

as t → ∞ , uniformly in 0 � a � b. Here Ψ denotes the Fresnel-type integral

Ψ(ε) =
2e−iπε2

eiπ/4

∫ ∞

ε
eiπs2 ds ≡ 2e−iπ/4

∫ ∞

0
eiπs2e2π isε ds.

In the case a > 0 the integral appearing on the right hand side of (7) is∫ ∞

a
g(β )eith(β ) dβ , g(β ) = (1+ β )−σ , h(β ) = β − log(1+ β ),

which we write as∫ ∞

a
g(β )eith(β ) dβ =

∫ ∞

0
g(β )eith(β ) dβ −

∫ a

0
g(β )eith(β ) dβ .

The first integral is gives (half) a stationary phase contribution from the stationary point
at β = 0, with a uniform error of O(1/t) . The second integral can be estimated using
Lemma 1. We find that for a > 0, i.e. m > y ,

∫ ∞

x
β−se2π imβ dβ = eit+iπ/4

( t
2πm

)1−s
√

2π
t

[
eith(a)

2
Ψ

(√
t

2π
a

)]
+O

(
mσ−1

tσ

)
.

(8)
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If a < 0, we write the integral of the right hand side of (7) as∫ ∞

a
g(β )eith(β ) dβ =

∫ ∞

0
g(β )eith(β ) dβ +

∫ 0

a
g(β )eith(β ) dβ

=
∫ ∞

0
g(β )eith(β ) dβ +

∫ |a|

0
g(x)eith(t) dβ ,

where g(β ) = (1− β )−σ and h(β ) = −β − log(1− β ) . Again g and h satisfy the
conditions of Lemma 1, so arguing as before we find for a < 0, i.e. m < y

∫ ∞

x
β−se2π imβ dβ = eit+iπ/4

( t
2πm

)1−s
√

2π
t

[
1− eith(a)

2
Ψ

(√
t

2π
|a|
)]

+O

(
mσ−1

tσ

)
.

(9)

Note that these results are consistent with in the limit a ↓ 0, where m = y . In conclusion,
for |m− y|< η

∫ ∞

x
β−se2π imβ dβ = eit+iπ/4

( t
2πm

)1−s
√

2π
t

E (t,a)+O

(
mσ−1

tσ

)
, (10)

where E (t,0) = 1/2 and for a �= 0

E (t,a) = H(−a)+ sgn(a)
eith(a)

2
Ψ

(√
t

2π
|a|
)

,

where H denotes the Heaviside function. We see from the definitions that E = O(1) .
Noting that |m− y| = ‖y‖ , if |m− y| < η < 1/2, and m = [y] , where [y] denotes the
nearest integer to y , the right hand side of (10) can be written

eit+iπ/4

2

(
t

2π [y]

)1−s
√

2π
t

E

(
t,

[y]− y
y

)
+O

(
x1−σ

t

)
.

In summary

∑
|m−y|�η

∣∣∣∣
∫ ∞

x
β−se2π imβ dβ

∣∣∣∣
2

=
1
4

( t
2π

)1−2σ
[y]2σ−2

∣∣∣∣E
(

t,
[y]− y

y

)∣∣∣∣
2

+O

(
x2−2σ

t3/2

)
.

Note that this term contributes nothing unless ‖y‖ < η , i.e. x belongs to A(t,η) .
Collecting the different cases m < 0, m > y+η , m < y−η and |m−y| � η we arrive
at the result in Theorem 2. �

6. Proof of Theorem 3

We will be required to estimate the size of the set

A(t,η) =
{

1 � x � t
2π

: ‖y‖ < η
}

.

The following lemma can be found in Corollary 1.1 of [14].
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LEMMA 2. Let {x} denote the fractional part of x . Then for each δ ∈ (0,1)

#{1 � x � n : {n/x} < δ}
n

= ∑
m�1

δ
m(m+ δ )

+O
(
n−2/3 logn

)
, as n → ∞ .

