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SCHUR’S THEOREM FOR MODIFIED

DISCRETE FOURIER TRANSFORM

N. O. KOTELINA AND A. B. PEVNYI ∗

Abstract. We find the eigenvalues of modified Fourier matrix S with entries Sk j = 1√
n ωk(1− j) ,

0 � k, j � n− 1 , where ω = exp 2πi
n . For this matrix S4 = ωI . The matrix has an interesting

property: for n = 4m eigenvalues have equal multiplicities. We prove a theorem giving the
multiplicities of eigenvalues for all n . The theorem is similar to Schur’s theorem (1921) for
standard Fourier matrix. Our proofs are self-contained. In the proof we calculate modified
Gauss sums by means of the classical analysis.

1. Introduction

In the paper [2] Schur considered the matrix F =
(
Fk j

)
with Fk j = 1√

n ωk j ,

0 � k, j � n−1, where ω = exp 2π i
n .

For this matrix F4 = I , therefore the eigenvalues of F are roots of fourth degree
of unit. Denote by #(λ) the multiplicity of eigenvalue λ . Schur’s theorem says that

#(1) =
[n+4

4

]
, #(−1) =

[n+2
4

]
, #(i) =

[n+1
4

]
, #(−i) =

[n−1
4

]
.

For n = 4m we have #(1) = m+1, #(−1) = m, #(i) = m, #(−i) = m−1. We see that
these multiplicities are not equal.

The problem of the standard Fourier transform from the spectral point of view
is that for n = 4m dimensions of eigenspaces are different, not equal. It leads to the
lack of analogy with integral Fourier transform for which all eigenspaces are similiar.
Because of that we modify matrix F and new modified matrix will have eigenvalues
with equal multiplicities for n = 4m .

2. New version of DFT

The modified discrete Fourier transforms were suggested by S. M. Sitnik in series
of works (see for example [3]). We study one new transform and prove that multiplici-
ties of its eigenvalues are equal for n = 4m .
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Consider a matrix S with elements

S(k, j) = 1√
n ωk(1− j), 0 � k, j � n−1, (1)

where ω = exp(2π i/n). For n = 4 matrix S has the form:

S =
1
2

⎡
⎢⎢⎣

1 1 1 1
ω 1 ω−1 ω−2

ω2 1 ω−2 ω−4

ω3 1 ω−3 ω−6

⎤
⎥⎥⎦ .

In the zero row we see 1, in the first row – all roots of unity of the fourth degree. We
take it from unit circle clockwise.

The matrices F and S are unitary. To study spectral properties of F we introduce
matrix P = S2 . Let

√
ω denote exp(π i/n) .

THEOREM 1. Matrix P = S2 has properties:

1. P2 = ωI for all n .

2. for even n trace tr(P) is equal to zero.

3. for odd n, n = 2ν + 1 , we have tr(P) = −√
ω and eigenvalues ±√

ω have
multiplicities #(

√
ω) = ν , #(−√

ω) = ν +1 .

Proof. Calculate the entries of P :

P(k, l) =
1
n

n−1

∑
j=0

ωk(1− j)ω j(1−l) =
ωk

n

n−1

∑
j=0

ω j(1−k−l).

Last sum is the sum of geometric progression with q = ω1−k−l . If q �= 1 then sum=0
but if q = 1 then sum=n . Introduce periodic delta-function δn( j) = 1 for j ≡ 0 (mod
n ) and δn( j) = 0 otherwise. Then we have

P(k, l) = ωkδn(1− k− l) = ωkδn(k+ l−1), 0 � k, l � n−1.

For n = 6 matrix P has the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
ω 0 0 0 0 0
0 0 0 0 0 ω2

0 0 0 0 ω3 0
0 0 0 ω4 0 0
0 0 ω5 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For even n the entries of main diagonal are equal to zero and tr(P) = 0. For odd n

tr(P) = ω
n+1
2 = exp

(2π i
n

n+1
2

)
= exp(π i) exp

π i
n

= −√
ω .
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Now show that matrix Q = P2 is equal to ωI . We have

Q(k, j) =
n−1

∑
l=0

ωkδn(k+ l−1)ω lδn(l + j−1).

For k �= j all summands are zero. For k = j only one summand �= 0, for example

Q(0,0) =
n−1

∑
l=0

ω lδn( j−1) = ω ,

Q(2,2) =
n−1

∑
l=0

ω2δn(l +1)ω l = ωn+1 = ω .

As a result Q = ωI , i. e. P2 = ωI .
Eigenvalues of P are

√
ω and −√

ω with multiplicities k1 and k2 . Sum of all
eigenvalues is equal to trace of P . For even n k1

√
ω − k2

√
ω = tr(P) = 0, hence

k1 = k2 = n/2.
For n = 2ν +1 k1

√
ω − k2

√
ω = −√

ω , hence k1 = ν , k2 = ν +1. Theorem is
proved.

3. Eigenvalues of matrix S

By Theorem 1 equality S4 = ωI holds. Therefore eigenvalues of S are ε , iε , −ε ,
−iε , where ε = 4

√
ω = exp π i

2n . Our aim is to determine the multiplicities a , b , c , d of
these eigenvalues, a+b+ c+d = n . Here, the trace tr(S) plays an important role.

