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BOUNDS ON COEFFICIENTS AND THIRD HANKEL

DETERMINANT FOR A CLASS OF ANALYTIC

FUNCTIONS RELATED WITH CERTAIN CONIC DOMAIN

JUGAL K. PRAJAPAT ∗ AND RAJBALA

Abstract. In this paper, we obtain upper bounds on initial coefficients and third Hankel determi-
nant

H3,1( f ) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
of the coefficients of analytic function f (z) = z + a2z2 + a3z3 + · · · , belonging to the class

S ∗(q) in the open unit disk D , which satisfies the subordination condition that

z f ′(z)/ f (z) ≺ q(z) (z ∈ D),

where q(z) =
√

1+ z2 +z . Several results are presented exhibiting improvement in earlier work.

1. Introduction

Let H (D) denote the class of analytic functions in the open unit disk D = {z ∈
C : |z| < 1} , and A be the subclass of H (D) normalized by the condition f (0) =
f ′(0)−1 = 0. This means that f ∈ A has the Taylor’s series expansion:

f (z) = z+
∞

∑
n=2

anz
n (z ∈ D). (1)

Further, let P be the class of Carathéodory functions p ∈ H (D) of the form

p(z) = 1+
∞

∑
n=1

pnz
n (z ∈ D), (2)

having the positive real part in D . If f and g are two analytic functions in D, then
we say that function f is subordinate to g in D and write f (z) ≺ g(z)(z ∈ D) , if there
exists a Schwarz function w(z) analytic in D with w(0) = 0, and |w(z)| < 1, such that
f (z) = g(w(z))(z ∈ D) . In particular, if the function g is univalent in D , then the above
subordination is equivalent to:

f (z) ≺ g(z) ⇐⇒ [ f (0) = g(0) and f (D) ⊂ g(D)].
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Let S ∗(φ) denote the class of functions f ∈A satisfying
z f ′

f
≺ φ(z) , where φ is

analytic with φ(0) = 1. Note that, for φ(z) = (1+z)/(1−z), S ∗(φ) is the well known
class of starlike functions. Also, Ma and Minda [14] proved some general results where
φ is assumed to be univalent, and φ(D) is symmetric with respect to real axis and star-
like with respect to φ(0) = 1. Several other subclasses of A have been defined in the
literature by choosing appropriately the arbitrary function φ in the class S ∗(φ) (see,
[10, 18, 17]). Also we observe that, if φ in S ∗(φ) is not univalent, then obtaining
geometric properties for such classes is much more difficult. Such class of functions
was studied by Sokol and Stankiewicz [22] (see also, [2]) by taking φ(z) =

√
1+ z,

also Raina and Sokol [21] have studied a class S ∗(q) which is defined by

S ∗(q) =
{

f ∈ A :
z f ′(z)
f (z)

≺
√

1+ z2 + z =: q(z)
}

. (3)

The branch of the square root in q is chosen to be q(0) = 1. Further, it was proved that
S ∗(q) ⊂ S ∗ (see, [21, Lemma 2.1]).

The Hankel determinant Hq,n( f ) of Taylor’s coefficients for functions f of the
form (1) is defined by

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

... · · · . . .
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
(a1 = 1;n,q ∈ N = {1,2, · · ·}). (4)

The Hankel determinants are useful in the study of singularities and power series with
integral coefficients [5]. Pommerenke [16] proved that the Hankel determinant of uni-
valent functions satisfy |Hq,n( f )| < kn−(1/2+β )q+3/2, where β > 1/4000 and k de-
pends only on q . Later, Hayman [8] proved that H2,n( f ) < An1/2 (A is an absolute
constant) for a Areally mean univalent functions. The study of H3,1( f ) for various
subclasses of A are of interest for many researchers [3, 15, 19, 20, 23]. Note that
H2,1( f ) = a3−a2

2 be the classical Fekete-Szegö functional and H2,2( f ) = a2a4−a2
3 be

the second Hankel determinant. The problems of calculating max f∈F |H2,1( f )| and the
max f∈F |H2,2( f )| for various compact subfamilies of A was studied by many authors
(see, [1, 4, 9, 11, 13]).

In the present paper, we obtain upper bounds on initial coefficients and third Han-
kel determinant |H3,1( f )| for functions f ∈ S ∗(q) .

We shall use the following lemmas.

LEMMA 1. (Duren [6]) If p ∈ P is of the form (2), then

|pn| � 2 (n ∈ N). (5)

The inequality (5) is sharp and the equality holds for the function p(z) =
1+ z
1− z

.
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LEMMA 2. (Efraimidis [7]) If p ∈ P is of the form (2) and μ ∈ C , then

|pn − μ pkpn−k| � 2max{1, |2μ −1|} (1 � k � n−1).

If |2μ − 1| � 1 , then the inequality is sharp for the function p(z) =
1+ z
1− z

or its rota-

tions. If |2μ −1|< 1 , then the inequality is sharp for the function p(z) =
1+ zn

1− zn or its

rotations.

LEMMA 3. (Libra and Złotkiewicz [12]) If p ∈ P is of the form (2) with p1 � 0 ,
then

2p2 = p2
1 + x(4− p2

1) (6)

and
4p3 = p3

1 +2p1x(4− p2
1)− p1x

2(4− p2
1)+2(4− p2

1)(1−|x|2)z (7)

for some x,z with |x| � 1 and |z| � 1 .

LEMMA 4. (Raina and Sokoł [21]) If the function defined by (1) belongs to the
class S ∗(q) , then

|a3−λa2
2| � max{1/2, |λ −3/4|} (λ ∈ C).

Furthermore, this result is sharp.

2. Main Results

THEOREM 1. Let the function f ∈ S ∗(q) be given by (1). Then

|a2| � 1, |a3| � 3
4
, |a4| � 1

3
and |a5| � 1

2
. (8)

First two inequalities in (8) are sharp.

Proof. Let f ∈ S ∗(q) . By definition there exists an analytic function w with
w(0) = 0 and |w(z)| < 1, such that

z f ′(z)−w(z) f (z) = f (z)
√

w2(z)+1. (9)

Assume that
w(z) = c1z+ c2z

2 + c3z
3 + · · · (z ∈ D). (10)

Making use of (1) and (10) in (9), we get

f (z)
√

w2(z)+1 = z+a2z
2 +

(
1
2
c2
1 +a3

)
z3 +

(
c1c2 +

1
2
c2
1a2 +a4

)
z4 (11)

+
(

1
2
c2
2 + c1c3 − 1

8
c4
1 + c1c2a2 +

1
2
c2
1a3 +a5

)
z5 + · · · ,
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and

z f ′(z)−w(z) f (z) = z+(2a2− c1)z2 +(3a3− c1a2− c2)z3 (12)

+(4a4− c1a3− c2a2− c3)z4

+(5a5− c1a4− c2a3− c3a2− c4)z5 + · · · .
Now equating the coefficients in (11) and (12), we have

a2 = c1, a3 =
1
4

(
2c2 +3c2

1

)
, a4 =

1
12

(
5c3

1 +10c1c2 +4c3
)
,

a5 =
1
24

(
6c2

2 +14c1c3 +4c4
1 +17c2

1c2 +6c4
)
.

(13)

If w is an alalytic function such that w(0) = 0 and |w(z)| < 1 (z ∈ D), then we can
easily write

1+w(z)
1−w(z)

= 1+ p1z+ p2z
2 + · · · := p(z), (14)

where p(z)∈P . Using the series expansion of w(z) given by (10) in (14) and equating
the coefficients, we obtain

c1 =
1
2

p1, c2 =
1
4

(
2p2− p2

1

)
, c3 =

1
8

(
4p3−4p1p2 + p3

1

)
,

c4 =
1
16

(
8p4−8p1p3 +6p2

1p2−4p2
2− p4

1

)
,

c5 =
1
32

(
16p5−16p1p4 −16p2p3 +12p1p2

2 +12p2
1p3−8p3

1p2 + p5
1

)
.

(15)

Further using (15) in (13), we get

a2 =
1
2

p1, a3 =
1
16

(4p2 + p2
1), a4 =

1
96

(−p3
1 +4p1p2 +16p3),

a5 =
1

384
(p4

1−10p2
1p2 +8p1p3 +48p4).

(16)

Now making use of Lemma 1, we obtain easily that |a2| � 1. To obtain bound on a3 ,
we use Lemma 3, for some x and z such that |x| � 1 and |z| � 1, hence we obtain

|a3| = 1
16

∣∣3p2
1 +2x(4− p2

1)
∣∣ .

Taking into account of invariance of |a2| under rotation, we can assume that p1 = 2a2

is real. Assume that p1 = p ∈ [0,2]. Applying the triangle inequality in the above
equation with μ = |x| , we obtain

|a3| � 1
16

∣∣3p2 +2μ(4− p2)
∣∣ := F(p,μ).

We easily observe that F is an increasing function of μ on [0,1] , hence it follows that

max
0�μ�1

F(p,μ) = F(p,1) =
1
16

(p2 +8).
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Again, we observe that F(p,1) is also an increasing function of p(0 � p � 2). Hence
the maximum value of F(p,μ) is

max
Ω

F(p,μ) = F(2,1) =
3
4
.

To show the sharpness of first two inequalities, consider

z f ′1(z)
f1(z)

= q(z) =
√

1+ z2 + z. (17)

Then f1 ∈ S ∗(q) . Consequently

f1(z) = zexp
∫ z

0

√
1+ t2 + t−1

t
dt

= z+ z2 +
3
4
z3 +

5
12

z4 +
2
9
z5 + · · · (z ∈ D).

This gives that |a2| = 1 and |a3| = 3
4

.

To obtain bound on a4 , applying Lemma 3, for some x and z such that |x| � 1
and |z| � 1, we get

|a4| = 1
96

∣∣5p3
1 +

(
10p1x−4p1x

2 +8(1−|x|2)z) (4− p2
1)

∣∣ . (18)

Applying the triangle inequality in (18) with μ = |x| , we obtain

|a4| � 1
96

[
5p3 +

(
10pμ +4pμ2 +8(1− μ2)

)
(4− p2)

]
:= G(p,μ).

Let Ω = {(p,μ) : 0 � p � 2 and 0 � μ � 1}. Differentiating G with respect to p and
μ , respectively, we have

∂G
∂ μ

:=
1
48

(4− p2)(5p+4μ(p−2)), and (19)

∂G
∂ p

:=
1

192
{6p2(5−10μ−4μ2)+32μ2(p+1)+16(5μ +2p)}. (20)

Solving (19) and (20), we obtain that (0,0) is a point of extremum. Since Ω is closed
and bounded and G is continuous on Ω, the maximum shall be attained on the bound-
ary of Ω. It is easy to see that on the boundary line L1 = {(0,μ) : 0 � μ � 1} ,

we have G(0,μ) =
1
3
(1− μ2) , that gives critical point (0,0). On the boundary line

L2 = {(2,μ) : 0 � μ � 1} , we have G(2,μ) =
5
12

, which is a constant. On the bound-

ary line L3 = {(p,0) : 0 � p � 2} , we have G(p,0) =
1
96

(5p3 − 8p2 + 32) , which

gives the critical points (0,0) and (16/15,0) . On the line L4 = {(p,1) : 0 � p � 2} ,



66 J. K. PRAJAPAT AND RAJBALA

we have G(p,1) =
1
24

(8p− p3) , which gives (0,0) and (
√

56/9,1) as critical points.

Comparing all these results, we observe that the maximum of G(p,μ) exists at (0,0),
that is

max
Ω

G(p,μ) = G(0,0) =
1
3
.

In the same way for |a5| , from (16) we have

|a5| � |A|+ |B|,

where A =
1

384
p4

1 −
5

192
p2

1p2 and B =
1
8

(
p4 + 1

6 p1p3
)
. Using Lemma 2, we have

|B|� 1
3

. Now using Lemma 3, for some x and z such that |x|� 1 and |z|� 1, we have

|A| = 1
384

∣∣−4p4
1−5p2

1x(4− p2
1)

∣∣ .
We may assume without restriction that p1 = p ∈ [0,2] and μ = |x| ∈ [0,1]. Conse-
quently

|A| � 1
384

{4p4 +5p2μ(4− p2)} := H(p,μ). (21)

We observe that H is an increasing function of μ on [0,1] , hence it follows that

max
0�μ�1

H(p,μ) = H(p,1) =
1

384
(−p4 +20p2).

