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SCHUR’S THEOREM FOR MODIFIED
DISCRETE FOURIER TRANSFORM

N. O. KOTELINA AND A. B. PEVNYI*

Abstract. We find the eigenvalues of modified Fourier matrix S with entries Sj; = ﬁa)k“’j) R

0<k,j<n—1, where ® =exp % . For this matrix $* = oI. The matrix has an interesting

property: for n = 4m eigenvalues have equal multiplicities. We prove a theorem giving the
multiplicities of eigenvalues for all n. The theorem is similar to Schur’s theorem (1921) for
standard Fourier matrix. Our proofs are self-contained. In the proof we calculate modified
Gauss sums by means of the classical analysis.

1. Introduction

In the paper [2] Schur considered the matrix F = (Fy;) with Fy; = ﬁwkf

0<k,j<n—1,where a):exp%.
For this matrix F* = I, therefore the eigenvalues of F are roots of fourth degree

of unit. Denote by #(4) the multiplicity of eigenvalue A . Schur’s theorem says that

#(1) = [#}7#(—1):

420 = (2] o= 251

For n=4m we have #(1) =m+ 1, #(—1) = m, #(i) = m, #(—i) = m— 1. We see that
these multiplicities are not equal.

The problem of the standard Fourier transform from the spectral point of view
is that for n = 4m dimensions of eigenspaces are different, not equal. It leads to the
lack of analogy with integral Fourier transform for which all eigenspaces are similiar.
Because of that we modify matrix ' and new modified matrix will have eigenvalues
with equal multiplicities for n = 4m.

2. New version of DFT

The modified discrete Fourier transforms were suggested by S. M. Sitnik in series
of works (see for example [3]). We study one new transform and prove that multiplici-
ties of its eigenvalues are equal for n = 4m.
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Consider a matrix S with elements
Stk j)= o', 0<kj<n—1, (1)

where @ = exp (27i/n). For n =4 matrix S has the form:

In the zero row we see 1, in the first row — all roots of unity of the fourth degree. We
take it from unit circle clockwise.

The matrices F' and § are unitary. To study spectral properties of F' we introduce
matrix P = §2. Let /@ denote exp (ri/n).

THEOREM 1. Matrix P = S? has properties:

1. P> = ol forall n.
2. for even n trace tr(P) is equal to zero.

3. for odd n, n=2v+1, we have tr(P) = —y/® and eigenvalues ++/@ have
multiplicities #(v/0) = v, #(—V/0)=v+1.

Proof. Calculate the entries of P:
Zwljwjll Ew/lkl

Last sum is the sum of geometric progression with ¢ = @' ~*~. If g # 1 then sum=0
butif ¢ = 1 then sum=n. Introduce periodic delta-function §,(j) =1 for j =0 (mod
n) and 0,(j) = 0 otherwise. Then we have

Plk,1) = 0*8,(1 —k—1)= &*8,(k+1—1), 0<kl<n—1.

For n = 6 matrix P has the form

010 000
w00 0 0 0
P 000 0 0 o
“ 1000 0 @ O
000 w* 0 O
00w’ 0 0 O

For even n the entries of main diagonal are equal to zero and tr(P) = 0. For odd n

n 2mi 1 j
tr(P) = 0T = exp (%n;— ) = exp(7i) exp% =—Vo.
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Now show that matrix Q = P? is equal to w/. We have
Za) (k+1—1)0'8,(1+j—1).
For k # j all summands are zero. For k = j only one summand # 0, for example
n—1
0(0,0)=3 0'8,(j-1)=0
1=0
Za) Si(l+ 1o =0"" =o.

As aresult Q= wl,i.e. P? = ol.

Eigenvalues of P are /o and —/@ with multiplicities k; and k. Sum of all
eigenvalues is equal to trace of P. For even n kj/o — ky/® = tr(P) = 0, hence
kl = k2 = n/2.

For n=2v+1 kj\/o —ky/o = —\/w, hence k; = Vv, ko = v+ 1. Theorem is
proved.

3. Eigenvalues of matrix S

By Theorem 1 equality S4 = oI holds. Therefore eigenvalues of S are €, ie, —¢,
—ig, where £ = /o = exp Z*. Our aim is to determine the multiplicities a, b, ¢, d of
these eigenvalues, a + b + ¢+ d = n. Here, the trace tr(S) plays an important role.