THEOREM 2. Trace of S and multiplicities of eigenvalues are given in the Table 1.

n tr(S) #(ε) #(iε) #(−ε) #(−iε)
4m 0 m m m m

4m+1 −iε m m m m+1
4m+2 (1− i)ε m+1 m m m+1
4m+3 ε m+1 m+1 m m+1

Table 1: Trace and multiplicities of eigenvalues of matrix S

Proof. The multiplicities a , b , c , d of eigenvalues satisfy the equation

aε +b · iε + c(−iε)+d(−iε) = tr(S).

In addition matrix P = S2 has eigenvalues
√

ω and −√
ω with multiplicities k1

and k2 determined in Theorem 1. We have ε2 =(−ε)2 =
√

ω , (iε)2 =(−iε)2 =−√
ω ,

hence k1 � a+ c , k2 � b+d . Adding these inequalities we obtain

n = k1 + k2 � a+b+ c+d = n.
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Whence a+ c = k1 , b+d = k2 . By formula (1)

tr(S)
1√
n

n−1

∑
k=0

ωk(1−k) =
1√
n
R(n),

where

R(n) =
n−1

∑
k=0

ωk(k−1). (2)

The sum (2) is similar to the classical Gauss sum in which k2 stands instead k(k−1) .
In next lemma we calculate the sum R(n) with the help of Dirichlet method.

LEMMA 1. For all n � 1 the equalities hold

R(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n = 4m,

ε i
√

n, n = 4m+1,

ε (1+ i)
√

n, n = 4m+2,

ε
√

n, n = 4m+3,

where ε = exp π i
2n , ε = exp

(
− π i

2n

)
.

Proof. We have k(k−1) = (k− 1
2 )2− 1

4 . Hence, R(n) = εQ(n) , where

Q(n) =
n−1

∑
k=0

exp
(2π i

n

(
k− 1

2

)2
)
.

Following Dirichlet, let’s introduce function

g(x) = exp
(2π i

n

(
x− 1

2

)2
)
, x ∈

[1
2
,n+

1
2

]
.

Notice that g( 1
2) = g( 1

2 +n) and continue g(x) to R with period n and decompose into
Fourier series

g(x) = ∑
k∈Z

ck exp
(2π ikx

n

)
, ck =

1
n

1
2 +n∫
1
2

g(t)exp
(−2π ikt

n

)
dt.

In the definition of ck under the integral sign there is an n -periodic function, so we can
take integral over any interval with the length equal to n . Function g(x) is continuous
and piecewise-differentiable, therefore Fourier series converges to g(x) at any point.
Hence

Q(n) =
n−1

∑
m=0

g(m) = ∑
k∈Z

ck

n−1

∑
m=0

exp
(2π ikm

n

)
.
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Last sum is non-zero only at k divisible by n , therefore

Q(n) = n ∑
k∈Z

ckn = ∑
k∈Z

1
2 +n∫
1
2

g(t)exp(−2π ikt)dt =

= ∑
k∈Z

1
2 +n∫
1
2

exp
(
−2π ikt + 2π i

n (t− 1
2 )2

)
dt.

Further, substitute τ = t − 1
2 , τ ∈ [0,n] :

Q(n) = ∑
k∈Z

n∫
0

exp
(2π i

n
τ2 −2π ikτ −π ik

)
dτ.

We take out the multiplier exp(−π ik) = (−1)k and make a substitution τ = nt :

Q(n) = n ∑
k∈Z

(−1)k

1∫
0

exp
(
2π int2−2π inkt +2π in

k2

4
− π ink2

2

)
dt =

= n ∑
k∈Z

(−1)k exp
(
−π ink2

2

) 1∫
0

exp
(
2π in

(
t− k

2

)2
)

dt.

And now substitute τ = t− k
2 :

Q(n) = n ∑
k∈Z

(−1)k exp
(−π ink2

2

) − k
2 +1∫

− k
2

exp(2π inτ2)dτ.

Divide the sum into 2 parts, one part consisting of summands with even numbers
2k and another with odd:

Q(n) = n ∑
k∈Z

(−1)2k exp(−2π ink2)
−k+1∫
−k

exp(2π inτ2)dτ+

+n ∑
k∈Z

(−1)2k+1 exp
(
−π in

2
(4k2 +4k+1)

) −k+ 1
2∫

−k− 1
2

exp(2π inτ2)dτ.
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The multiplier before the first integral is equal to 1, and before the second −i−n . Hence,

Q(n) = n
(
1− i−n) ∞∫

−∞

exp
(
2π inτ2)dτ.

Now apply the formula for Fresnel integral:

∞∫
−∞

exp(iat2)dt =
√

π
2a

(1+ i), a > 0.

With a = 2πn we finally get

Q(n) =
√

n
(1− i−n)(1+ i)

2
,

whence the statement of the Lemma follows.
We now proceed to prove the theorem. We have

tr(S) = R(n) = ε
1− i

2

[
1− in

]
.

See values of tr(S) in the Table 1.
For n = 4m we have a+ c = k1 = 2m , b+d = k2 = 2m ,

ε[(a− c)+ i(b−d)] = tr(S) = 0.

As a result a = b = c = d = m .
For n = 4m+1 we obtain a+ c = 2m , b+d = 2m+1,

ε[(a− c)+ i(b−d)] = −iε

and a = c = b = m , d = m+1.
For n = 4m+2 we have a+ c = 2m+1, b+d = 2m+1,

ε[(a− c)+ i(b−d)] = (1− i)ε.

Hence a = m+1, c = m , b = m , d = m+1.
For n = 4m+3 we obtain a+ c = 2m+1, b+d = 2m+2,

ε[(a− c)+ i(b−d)] = ε

and a = m+1, c = m , b = d = m+1. Theorem is proved.
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