The implicit constant in the error term is uniform in δ .

As the authors state in [14], it is likely that the error term can be improved using more
sophisticated machinery. However, the error given here is sufficient for our purposes.
Using the digamma function ψ = Γ′/Γ , this result can be restated as

#{1 � x � n : {n/x} < δ} = (γ + ψ(1+ δ ))n+O
(
n1/3 logn

)
. (11)

By taking complements we also have the result

#{1 � x � n : {n/x} > 1− δ}= n− (γ + ψ(2− δ ))n+O
(
n1/3 logn

)
. (12)

It is clear from the definitions that, since η ∈ (0,1/2) ,

A(t,η) =
{
1 � x � t

2π : {t/2πx}< η
}∪{1 � x � t

2π : {t/2πx}> 1−η
}

and each of these sets are disjoint. On using estimates (11) and (12), with n = t/2π ,
we deduce

#A(t,η) =
t

2π
(1+ ψ(1+ η)−ψ(2−η))+O(t1/3 logt) = O(ηt)+O(t1/3 logt).

We perform the sum

∑
x�t/2π

Ix(s) = ∑
Ac

Ix(s)+∑
A

Ix(s).

From Theorem 2 and our previous result we see that the right hand side is

∑
x�t/2π

(
|K(s)|2 ∑

m�y−η
m2σ−2 +O

(
x−2σ

η2

)
+O

(
t−1/2x1−2σ log(y+2)

η

))

+O
(
ηt2−2σ)+O

(
t4/3−2σ logt

)
,

where we have used that E = O(1) . Summing over the error terms we find that for
σ < 1/2

∑
x�t/2π

Ix(s) =|K(s)|2 ∑
x�t/2π

∑
m�y−η

m2σ−2 +O

(
t1−2σ

η2

)
+O

(
t3/2−2σ logt

η

)

+O
(
ηt2−2σ)+O

(
t4/3−2σ logt

)
.
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Write η = t−δ . We should choose δ > 0 so that it minimizes the maximum of the
exponents (1+2δ ,3/2+δ ,2−δ ) in the η -dependent error terms. This is found to be
at δ = 1/4 and with this choice of η the overall error is dominated by

O
(
t7/4−2σ logt

)
.

By performing a similar analysis for σ � 1/2, in which case the O(x−2σ/η2) term
gives, after summation, an error at worst of order O

(
log t/η2

)
, we find that again the

overall error is dominated by O(t7/4−2σ logt) . We conclude that for σ ∈ (0,1)

∑
x�t/2π

Ix(s) = |K(s)|2 ∑
x�t/2π

⎛
⎝ ∑

m�y−t−1/4

m2σ−2

⎞
⎠+O

(
t7/4−2σ logt

)
.

We write the remaining inner sum as

∑
m�y−t−1/4

= ∑
m�y

− ∑
y−t−1/4<m�y

and the latter sum is empty if ‖y‖ > t−1/4 . Using the previous estimate for A(t,η)

|K(s)|2 ∑
x�t/2π

⎛
⎝ ∑

y−t−1/4<m�y

m2σ−2

⎞
⎠= O

(
t7/4−2σ

)
,

which can be absorbed into the previous error term. Hence

∑
x�t/2π

Ix(s) = |K(s)|2 ∑
x�t/2π

∑
m�y

m2σ−2 +O
(
t7/4−2σ logt

)
.

Let us temporarily write N = t/2π . The double sum is

∑
x�N

∑
m�N/x

m2σ−2,

so applying Dirichlet’s hyperbola lemma we find

∑
x�N

∑
m�N/x

m2σ−2 = ∑
x�

√
N

∑
m�N/x

m2σ−2 + ∑
m�

√
N

m2σ−2 ∑
x�N/m

1− ∑
x�

√
N

1 ∑
m�

√
N

m2σ−2

= ∑
x�

√
N

∑
m�N/x

m2σ−2 + ∑
m�

√
N

⌊
N
m

⌋
m2σ−2−

⌊√
N
⌋

∑
m�

√
N

m2σ−2.

