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UPPER BOUNDS FOR A GENERAL LINEAR FUNCTIONAL WITH
APPLICATION TO ORTHOGONAL POLYNOMIAL EXPANSIONS

A. McD. MERCER AND PETER R. MERCER*

Abstract. An upper bound on a linear functional satisfying several constraints is found, then
used to provide a short and simple proof of convergence, for orthogonal polynomial expansions.

1. Introduction

Let f be integrable on [—1,1] and denote by

its formal expansion via orthogonal polynomials, with respect to the weight function o
implicitin (-,-), viz.:

(f.g) = /_llf(t)g(t)a(t)dt.

We assume that: (i) ¢ is of degree k, (ii) there is K such that ