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ON APPROXIMATION PROPERTIES OF GENERALIZED

q–BERNSTEIN–KANTOROVICH OPERATORS

LAKSHMI NARAYAN MISHRA ∗ AND DHAWAL J. BHATT

Abstract. In this paper, we develop a generalization of q -Bernstein-Kantorovich type operators.
We first study some fundamental properties of these operators and then investigate approximation
properties of a sequence of these operators using Korovkin theorem. Finally, we estimate rate of
approximation by modulus of continuity.

1. Introduction

For a real valued bounded function f (x) , which is defined on the closed inter-
val [0,1] , the expression

Bn( f ;x) =
n

∑
k=0

(
n
k

)
f

(
k
n

)
xk(1− x)n−k (1)

is called the Bernstein polynomial of order n of the function f (x) , which is discussed
in [1]. If a function f (x) is continuous on [0,1] then Bn( f ;x) converges to f (x) uni-
formly on [0,1] . To approximate integrable functions, Kantorovich introduced the fol-
lowing operators, called Bernstein-Kantorovich operators, defined as follows :
For f ∈C([0,1]), Kn : C([0,1]) →C([0,1]) ,

Kn( f ;x) = (n+1)
n

∑
k=0

pn,k(x)

k+1
n+1∫
k

n+1

f (t) dt (2)

where pn,k(x) =
(

n
k

)
xk(1− x)n−k . (x ∈ [0,1])

Some more generalizations of Bernstein polynomials (1) were discussed in [3, 7,
8, 10, 12].

In this paper, we use some q -analysis methods which are currently used in ap-
proximation theory. The important terms of q -analysis which are used in this paper are
given below.
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DEFINITION 1. Given value of q > 0 , we define the q− integer [n]q by

[n]q =

{1−qn

1−q
n

; if q �= 1
; if q = 1

,

for n ∈ N.

In similar way, one can define q− real for any real number λ . In this case we denote it
by [λ ]q .

DEFINITION 2. For q > 0 , we define the q− factorial [n]q! by

[n]q! =
{

[n]q[n−1]q · · · [1]q
1

; if n = 1,2, ...
; if n = 0

,

for n ∈ N.

DEFINITION 3. For q > 0 , we define the q−binomial coefficients

[
n
k

]
q

by

[
n
k

]
q
=

[n]q!
[k]q![n− k]q!

, 0 � k � n ,

for n ∈ N.

The q−binomial coefficient satisfies the following recurrence equations.[
n
k

]
q
=

[
n−1
k−1

]
q
+qk

[
n−1

k

]
q

(3)

and [
n
k

]
q
= qn−k

[
n−1
k−1

]
q
+

[
n−1

k

]
q
. (4)

DEFINITION 4. The q−analogue of (1+ x)n
q is the polynomial

(1+ x)n
q =

{
(1+ x)(1+qx) · · · (1+qn−1x)

1
; if n = 1,2, ...
; if n = 0

.

DEFINITION 5. The q−derivative, Dq f of a function f , is given by

(Dq f )(x) = Dq{ f (x)} =

⎧⎨
⎩

f (x)− f (qx)
(1−q)x

f ′(0)

; if x �= 0
; if x = 0

.
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DEFINITION 6. The definite q-integral of the function f is defined by

a∫
0

f (x)dqx = (1−q)a
∞

∑
n=0

f (aqn)qn ; a ∈ R. (5)

The series on the right-hand side in (5) is guaranteed to be convergent if the func-
tion f has the property | f (x)| < Cxα in a right neighborhood of x = 0 for some
C > 0, α > −1.

The q− integral of the function f in a generic interval [a,b] is defined in the fol-
lowing manner :

b∫
a

f (x)dqx =
b∫

0

f (x)dqx−
a∫

0

f (x)dqx .

The following theorem is the fundamental theorem of quantum calculus.

THEOREM 1. If F is any anti q−derivative of the function f , namely, DqF = f ,
continuous at x = 0, then

a∫
0

f (x)dqx = F(a)−F(0) .