We consider the cases (i) σ ∈ (0,1/2) , (ii) σ ∈ (1/2,1) and (iii) σ = 1/2 separately.
Case (i). Since σ ∈ (0,1/2) , the sum ∑m�1 m2σ−2 is convergent. By the Euler-

Maclaurin formula

∑
x�

√
N

∑
m�N/x

m2σ−2 = ∑
x�

√
N

(
ζ (2−2σ)+O

(
N2σ−1x1−2σ))
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=
⌊√

N
⌋

ζ (2−2σ)+O
(
N2σ−1N1−σ)=

√
Nζ (2−2σ)+O(Nσ ) .

And similarly

∑
m�

√
N

⌊
N
m

⌋
m2σ−2 = ∑

m�
√

N

(
N
m

+O(1)
)

m2σ−2 = N
(
ζ (3−2σ)+O

(
Nσ−1))+O(1)

= Nζ (3−2σ)+O(Nσ )

and⌊√
N
⌋

∑
m�

√
N

m2σ−2 =
⌊√

N
⌋(

ζ (2−2σ)+O
(
Nσ−1/2

))
=
√

Nζ (2−2σ)+O(Nσ ) .

So the sum is Nζ (3−2σ)+O(Nσ ) .
Case (ii). Since σ ∈ (1/2,1) , the sum ∑m�1 m2σ−2 is divergent. Again using the

Euler-Maclaurin formula

∑
x�

√
N

∑
m�N/x

m2σ−2 = ∑
x�

√
N

(
N2σ−1x1−2σ

2σ −1
+O

(
N2σ−2x2−2σ))

=
N2σ−1

⌊√
N
⌋2−2σ

(2σ −1)(2σ −2)
+O

(
N2σ−2N3/2−σ

)

=
Nσ

(2σ −1)(2σ −2)
+O

(
Nσ−1/2

)
.

And similarly

∑
m�

√
N

⌊
N
m

⌋
m2σ−2 = ∑

m�
√

N

(
N
m

+O(1)
)

m2σ−2

= N
(
ζ (3−2σ)+O

(
Nσ−1))+O(Nσ−1/2) = Nζ (3−2σ)+O(Nσ )

and

⌊√
N
⌋

∑
m�

√
N

m2σ−2 =
⌊√

N
⌋(⌊√N

⌋2σ−1

2σ −1
+O

(
Nσ−1))=

Nσ

2σ −1
+O

(
Nσ−1/2

)
.

So again the sum is Nζ (3−2σ)+O(Nσ ) .
Case (iii). For σ = 1/2 we use Euler-Maclaurin again, along with Stirling’s esti-

mate

∑
x�

√
N

∑
m�N/x

m−1 = ∑
x�

√
N

(logN− logx+O(1))

=
⌊√

N
⌋
logN−

(⌊√
N
⌋
log
⌊√

N
⌋
− log

⌊√
N
⌋)

+O
(√

N
)

= 1
2

√
N logN +O

(√
N
)

.
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And similarly

∑
m�

√
N

⌊
N
m

⌋
m−1 = ∑

m�
√

N

(
N
m

+O(1)
)

m−1 = N
(

ζ (2)+O
(
N−1/2

))
+O(logN)

= Nζ (2)+O
(√

N
)

and ⌊√
N
⌋

∑
m�

√
N

m−1 =
⌊√

N
⌋(

log
√

N +O(1)
)

= 1
2

√
N logN +O

(√
N
)

.

So the sum is Nζ (2)+O
(√

N
)
.

Collecting these results together, we conclude that for σ ∈ (0,1)

|K(s)|2 ∑
x�t/2π

∑
m�y

m2σ−2 =
( t

2π

)2−2σ
ζ (3−2σ)+O

(
t1−σ)

and using the previous estimates we arrive at Theorem 3. �
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