THEOREM 2. Trace of S and multiplicities of eigenvalues are given in the Table 1.

n tr(S) #(e) #ie) #(—e) #(—ie)
dm 0 m m m m
dm—+1 —ie m m m m+1
dm+2 (1—i)e m+1 m m m+1
4m+3 £ m+1 m+1 m m+1

Table 1: Trace and multiplicities of eigenvalues of matrix S

Proof. The multiplicities a, b, c, d of eigenvalues satisfy the equation
ag+b-ie+c(—ie)+d(—ie) =tr(S).

In addition matrix P = S° has eigenvalues /o and —/@ with multiplicities k;
and k, determined in Theorem 1. We have &2 = (—¢)? = Vo, (ig)* = (—ie)? = -/,
hence k| > a+c, kp > b+ d. Adding these inequalities we obtain

n=ki+k>a+b+c+d=n.
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Whence a+c=k;, b+d = k. By formula (1)

1 n—1 1 —
tr(S)— 1=k R(n),
(S) \/ﬁkgb NG (n)
where |
R(n) =Y o), 2)
k=0

The sum (2) is similar to the classical Gauss sum in which k> stands instead k(k — 1).
In next lemma we calculate the sum R(n) with the help of Dirichlet method.

LEMMA 1. Forall n > 1 the equalities hold

0, n=4m,
Rin) = i, n=dm+1,

E(l+i)y/n, n=4m+2,

e/n, n=4m+3,

wheree—exp2 , s—exp( 2n>

Proof. We have k(k—1) = (k— 1)>— . Hence, R(n) = £Q(n), where

O(n) = n_lexp(?(k— %)2>

k=0

Following Dirichlet, let’s introduce function

g(x):exp<?(x—%)2>7 xX€ Bm—l—%}

Notice that g(3) = g(3 +n) and continue g(x) to R with period n and decompose into
Fourier series

+n

g(f)GXP(

D=

2mikx
Z Cr €Xp ( ) Ci =

—2mikt
m )dt.
kel

S =
l\)l'—‘\

In the definition of ¢; under the integral sign there is an n-periodic function, so we can
take integral over any interval with the length equal to n. Function g(x) is continuous
and piecewise-differentiable, therefore Fourier series converges to g(x) at any point.

Hence
n—1

0(n) = 2 _ ch Z exp(2mkm>

m=0 k€eZ — m=
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Last sum is non-zero only at k divisible by 7, therefore

%Jrn

n)=nY cim=, / g(t)exp (—2mikt)dt =
keZ |

keZ

+n

exp <—27tikt + %(r - %)2> dr.

=

keZ

PI——

Further, substitute 7 =7—1, 7€ [0,n]:
/ —1: — 2kt — ik ) 1.

We take out the multiplier exp (—mik) = (—1)* and make a substitution 7 = nt:

1
k2 . k2
O(n)=n) (- k/exp (2mint* —2mnkt+2mnz _ )di =
0

keZ 2
77:mk2 1 k
=nY (—1)fexp /exp Zmn t——)2>dt.
keZ 0 2

And now substitute T =1¢ — % :

NSk

+1

ink?
n) = nke%(—l)kexp (— n 3 )

exp (2mint?) d1.

—

[\l

Divide the sum into 2 parts, one part consisting of summands with even numbers
2k and another with odd:

—k+1
—nE 2k exp (—2mink?) / exp (2mint?) dt+
keZ “k
| e
3 (—1)* exp (- EL(E +4k+1)) / exp (2mint?) dx.
keZ

—k—

=
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The multiplier before the first integral is equal to 1, and before the second —i~". Hence,
O(n)=n(1—-i") / exp (2mint?) dr.

Now apply the formula for Fresnel integral:

=

.2 _ /T .
/eXp(lal‘)dl—1/2a(l+l)7 a>0.

With a =2nn we finally get

(1—i)(1+1)

o = vi——5,

whence the statement of the Lemma follows.
We now proceed to prove the theorem. We have

tr(S):Mzs%[l—i"].

See values of tr(S) in the Table 1.
For n =4m we have a+c=ky =2m, b+d =k, =2m,

el(a—c)+i(b—d)] = tr(S) = 0.

Asaresult a=b=c=d =m.
For n=4m+1 we obtain a+c=2m, b+d=2m-+1,

ella—c)+i(b—d)]=—ie

anda=c=b=m,d=m+1.
For n=4m+2 wehave a+c=2m+1,b+d=2m-+1,

ella—c)+i(b—d)]=(1—ie.

Hence a=m+1,c=m,b=m,d=m+1.
For n=4m+3 weobtain a+c=2m+1,b+d=2m+2,

glla—c)+i(b—d)|=¢

anda=m+1, c=m, b=d=m+ 1. Theorem is proved.
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