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2D–SHEFFER–MITTAG–LEFFLER

POLYNOMIALS: PROPERTIES AND EXAMPLES

SUBUHI KHAN, MAHVISH ALI ∗ AND SHAKEEL AHMAD NAIKOO

Abstract. In this work, the 2D-Sheffer polynomials and the Mittag-Leffler polynomials are com-
bined to introduce the family of the 2D-Sheffer-Mittag-Leffler polynomials. The generating
function, quasi-monomial properties and series definition of these polynomials are established.
Examples of some members belonging to this family are considered. The graphs of some hybrid
special polynomials are also drawn for suitable values of the indices.

1. Introduction and preliminaries

In 1939, I. M. Sheffer [13] studied in detail the polynomials sets of type zero
sn(x) ; n ∈ N0 . Since then, these polynomial sets are called the Sheffer polynomials.
These polynomials have been extensively studied not only due to the fact that they
arise in various branches of mathematics but also because of their importance in ap-
plied sciences and engineering. The Sheffer polynomials are defined by the following
generating function:

A(t)exp(xH(t)) =
∞

∑
n=0

sn(x)
tn

n!
,

where A(t) and H(t) are power series such that

A(t) =
∞

∑
n=0

an
tn

n!
, a0 �= 0 (1)

and

H(t) =
∞

∑
n=1

hn
tn

n!
, h1 �= 0. (2)

REMARK 1. It should be noted that for H(t) = t , the Sheffer polynomials become
the Appell polynomials [1] defined by generating function:

A(t)exp(xt) =
∞

∑
n=0

An(x)
tn

n!
.
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The special polynomials of two variables provided new means of analysis for the
solution of large classes of partial differential equations often encountered in physical
problems. Most of the special functions of mathematical physics and their general-
izations have been suggested by physical problems. The importance of multi-variable
Hermite polynomials has been recognized in [6] and these polynomials have been ex-
ploited to deal with quantum mechanical and optical beam transport problems. The
2-variable Laguerre polynomials are the natural solutions of heat diffusion equation of
Fokker-Plank type and are used to study the beam life-time due to quantum fluctuation
in storage rings [18].

We consider the family of 2D-Sheffer polynomials fn(x,y) defined by the follow-
ing generating function:

A(t)φ(y,H(t))exp(xH(t)) =
∞

∑
n=0

fn(x,y)
tn

n!
, (3)

where A(t) and H(t) are defined by equations (1) and (2), respectively and φ is a
function of y and H(t) such that φ(0,H(t)) = 1.

REMARK 2. For φ(y,H(t)) = exp(y(H(t))m) , equation (3) reduces to the follow-
ing generating function of the Gould-Hopper-Sheffer polynomials H(m)sn(x,y) [8]:

A(t)exp(xH(t)+ y(H(t))m) =
∞

∑
n=0

H(m)sn(x,y)
tn

n!
. (4)

REMARK 3. Taking φ(y,H(t)) = 1
1−y(H(t))r in equation (3), it yields the follow-

ing generating function of the 2-variable truncated exponential-Sheffer polynomials

e(r)sn(x,y) [11]:

A(t)
1

(1− y(H(t))r)
exp(xH(t)) =

∞

∑
n=0

e(r)sn(x,y)
tn

n!
. (5)

In view of equations (3)-(5), it follows that the Gould-Hopper-Sheffer polyno-
mials H(m)sn(x,y) and 2-variable truncated exponential-Sheffer polynomials e(r)sn(x,y)
belong to the 2D-Sheffer family.

The combination of monomiality principle and operational methods provide a
fairly unique tool to treat various polynomials from unified point of view, see for ex-
ample [3]. According to the monomiality principle [5, 4, 17] a polynomial set rn(x)
(n ∈ N , x ∈ C), is quasi-monomial, if there exist two operators M̂ and P̂ , called
multiplicative and derivative operators respectively, which when acting on the polyno-
mials rn(x) yield:

M̂ {rn(x)} = rn+1(x)

and
P̂{rn(x)} = n rn−1(x),
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respectively.

The operators M̂ and P̂ satisfy the commutation relation

[P̂,M̂ ] = 1̂

and thus display the Weyl group structure.

If M̂ and P̂ have differential realizations, then it can be easily shown that the
differential equation satisfied by rn(x) is

M̂P̂{rn(x)} = n rn(x). (6)

Assuming here and in the sequel r0(x) = 1, then rn(x) can be explicitly con-
structed as:

rn(x) = M̂ n{1} (7)

and consequently the generating function of rn(x) can be cast in the form

G(x,t) = exp(tM̂ ){1} =
∞

∑
n=0

rn(x)
tn

n!
. (8)

The Gould-Hopper-Sheffer polynomials H(m)sn(x,y) are quasi-monomial with re-
spect to the following multiplicative and derivative operators:

M̂H(m)s =
(
x+my

∂m−1

∂xm−1

)
H ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

and
P̂H(m)s = H−1(Dx),

respectively, where Dx := ∂
∂x .

The 2-variable truncated exponential-Sheffer polynomials e(r)sn(x,y) are quasi-
monomial with respect to the following multiplicative and derivative operators:

M̂e(r)s =
(
x+ ryDyyD

r−1
x

)
H ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

and
P̂e(r)s = H−1(Dx),

respectively.

Consequently, it is observed that the 2D-Sheffer polynomials fn(x,y) are quasi-
monomial with respect to the following multiplicative and derivative operators:

M̂ f = xH ′(H−1(Dx))+
φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))
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and

P̂ f = H−1(Dx),

respectively.

In [5], Dattoli introduced and studied Hermite-Bessel and Laguerre-Bessel func-
tions providing the usefulness of the point of view based on the concept of quasi mono-
miality. Several other hybrid special polynomials related to the Laguerre and Hermite
polynomials are studied. The hybrid special polynomial families related to the Appell
and Sheffer polynomial sequences are first introduced and studied by Khan and her
co-authors, see for example [9, 10]. These hybrid special polynomials associated with
Appell and Sheffer sequences are studied in several contexts. Many works have been
devoted to the study of hybrid and mixed families of special functions. Recently, a
novel approach has been used to study some new types of mixed special polynomial
families related to the Appell and Sheffer sequences, see for example [14, 15, 16, 19].

The Mittag-Leffler polynomials Mn(x) [2, 12] are defined by the following gener-
ating function: (

1+ t
1− t

)x

=
∞

∑
n=0

Mn(x)
tn

n!

or

exp

(
x ln

(
1+ t
1− t

))
=

∞

∑
n=0

Mn(x)
tn

n!
. (9)

These polynomials satisfy the following orthogonality property:

∞∫
−∞

Mn(ix)Mm(−ix)
dx

xsinhπx
=

2
n

δm,n, m,n ∈ N.

The first few Mittag-Leffler polynomials are

M0(x) = 1, M1(x) = 2x, M2(x) = 4x2,

M3(x) = 8x3 +4x, (10a)

M4(x) = 16x4 +32x2. (10b)

In this paper, the 2D-Sheffer-Mittag-Leffler polynomials are introduced and their
properties are derived. In Section 2, the generating function, quasi-monomial properties
and series definition of these polynomials are established. In Section 3, examples of
some members belonging to this family are considered. The graphs of some hybrid
special polynomials are also drawn for suitable values of the indices.
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2. 2D-Sheffer-Mittag-Leffler polynomials

The 2D-Sheffer-Mittag-Leffler polynomials are introduced by means of generating
function by proving the following result:

THEOREM 1. For the 2D-Sheffer-Mittag-Leffler polynomials f Mn(x,y) , the fol-
lowing generating function holds true:

A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))

=
∞

∑
n=0

f Mn(x,y)
tn

n!
. (11)

Proof. In order to derive the generating function for the 2D-Sheffer-Mittag-Leffler
polynomials, the 2D-Sheffer polynomials fn(x,y) are taken as base in generating func-
tion (9) of the Mittag-Leffler polynomials. Thus, replacing x by the multiplicative
operator M̂ f of the 2D-Sheffer polynomials fn(x,y) in the l.h.s. of equation (9) and
denoting the resultant 2D-Sheffer-Mittag-Leffler polynomials in the r.h.s. by f Mn(x,y) ,
it follows that

exp

(
M̂ f ln

(
1+ t
1− t

))
=

∞

∑
n=0

f Mn(x,y)
tn

n!
, (12)

which on using equation (8) with t replaced by ln
(

1+t
1−t

)
and in view of generating

function (3) in the resultant equation proves assertion (11).

REMARK 4. From equations (9) and (12), the following operational correspon-
dence between the 2D-Sheffer-Mittag-Leffler polynomials f Mn(x,y) and Mittag-Leffler
polynomials Mn(x) is obtained:

Mn(M̂ f ) = f Mn(x,y). (13)

REMARK 5. Since for y = 0, the 2D-Sheffer polynomials fn(x,y) reduce to the
Sheffer polynomials sn(x) . Therefore, taking y = 0 in the left hand side of equation
(11) and denoting the resultant Sheffer-Mittag-Leffler polynomials sMn(x) in the right
hand side, the following consequence of Theorem 1 is deduced:

COROLLARY 1. For the Sheffer-Mittag-Leffler polynomials sMn(x) , the following
generating function holds true:

A

(
ln

(
1+ t
1− t

))
exp

(
xH

(
ln

(
1+ t
1− t

)))
=

∞

∑
n=0

sMn(x)
tn

n!
.

REMARK 6. Since for y = 0 and H(t) = t , the 2D-Sheffer polynomials fn(x,y)
reduce to the Appell polynomials An(x) . Therefore taking y = 0 and H

(
ln
( 1+t

1−t

))
=

ln
( 1+t

1−t

)
in the l.h.s. of equation (11) and denoting the resultant Appell-Mittag-Leffler

polynomials AMn(x) in the r.h.s., the following consequence of Theorem 1 is deduced:
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COROLLARY 2. For the Appell-Mittag-Leffler polynomials AMn(x) , the following
generating function holds true:

A

(
ln

(
1+ t
1− t

))(
1+ t
1− t

)x

=
∞

∑
n=0

AMn(x)
tn

n!
.

To give an application of the operational correspondence between the 2D-Sheffer-
Mittag-Leffler polynomials f Mn(x,y) and Mittag-Leffler polynomials Mn(x) , the fol-
lowing result is taken:

Mn(x) =
n

∑
k=0

(
n
k

)
(n−1)n−k2

k(x)k, (14)

where (x)k are the lower factorial polynomials defined by

(x)k =
n

∑
l=0

S(n, l)xl ,

in terms of the Stirling numbers of the first kind S(n, l) .

The lower factorial polynomials (x)n are also given explicitly as:

(x)n = x(x−1)(x−2) · · ·(x−n+1).

Consequently, definition (14) takes the form

Mn(x) =
n

∑
k=0

n

∑
l=0

(
n
k

)
(n−1)n−k2

kS(n, l)xl. (15)

Now, replacing x by the multiplicative operator M̂ f of the 2D-Sheffer polyno-
mials fn(x,y) in equation (15) and then using equations (13) and (7) in l.h.s. and
r.h.s. respectively of the resultant equation, the following expansion for the 2D-Sheffer-
Mittag-Leffler polynomials in terms of the Mittag-Leffler polynomials is obtained:

f Mn(x,y) =
n

∑
k=0

n

∑
l=0

(
n
k

)
(n−1)n−k2

kS(n, l)Ml(x).

Next, the multiplicative and derivative operators associated with the 2D-Sheffer-
Mittag-Leffler polynomials are obtained:

THEOREM 2. For the 2D-Sheffer-Mittag-Leffler polynomials f Mn(x,y) , the fol-
lowing multiplicative and derivative operators exist:

M̂ f M =
(

xH ′(H−1(Dx))+
φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)
×(2(cosh(H−1(Dx)+1)

)
(16)
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and

P̂ f M = tanh

(
H−1(Dx)

2

)
, (17)

respectively.

Proof. Consider the identity

Dx

{
A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))}

= H

(
ln

(
1+ t
1− t

)) {
A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))

×exp

(
xH

(
ln

(
1+ t
1− t

)))}
,

which on simplification gives

tanh

(
H−1(Dx)

2

) {
A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))}

= t

{
A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))}
. (18)

Differentiating equation (11) partially with respect to t , it follows that(
xH ′

(
ln

(
1+ t
1− t

))
+

φ ′ (y,H (ln( 1+t
1−t

)))
φ
(
y,H

(
ln
( 1+t

1−t

))) H ′
(

ln

(
1+ t
1− t

))
+

A′ (ln( 1+t
1−t

))
A
(
ln
( 1+t

1−t

))
)

×
(

2
1− t2

){
A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))}

=
∞

∑
n=0

f Mn+1(x,y)
tn

n!
.

In view of identity (18), the above equation takes the form(
xH ′(H−1(Dx))+

φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
2(cosh(H−1(Dx)+1)

)
)

×
{

A

(
ln

(
1+ t
1− t

))
φ
(

y,H

(
ln

(
1+ t
1− t

)))
exp

(
xH

(
ln

(
1+ t
1− t

)))}

=
∞

∑
n=0

f Mn+1(x,y)
tn

n!
.

Now making use of generating function (11) in the l.h.s. of the above equation and
then equating the coefficients of like powers of t in both sides of the resultant equation,
it follows that(

xH ′(H−1(Dx))+
φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
2(coshH−1(Dx)+1)

)
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{ f Mn(x,y)} = f Mn+1(x,y),

which proves assertion (16).
Further, making use of generating function (11) in both sides of identity (18) and

then equating the coefficients of like powers of t in both sides of the resultant equation,
the following equation is obtained:

tanh

(
H−1(Dx)

2

)
{ f Mn(x,y)} = n f Mn−1(x,y),

which proves assertion (17).
In view of Remarks 5 and 6, the following consequences of Theorem 2 are de-

duced:

COROLLARY 3. The Sheffer-Mittag-Leffler polynomials sMn(x) are quasi-monomial
with respect to the following multiplicative and derivative operators:

M̂sM =
(

xH ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
2(coshH−1(Dx)+1)

)
and

P̂sM = tanh

(
H−1(Dx)

2

)
,

respectively.

COROLLARY 4. The Appell-Mittag-Leffler polynomials AMn(x) are quasi-monomial
with respect to the following multiplicative and derivative operators:

M̂AM =
(

x+
A′(Dx)
A(Dx)

)
(2(coshDx +1))

and

P̂AM = tanh

(
Dx

2

)
,

respectively.

THEOREM 3. For the 2D-Sheffer-Mittag-Leffler polynomials f Mn(x,y) , the fol-
lowing differential equation is satisfied:((

xH ′(H−1(Dx))+
φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)
(

2(coshH−1(Dx)+1) tanh

(
H−1(Dx)

2

))
−n

)
f Mn(x,y) = 0. (19)
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Proof. Using expressions (16) and (17) of the multiplicative and derivative oper-
ators M̂ f M and P̂ f M in monomiality equation (6) for the 2D-Sheffer-Mittag-Leffler
polynomials f Mn(x,y) , assertion (19) follows.

In view of Remarks 5 and 6, the following corollaries are deduced as consequences
of Theorem 3:

COROLLARY 5. For the Sheffer-Mittag-Leffler polynomials sMn(x) , the following
differential equation is satisfied:((

xH ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
2(coshH−1(Dx)+1) tanh

(
H−1(Dx)

2

))
−n

)
sMn(x)

= 0.

COROLLARY 6. For the Appell-Mittag-Leffler polynomials AMn(x) , the following
differential equation is satisfied:((

x+
A′(Dx)
A(Dx)

)(
2(coshDx +1) tanh

(
Dx

2

))
−n

)
AMn(x) = 0.

In the next section, certain members of the 2D-Sheffer-Mitttag-Leffler family are
considered and corresponding results for these hybrid special polynomials are derived.

3. Examples

Taking φ(y,H(t)) of particular members belonging to the 2D-Sheffer family, the
corresponding members of the 2D-Sheffer family is obtained. The results for these
hybrid special polynomials related to the Mittag-Leffler polynomials are obtained by
considering the following examples:

EXAMPLE 1. Since, for φ(y,H(t)) = exp(y(H(t))m) , the 2D-Sheffer polynomials
fn(x,y) reduce to the Gould-Hopper-Sheffer polynomials H(m)sn(x,y) . Therefore, from
equation (11), it follows that the Gould-Hopper-Sheffer-Mittag-Leffler polynomials

H(m) sMn(x,y) are defined by the following generating function:

A

(
ln

(
1+ t
1− t

))
exp

(
xH

(
ln

(
1+ t
1− t

))
+ y

(
H

(
ln

(
1+ t
1− t

)))m)

=
∞

∑
n=0

H(m) sMn(x,y)
tn

n!
. (20)

In view of equation (13), the following operational correspondence between the
Gould-Hopper-Sheffer-Mittag-Lefflerpolynomials

H(m) sMn(x,y) and Mittag-Leffler poly-

nomials Mn(x) is obtained:

Mn(M̂H(m)s) =
H(m) sMn(x,y), (21)
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where M̂H(m)s is the multiplicative operator of the Gould-Hopper-Sheffer polynomials

H(m)sn(x,y) .
Taking φ(y,Dx) = exp(yDm

x ) in equations (16) and (17), the following expression
for the multiplicative and derivative operators for the Gould-Hopper-Sheffer-Mittag-
Leffler polynomials

H(m) sMn(x,y) are obtained:

M̂
H(m)s

M =
(

xH ′(H−1(Dx))+myDm−1
x H ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

)

× (2(cosh(H−1(Dx)+1)
))

(22)

and

P̂
H(m)s

M = tanh

(
H−1(Dx)

2

)
, (23)

respectively.
Consequently, the following differential equation for the Gould-Hopper-Sheffer-

Mittag-Leffler polynomials
H(m) sMn(x,y) is obtained:

((
xH ′(H−1(Dx))+myDm−1

x H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)

(
2(coshH−1(Dx)+1) tanh

(
H−1(Dx)

2

))
−n

)
H(m) sMn(x,y) = 0. (24)

EXAMPLE 2. Since, for φ(y,H(t))= 1
1−y(H(t))r , the 2D-Sheffer polynomials fn(x,y)

reduce to the 2-variable truncated exponential-Sheffer-Mittag-Leffler polynomials

e(r)
sMn(x,y) . Therefore, from equation (11), it follows that the 2-variable truncated

exponential-Sheffer-Mittag-Leffler polynomials
e(r)

sMn(x,y) are defined by the follow-
ing generating function:

A

(
ln

(
1+ t
1− t

))
1

1− y
(
H
(
ln
(

1+t
1−t

)))r exp

(
xH

(
ln

(
1+ t
1− t

)))
=

∞

∑
n=0

e(r)
sMn(x,y)

tn

n!
.

(25)
In view of equation (13), the following operational correspondence between the

2-variable truncated exponential-Sheffer-Mittag-Leffler polynomials
e(r)

sMn(x,y) and

Mittag-Leffler polynomials Mn(x) is obtained:

Mn(M̂e(r)s) =
e(r)

sMn(x,y), (26)

where M̂e(r)s is the multiplicative operator of the 2-variable truncated exponential-
Sheffer e(r)sn(x,y) .
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Taking φ(y,Dx) = 1
1−yDr

x
in equations (16) and (17), the following expressions

for the multiplicative and derivative operators for the 2-variable truncated exponential-
Sheffer-Mittag-Leffler polynomials

e(r)
sMn(x,y) are obtained:

M̂
e(r)s

M =
(

xH ′(H−1(Dx))+ ryDyyD
r−1
x H ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

)

× (2(cosh(H−1(Dx)+1)
))

(27)

and

P̂
e(r)s

M = tanh

(
H−1(Dx)

2

)
, (28)

respectively.
Also, from equation (19), the following differential equation for the 2-variable

truncated exponential-Sheffer-Mittag-Leffler polynomials
e(r)

sMn(x,y) is obtained:

((
xH ′(H−1(Dx))+ ryDyyD

r−1
x H ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

)

(
2(coshH−1(Dx)+1) tanh

(
H−1(Dx)

2

))
−n

)
e(r)

sMn(x,y) = 0. (29)

Since the functions A(t) and H(t) are the determining functions for the Shef-
fer polynomials sn(x) . Therefore, for suitable selections of A(t) and H(t) , several
classical polynomials can be obtained. In particular, for A(t) = e−t2 ; H(t) = 2t , the
Hermite polynomials Hn(x) are obtained. Also, for A(t) = 1

1−t ; H(t) = −t
1−t , the

Laguerre polynomials Ln(x) are obtained.
In the next example, the results for two specific members of the Gould-Hopper-

Sheffer-Mittag-Leffler family considered in Example 1 are derived.

EXAMPLE 3. Since for A(t) = e−t2 ; H(t) = 2t , the Gould-Hopper-Sheffer
polynomials become the Gould-Hopper-Hermite polynomials H(m)Hn(x,y) [8]. There-

fore, taking A
(
ln
(

1+t
1−t

))
= exp

(
−(ln( 1+t

1−t

))2)
and H

(
ln
(

1+t
1−t

))
= 2ln

(
1+t
1−t

)
in equa-

tions (20)-(24), the corresponding results for the Gould-Hopper-Hermite-Mittag-Leffler
polynomials

H(m)HMn(x,y) are obtained. These results are given in Table 3.1

Table 3.1. Results for
H(m)HMn(x,y)

S.No. Results Mathematical Expressions

1. Generating function exp

(
2x ln

(
1+t
1−t

)
+ y
(
2 ln
(

1+t
1−t

))m −
(
ln
(

1+t
1−t

))2)
=

∞
∑

n=0H(m) H Mn(x,y) tn
n!

2. Operational rule Mn(M̂
H(m)H

) =
H(m) H Mn(x,y)

3. Multiplicative and M̂ :=
(
2x+2myDm−1

x +Dx
)

(2(cosh(Dx/2+1))

derivative operators P̂ := tanh
(

Dx
4

)
4.

Differential equation
((

2x+2myDm−1
x +Dx

)(
2(coshDx/2+1) tanh

(
Dx
4

))
−n
)

H(m) H Mn(x,y) = 0
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Again, taking A
(
ln
( 1+t

1−t

))
= 1

1−ln( 1+t
1−t )

and H
(
ln
( 1+t

1−t

))
=

− ln( 1+t
1−t )

1−ln( 1+t
1−t )

in equations

(20)-(24), the corresponding results for the Gould-Hopper-Laguerre-Mittag-Lefflerpoly-
nomials

H(m)LMn(x,y) are obtained. These results are given in Table 3.2.

Table 3.2. Results for
H(m)LMn(x,y)

S.No. Results Mathematical Expressions

1. Generating function 1
1−ln

(
1+t
1−t

) exp

⎛
⎝x

⎛
⎝ − ln

(
1+t
1−t

)
1−ln

(
1+t
1−t

)
⎞
⎠+ y

⎛
⎝ − ln

(
1+t
1−t

)
1−ln

(
1+t
1−t

)
⎞
⎠m⎞⎠=

∞
∑

n=0H(m) LMn(x,y) tn
n!

2. Operational rule Mn(M̂
H(m)L

) =
H(m) LMn(x,y)

3. Multiplicative and M̂ :=
(
(x+myDm−1

x )(−D2
x +2Dx −1)+Dx −1

)(
2(cosh Dx

Dx−1 +1)
)

derivative operators P̂ := tanh

(
Dx

2(Dx−1)

)
4. Differential equation ((

(x+myDm−1
x )(−D2

x +2Dx −1)+Dx −1
)(

2(cosh Dx
Dx−1 +1) tanh

(
Dx

2(Dx−1)

))
−n

)
H(m) LMn(x,y) = 0

REMARK 7. Since for m = 2, the Gould-Hopper polynomials H(m)
n (x,y) reduce

to the 2-variable Hermite polynomials Hn(x,y) . Therefore taking m = 2 in the results
mentioned in Tables 3.1 and 3.2, the corresponding results for the Hermite-Hermite-
Mittag-Leffler polynomials HHMn(x,y) and Hermite-Laguerre-Mittag-Leffler polyno-
mials HLMn(x,y) can be obtained.

In the next example, the results for two specific members of the 2-variable trun-
cated exponential-Sheffer-Mittag-Leffler family considered in Example 2 are derived.

EXAMPLE 4. Taking A
(
ln
( 1+t

1−t

))
= exp

(
−(ln( 1+t

1−t

))2)
and H

(
ln
( 1+t

1−t

))
=

= 2ln
( 1+t

1−t

)
in equations (25)-(29), the corresponding results for the 2-variable trun-

cated exponential-Hermite-Mittag-Lefflerpolynomials
e(r)

HMn(x,y) are obtained. These
results are given in Table 3.3.

Table 3.3 Results for
e(r)

HMn(x,y)
S.No. Results Mathematical Expressions

1. Generating function 1

1−y
(
2 ln
(

1+t
1−t

))r exp

(
2x ln

(
1+t
1−t

)
−
(
ln
(

1+t
1−t

))2)
=

∞
∑

n=0e(r)
H Mn(x,y) tn

n!

2. Operational rule Mn(M̂
e(r)H

) =
e(r)

H Mn(x,y)

3. Multiplicative and M̂ :=
(
2x+2ryDyyDr−1

x +Dx
)

(2(coshDx/2+1))

derivative operators P̂ := tanh
(

Dx
4

)
4.

Differential equation
((

2x+2ryDyyDr−1
x +Dx

)(
2(coshDx/2+1) tanh

(
Dx
4

))
−n
)

e(r)
H Mn(x,y) = 0

Again, taking A
(
ln
(

1+t
1−t

))
= 1

1−ln( 1+t
1−t )

and H
(
ln
(

1+t
1−t

))
=

− ln( 1+t
1−t )

1−ln( 1+t
1−t )

in equations

(25)-(29), the corresponding results for the 2-variable truncated exponential-Laguerre-
Mittag-Leffler polynomials

e(r)
LMn(x,y) are obtained. These results are given in Ta-

ble 3.4.
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Table 3.4. Results for
e(r)

LMn(x,y)
S.No. Results Mathematical Expressions

1. Generating function 1
1−ln

(
1+t
1−t

) 1

1−y

⎛
⎝ − ln

(
1+t
1−t

)
1−ln

(
1+t
1−t

)
⎞
⎠

r exp

⎛
⎝x

⎛
⎝ − ln

(
1+t
1−t

)
1−ln

(
1+t
1−t

)
⎞
⎠
⎞
⎠=

∞
∑

n=0e(r)
LMn(x,y) tn

n!

2. Operational rule Mn(M̂
e(r)L

) =
e(r)

LMn(x,y)

3. Multiplicative and M̂ :=
(
(x+ ryDyyDr−1

x )(−D2
x +2Dx −1)+Dx −1

)(
2(cosh Dx

Dx−1 +1)
)

derivative operators P̂ := tanh

(
Dx

2(Dx−1)

)
4.

Differential equation
((

(x+ ryDyyDr−1
x )(−D2

x +2Dx −1)+Dx −1
)(

2(cosh Dx
Dx−1 +1) tanh

(
Dx

2(Dx−1)

))
−n

)
e(r)

LMn(x,y) = 0

Since, for y = 0, the 2D-Sheffer-Mittag-Leffler polynomials f Mn(x,y) reduces to
the Sheffer-Mittag-Leffler polynomials sMn(x) . Therefore, taking y = 0 in the results
given in Table 3.1 or Table 3.3, the following results for the Hermite-Mittag-Leffler
polynomials HMn(x) are obtained.

Table 3.5. Results for HMn(x)
S.No. Results Mathematical Expressions

1. Generating function exp

(
2x ln

(
1+t
1−t

)
−
(
ln
(

1+t
1−t

))2)
=

∞
∑

n=0
H Mn(x) tn

n!

2. Operational rule Mn(M̂H ) = H Mn(x)
3. Multiplicative and M̂ := (2x+Dx) (2(coshDx/2+1))

derivative operators P̂ := tanh
(

Dx
4

)
4.

Differential equation
(
(2x+Dx)

(
2(coshDx/2+1) tanh

(
Dx
4

))
−n
)

H Mn(x) = 0

Similarly, taking y = 0 in the results given in Table 3.2 or Table 3.4, the following
results for the Laguerre-Mittag-Leffler polynomials LMn(x) are obtained:

Table 3.6. Results for LMn(x)
S.No. Results Mathematical Expressions

1. Generating function 1
1−ln

(
1+t
1−t

) exp

⎛
⎝x

⎛
⎝ − ln

(
1+t
1−t

)
1−ln

(
1+t
1−t

)
⎞
⎠
⎞
⎠=

∞
∑

n=0
LMn(x) tn

n!

2. Operational rule Mn(M̂L ) = LMn(x)

3. Multiplicative and M̂ :=
(
−xD2

x +(2x+1)Dx − (x+1)
)(

2(cosh Dx
Dx−1 +1)

)
derivative operators P̂ := tanh

(
Dx

2(Dx−1)

)
4.

Differential equation
((

−xD2
x +(2x+1)Dx − (x+1)

)(
2(cosh Dx

Dx−1 +1) tanh

(
Dx

2(Dx−1)

))
−n

)
LMn(x) = 0

The graphs of the Hermite-Mittag-Leffler polynomials HMn(x) and Laguerre-
Mittag-Leffler polynomials LMn(x) are drawn. For this, the first few values of the
Hermite and Laguerre polynomials are required.

The expressions of the Hermite polynomials Hn(x) and the Laguerre polynomials
Ln(x) for n = 0,1,2,3,4,5 are given in the Table 3.7:

Table 3.7. Expressions of first six Hn(x) and Ln(x)
n 0 1 2 3 4 5

Hn(x) 1 2x 4x2 −2 8x3 −12x 16x4 −48x2 +12 32x5 −160x3 +120x

Ln(x) 1 −x+1 1
2 x2 −2x+1 − 1

6 x3 + 3
2 x2 −3x+1 − 1

24 x4 − 2
3 x3 +3x2 −4x+1 − 1

120 x5 + 5
24 x4 − 5

3 x3 +5x2 −5x+1
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Next, the expressions of HMn(x) and LMn(x) are obtained for n = 3 and n = 4.
Thus, replacing x by the multiplicative operators MH and ML of the Hermite and
Laguerre polynomials respectively in both sides of equations (10a) and (10b) and then
using appropriate operational rules, it follows that

HM3(x) = 64x3−88x, (30)

LM3(x) = −4
3
x3 +12x2−28x+12, (31)

HM4(x) = 256x4−640x2 +128 (32)

and

LM4(x) = −2
3
x4− 32

3
x3 +64x2−128x+48. (33)

In view of equations (30)-(33) and using MATLAB the following graphs are drawn:
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The above graphs indicate the behavior of the polynomials for odd and even in-
dices.
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4. Concluding remarks

The hybrid special polynomials of two variables are important from the point of
view of applications. These polynomials allow the derivation of a number of useful
identities in a fairly straight forward way and help in introducing new families of special
polynomials. Most of the multi-variable special polynomials and their generalizations
have been suggested by physical problems. In Sections, 2 and 3 the hybrid relatives
of the Mittag-Leffler polynomials are considered. Here a general class of polynomials
hn(x) is considered.

Starting from the generating function

exp(xY (t)) =
∞

∑
n=0

hn(x)
tn

n!
, (34)

where Y (t) is the formal power series of the form:

Y (t) =
∞

∑
n=1

yn
tn

n!
, y1 �= 0.

Now, replacing x by the multiplicative operator M̂ f of the 2D-Sheffer polynomi-
als fn(x,y) in the l.h.s. of equation (34) and denoting the resultant 2D-Sheffer-general
polynomials in the r.h.s. by f hn(x,y) , it follows that

exp
(
M̂ fY (t)

)
=

∞

∑
n=0

f hn(x,y)
tn

n!
,

which by virtue of equation (8) with t replaced by Y (t) and then using equation (3)
in the resultant equation gives the following generating function for the 2D-Sheffer-
general polynomials f hn(x,y) :

A(Y (t))φ(y,H(Y (t)))exp(xH(Y (t))) =
∞

∑
n=0

f hn(x,y)
tn

n!
. (35)

Next, consider the identity

Dx {A(Y (t))φ (y,H (Y (t)))exp(xH (Y (t)))}
= H (Y (t)) (A(Y (t))φ (y,H (Y (t)))exp(xH (Y (t)))) , (36)

which can be expressed as:

Y−1 (H−1 (Dx)
) {A(Y (t))φ (y,H (Y (t)))exp(xH (Y (t)))}

= t {A(Y (t))φ (y,H (Y (t)))exp(xH (Y (t)))} , (37)

where Y−1 and H−1 denote the compositional inverses of the functions Y and H ,
respectively.
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Differentiating equation (35) partially with respect to t , it follows that

(
xH ′ (Y (t))+

φ ′ (y,H (Y (t)))
φ (y,H (Y (t)))

H ′ (Y (t))+
A′ (Y (t))
A(Y (t))

)
Y ′(t)

{A(Y (t))φ(y,H(Y (t)))exp(xH(Y (t)))} =
∞

∑
n=0

f hn+1(x,y)
tn

n!
.

In view of identity (36), the above equation takes the form

(
xH ′(H−1(Dx))+

φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
Y ′(Y−1(H−1(Dx)))

)
{A(Y (t))φ(y,H(Y (t)))exp(xH(Y (t)))} =

∞

∑
n=0

f hn+1(x,y)
tn

n!
.

Now making use of generating function (35) in the l.h.s. of the above equation and
then equating the coefficients of like powers of t in both sides of the resultant equation,
it follows that(

xH ′(H−1(Dx))+
φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)

(
Y ′(Y−1(H−1(Dx)))

){ f hn(x,y)} = f hn+1(x,y).

In view of the above identity, the multiplicative operator of the 2D-Sheffer-general
polynomials f hn(x,y) is given as:

M̂
f h =

(
xH ′(H−1(Dx))+

φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
Y ′(Y−1(H−1(Dx)))

)
.

Further, making use of generating function (35) in both sides of identity (37) and
then equating the coefficients of like powers of t in both sides of resultant equation, the
derivative operator of the 2D-Sheffer-general polynomials f hn(x,y) is obtained as:

P̂ f h = Y−1 (H−1 (Dx)
)
.

In view of equation (6), the following differential equation for the 2D-Sheffer-
general polynomials f hn(x,y) is obtained:

((
xH ′(H−1(Dx))+

φ ′(y,Dx)
φ(y,Dx)

H ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)

(
Y ′(Y−1(H−1(Dx)))

)
Y−1 (H−1 (Dx)

)−n
)

f hn(x,y) = 0.
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In view of Remarks 5 and 6, the following generating functions for the Sheffer-
general polynomials shn(x) and Appell-general polynomials Ahn(x) are obtained:

A(Y (t))exp(xH(Y (t))) =
∞

∑
n=0

shn(x)
tn

n!

and

A(Y (t))exp(xY (t)) =
∞

∑
n=0

Ahn(x)
tn

n!
,

respectively.
Consequently, it follows that the Sheffer-general polynomials shn(x) and Appell-

general polynomials Ahn(x) are quasi-monomial w.r.t. the following multiplicative and
derivative operators:

M̂sh =
(

xH ′(H−1(Dx))+
A′(H−1(Dx))
A(H−1(Dx))

)(
Y ′(Y−1(H−1(Dx)))

)
;

P̂sh = Y−1 (H−1 (Dx)
)

and

M̂Ah =
(

x+
A′(Dx)
A(Dx)

)(
Y ′(Y−1(Dx))

)
;

P̂Ah = Y−1 (Dx) ,

respectively.
Similarly, the following differential equations for the Sheffer-general polynomials

shn(x) and Appell-general polynomials Ahn(x) are obtained:

((
xH ′(H−1(Dx))+

A′(H−1(Dx))
A(H−1(Dx))

)(
Y ′(Y−1(H−1(Dx)))

)
Y−1

(
H−1 (Dx)

)
−n

)
shn(x,y) = 0

and ((
x+

A′(Dx)
A(Dx)

)(
Y ′(Y−1(Dx))

)
Y−1 (Dx)−n

)
Ahn(x,y) = 0.

The hybrid polynomials are introduced by combining two polynomial families us-
ing their quasi-monomial properties and certain operational rules. These polynomials
can also be framed within the context of monomiality principle. The recurrence rela-
tions, differential equations and other results for the hybrid special polynomials can be
used to solve the existing as well as new emerging problems in certain branches of sci-
ence. To establish the determinant forms for the hybrid special polynomials is a recent
investigation [7] which can be helpful for computation purposes. These polynomials
can be studied from different points of view, for example, to establish orthogonality of
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these polynomials may be taken in future investigations. The study of hybrid numbers
associated with the hybrid polynomials from combinatorial aspect can also be taken as
future research possibility. To find generalizations of the positive linear operators in-
volving hybrid special polynomials for applications in approximation theory may also
be explored.
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