2. Construction of Operators

First, Lupas [13] defined a q -analogue of Bernstein operators and studied some
approximation properties of them. Then, another generalizations of q -Bernstein oper-
ators are introduced and studied in [4, 5, 19, 22, 20, 21]. Dalmanoglu [4] gave the q -
Bernstein-Kantorovich operators as follows :
For f ∈C([0,1]), Kn,q : C([0,1]) →C([0,1]) ,

Kn,q( f ;x) = [n+1]q
n

∑
k=0

q−k pn,k,q(x)

[k+1]q
[n+1]q∫
[k]q

[n+1]q

f (t) dqt (6)

where pn,k,q(x) =
[
n
k

]
q

xk
n−k−1

∏
s=0

(1−qsx) . (x ∈ [0,1])

For a real function of real variable f ∈C

([
0,

n+a
n+b

])
Izgi [8] introduced the follow-

ing operators

Fn,a,b( f ;x) =
(n+1)(n+b)

(n+a)

n

∑
k=0

pn,k,a,b(x)

(k+1)(n+a)
(n+1)(n+b)∫
k(n+a)

(n+1)(n+b)

f (t) dt (7)
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where

pn,k,a,b(x) =
(

n+b
n+a

)n (
n
k

)
xk

(
n+a
n+b

− x

)n−k (
0 � x � n+a

n+b
,0 � a � b

)
.

To approximate the function f (x) which satisfies the condition | f (x)| < Kxα for some
K > 0, α > −1, in a right neighborhood of x = 0, we introduce version of (7) in
q-analysis and discuss some of its properties.

Let a,b ∈ N∪{0}, n ∈ N . For f ∈C

([
0,

[n+a]q
[n+b]q

])
, we define the following linear

operator.

F∗
n,a,b : C

([
0,

[n+a]q
[n+b]q

])
→C

([
0,

[n+a]q
[n+b]q

])

F∗
n,a,b( f ;x) =

[n+1]q[n+b]q
[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)

[k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

f (t) dqt (8)

where

pn,k,a,b(x) =
(

[n+b]q
[n+a]q

)n [
n
k

]
q

xk
n−k−1

∏
s=0

(
[n+a]q
[n+b]q

−qsx

)(
0 � x � [n+a]q

[n+b]q

)
.

3. Auxiliary Results

We first obtain the moments of the operators given in (8). The following lemma
gives the central moment estimation of operators given in (8).

LEMMA 1. For x ∈
[
0,

[n+a]q
[n+b]q

]
(a,b ∈ N∪{0},a � b,n ∈ N) and the operators

given in (8), the following equalities hold true :

1. F∗
n,a,b(1;x) = 1.

2. F∗
n,a,b(t;x) =

[n]q
[n+1]q

· x+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

.

3. F∗
n,a,b(t

2;x) =
q[n]q[n−1]q

[n+1]2q
· x2 +

2+3q+q2

1+q+q2 · [n]q[n+a]2q
[n+1]3q[n+b]2q

· x

+
1

1+q+q2

(
[n+a]q

[n+1]q[n+b]q

)2

.
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Proof.

1. From (8), we have,

F∗
n,a,b(1;x) =

[n+1]q[n+b]q
[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)

[k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

dqt

F∗
n,a,b(1;x) =

[n+1]q[n+b]q
[n+a]q

n

∑
k=0

q−k pn,k,a,b(x) qk
(

[n+a]q
[n+1]q[n+b]q

)

=
n

∑
k=0

pn,k,a,b(x)

F∗
n,a,b(1;x) = 1 .

2. Using (8), we have,

F∗
n,a,b(t;x) =

[n+1]q[n+b]q
[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)

[k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

t dqt

=
[n+1]q[n+b]q

[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)×[
[n+a]2q

[n+1]2q[n+b]2q
· qk

1+q
· ([k]q(1+q)+1)

]

=
[n+a]q

[n+1]q[n+b]q
· 1
1+q

n

∑
k=0

pn,k,a,b(x) ([k]q(1+q)+1)

=
[n+a]q

[n+1]q[n+b]q

n

∑
k=0

[k]q pn,k,a,b(x)+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

=
[n+a]q

[n+1]q[n+b]q

(
[n+b]q
[n+a]q

)n

[n]qx
(

[n+a]q
[n+b]q

)n−1

+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

F∗
n,a,b(t;x) =

[n]qx
[n+1]q

+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

.
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3. Similarly, we also have,

F∗
n,a,b(t

2;x) =
[n+1]q[n+b]q

[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)

[k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

t2 dqt

=
[n+1]q[n+b]q

[n+a]q

n

∑
k=0

q−k pn,k,a,b(x)

[
qk

1+q+q2

(
[n+a]q

[n+1]q[n+b]q

)3

×

×((1+q+q2)(q[k]q[k−1]q +[k]q)+ (1+2q)[k]q +1)
]

=
(

[n+a]q
[n+1]q[n+b]q

)2 n

∑
k=0

pn,k,a,b(x)×

×
(

q[k]q[k−1]q +[k]q +
1+2q

1+q+q2 · [k]q +
1

1+q+q2

)

=
(

[n+a]q
[n+1]q[n+b]q

)2
[
q

n

∑
k=0

pn,k,a,b(x)[k]q[k−1]q

+
2+3q+q2

1+q+q2 · [n]qx
[n+1]q

+
1

1+q+q2

]

=
(

[n+a]q
[n+1]q[n+b]q

)2
[
q[n]q[n−1]qx2

(
[n+b]q
[n+a]q

)2

+
2+3q+q2

1+q+q2 · [n]qx
[n+1]q

+
1

1+q+q2

]

F∗
n,a,b(t

2;x) =
q[n]q[n−1]q

[n+1]2q
· x2 +

2+3q+q2

1+q+q2 · [n]q[n+a]2q
[n+1]3q[n+b]2q

· x

+
1

1+q+q2 ·
(

[n+a]q
[n+1]q[n+b]q

)2

.

The following lemma gives the moment estimation of operators given in (8) about x .

LEMMA 2. For x ∈
[
0,

[n+a]q
[n+b]q

]
(a,b ∈ N∪{0},a � b,n ∈ N) and the operators

(8), the following equalities give pth (p = 0,1,2) moments for the given operators
about x .

1. F∗
n,a,b(1;x) = 1.

2. F∗
n,a,b (t− x;x) =

[n+a]q
[n+1]q[n+b]q

· 1
1+q

− qnx
[n+1]q

.

3. F∗
n,a,b

(
(t− x)2;x

)
=

q[n]q[n−1]q
[n+1]2q

· x2 +
2+3q+q2

1+q+q2 · [n]q[n+a]2q
[n+1]3q[n+b]2q

· x
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+
1

1+q+q2

(
[n+a]q

[n+1]q[n+b]q

)2

−2x

(
[n]q

[n+1]q
· x+

[n+a]q
[n+1]q[n+b]q

· 1
1+q

)
+ x2 .

Proof.

1. From lemma 1, F∗
n,a,b(1;x) = 1.

2. Using lemma 1 and linearity of F∗
n,a,b , we have,

F∗
n,a,b (t− x;x) =

[n]q
[n+1]q

· x+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

− x.

∴ F∗
n,a,b (t− x;x) =

[n]q− [n+1]q
[n+1]q

· x+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

.

∴ F∗
n,a,b (t− x;x) =

[n+a]q
[n+1]q[n+b]q

· 1
1+q

− qnx
[n+1]q

.

3. Proceeding in similar manner as above, we have,

F∗
n,a,b((t− x)2;x) =

q[n]q[n−1]q
[n+1]2q

· x2 +
2+3q+q2

1+q+q2 · [n]q[n+a]2q
[n+1]3q[n+b]2q

· x

+
1

1+q+q2

(
[n+a]q

[n+1]q[n+b]q

)2

−2x

(
[n]q

[n+1]q
· x+

[n+a]q
[n+1]q[n+b]q

· 1
1+q

)
+ x2.

We first note that the operator (8) are linear and positive operators. In case a = b ,
the operators (8) reduce to q -Bernstein-Kantorovich operators (6). Further, in case
q = 1, the operators (6) reduce to well-known Bernstein-Kantorovich operators (2).

4. Main Results

The following theorem shows the convergence of the sequence of operators (8) for

a function f ∈C

([
0,

[n+a]q
[n+b]q

])
. Here C

([
0,

[n+a]q
[n+b]q

])
is endowed with the norm

|| f || = sup
x∈

[
0,

[n+a]q
[n+b]q

]| f (x)| .

THEOREM 2. If a sequence of real numbers {qn}∞
n=1 satisfies the conditions,

lim
n→∞

qn = 1 and lim
n→∞

1
[n]q

= 0 where 0 < qn < 1, then

||F∗
n,a,b( f ; ·)− f (·)|| → 0 as n → ∞
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for every f ∈C

([
0,

[n+a]q
[n+b]q

])
; a,b ∈ N∪{0},a � b .

Proof. From Lemma 1, we have,

F∗
n,a,b(1;x) = 1,

F∗
n,a,b(t;x) =

[n]q
[n+1]q

· x+
[n+a]q

[n+1]q[n+b]q
· 1
1+q

and

F∗
n,a,b(t

2;x) =
q[n]q[n−1]q

[n+1]2q
· x2 +

2+3q+q2

1+q+q2 · [n]q[n+a]2q
[n+1]3q[n+b]2q

· x

+
1

1+q+q2

(
[n+a]q

[n+1]q[n+b]q

)2

.

Now, on replacing q by a sequence of real numbers {qn} such that lim
n→∞

qn = 1 and

lim
n→∞

1
[n]q

= 0 where 0 < qn < 1, it follows that F∗
n,a,b(t

m;x) = xm converges uniformly

to xm (m = 0,1,2) .
Hence, the result follows by Korovkin’s theorem [11].
Above theorem states that we can approximate any function which is continuous

on the interval

[
0,

[n+a]q
[n+b]q

]
; a,b ∈ N∪{0},n∈ N .

For a function f ∈C([a,b]) , the modulus of continuity is defined as

ω f (δ ) ≡ ω( f ,δ ) = sup
x−δ�t�x+δ

a�x�b

| f (t)− f (x)| ; where δ > 0.

Now, we estimate the rate of approximation of the sequence of operators (8). The
following theorem gives the rate of approximation of the sequence of operators (8) in

terms of modulus of continuity of a function f ∈C

([
0,

[n+a]q
[n+b]q

])
.

THEOREM 3. If a sequence {qn}∞
n=1 satisfies the conditions lim

n→∞
qn = 1 and

lim
n→∞

1
[n]q

= 0, (0 < qn < 1),

then
||F∗

n,a,b( f ; ·)− f (·)|| � 2 ω( f ,
√

δn)

for every f ∈ C

([
0,

[n+a]q
[n+b]q

])
; a,b ∈ N∪{0} , a � b and δn = F∗

n,a,b((t − x)2;x)

where q = qn .
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Proof. Let f ∈C

([
0,

[n+a]q
[n+b]q

])
.

From the linearity and monotonicity of F∗
n,a,b( f ;x) , we can write,

|F∗
n,a,b( f ;x)− f (x)|

� [n+1]q[n+b]q
[n+a]q

n

∑
k=0

q−k
(

[n+b]q
[n+a]q

)n [
n
k

]
q

xk×

×
n−k−1

∏
s=0

(
[n+a]q
[n+b]q

−qsx

)
·

[k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

| f (t)− f (x)| dqt. (9)

From the definition of modulus of continuity, we have,

| f (t)− f (x)| � ω( f , |t − x|).

Let δ > 0 and choose λ =
|t− x|

δ
. Then λ ∈ R

+ .

If |t− x| < δ , it can be seen that

| f (t)− f (x)| �
(

1+
(t − x)2

δ 2

)
ω( f ,δ ). (10)

If |t− x| � δ then from the property of modulus of continuity, we get

ω( f ,λ δ ) � (1+ λ ) ω( f ,δ ) � (1+ λ 2) ω( f ,δ ). (11)

Therefore, by (10) and (11), we have

| f (t)− f (x)| �
(

1+
(t − x)2

δ 2

)
ω( f ,δ ). (12)

Consequently by (9) and (12), we get

|F∗
n,a,b( f ;x)− f (x)| � [n+1]q[n+b]q

[n+a]q

n

∑
k=0

q−k
(

[n+b]q
[n+a]q

)n [
n
k

]
q

xk×

×
n−k−1

∏
s=0

(
[n+a]q
[n+b]q

−qsx

) [k+1]q[n+a]q
[n+1]q[n+b]q∫
[k]q[n+a]q

[n+1]q[n+b]q

(
1+

(t− x)2

δ 2

)
ω( f ,δ ) dqt

=
(

F∗
n,a,b(1;x)+

1
δ 2 F∗

n,a,b((t − x)2;x)
)

ω( f ,δ ).

Now, on replacing q by a sequence of real numbers {qn} such that lim
n→∞

qn = 1 and
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lim
n→∞

1
[n]q

= 0 where 0 < qn < 1, from the lemma (2), it follows that

lim
n→∞

F∗
n,a,b((t− x)2;x) = 0.

Letting δn = F∗
n,a,b((t− x)2;x) (with q = qn ) and taking δ =

√
δn , we get

|F∗
n,a,b( f ;x)− f (x)| � 2 ω( f ,

√
δn).

(
x ∈

[
0,

[n+a]q
[n+b]q

])

which completes the proof.
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