Clearly H(p,1) is also an increasing function of p (0 � p � 2) . Hence the maximum
value of H(p,μ) is

max
Ω

H(p,μ) = H(2,1) =
1
6
.

This implies that |A| � 1
6

, and hence we get |a5| � 1
2

. This completes the proof.

THEOREM 2. Let the function f ∈ S ∗(q) be given by (1). Then

|a2a3−a4| � 2
9

√
8
3

and |a2a4−a2
3| �

1
4
. (22)

Proof. On making use of (16), we have

|a2a3−a4| = 1
24

|p3
1 +2p1p2−4p3|. (23)

Using Lemma 3, for some x and z such that |x| � 1 and |z| � 1, we have

|a2a3−a4| = 1
24

∣∣p3
1 +(4− p2

1){−p1x+ p1x
2−2(1−|x|2)z}∣∣ .
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Since we have |p1| � 2, so we may assume without restriction that p1 = p ∈ [0,2] .
Applying the triangle inequality with μ = |x| , the above equation yields

|a2a3−a4| � 1
24

[p3 +(4− p2){pμ + pμ2 +2(1− μ2)}]

=
1
24

[p3 +(4− p2){(p−2)μ2 + pμ +2}]
:= J(p,μ).

Now differentiating J with respect to p and μ , respectively, we have

∂J
∂ μ

:=
1
24

(4− p2)(p+2μ(p−2)), (24)

and
∂J
∂ p

:=
1
24

[3p2(1− μ)− μ2(3p2−4p−4)−4(p−μ)]. (25)

Solving (24) and (25) we obtain that (0,0) is the point of extremum. Now we shall
examine extremum of J on the boundary. Taking the boundary line L1 = {(0,μ) : 0 �
μ � 1} , we have J(0,μ) =

1
3
(1−μ2) , that gives critical point (0,0). On the boundary

line L2 = {(2,μ) : 0 � μ � 1} , we have J(2,μ) =
1
3

, which is a constant. On the

boundary line L3 = {(p,0) : 0 � p � 2} , we have J(p,0) =
1
24

(p3 +2(4− p2)) , which

gives the critical points (0,0) and (4/3,0) . On the line L4 = {(p,1) : 0 � p � 2} , we

have J(p,1) =
1
24

(8p− p3) , which gives (
√

8/3,1) as critical point. Comparing these

results, we observe that

J(0,1) < J(4/3,0) < J(0,0) < J(
√

8/3,1).

Thus we get,

max
Ω

J(p,μ) = J(
√

8/3,1) =
2
9

√
8
3
.

Further, in view of (16), we get

|a2a4−a2
3| =

1
768

∣∣−7p4
1−8p2

1p2 +64p1p3−48p2
2

∣∣ . (26)

In (26), using Lemma 3, for some x and z such that |x| � 1 and |z| � 1, we have

|a2a4−a2
3| =

∣∣∣∣− 7
768

p4
1−

(4− p2
1)

192
{−p2

1x+ p2
1x

2 +12x2−8p1(1−|x|2)z}
∣∣∣∣ . (27)

We assume without restriction that p1 = p ∈ [0,2] . Applying the triangle inequality
with μ = |x| in (27) yields

|a2a4−a2
3| � 7

768
p4 +

(4− p2)
192

{p2μ + p2μ2 +12μ2 +8p(1− μ2)}.
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Further, the remaining part of the proof is similar to that of first inequality in (22), hence
we omit the detail and this completes the proof.

REMARK 1. For f ∈ S ∗(q) of the form (1), Raina et. al. [21] obtained upper
bounds for the initial coefficient a4 and the functional a2a4−a2

3 . Here we observe that
Theorems 1 and 2 provide an improvement on these bounds.

THEOREM 3. Let the function f ∈ S ∗(q) be given by (1). Then

|H3,1( f )| � 7
16

+
2
27

√
8
3
.

Proof. By the definition of H3,1( f ) , we have

|H3,1( f )| � |a3| |a2a4−a2
3|+ |a4| |a4−a2a3|+ |a5| |a3−a2

2|.

Now, using Lemma 1, Theorems 1 and 2, we have

|H3,1( f )| � 3
4
.
1
4

+
1
3
.
2
9

√
8
3

+
1
2
.
1
2

=
7
16

+
2
27

√
8
3
.

Hence, it completes the proof.
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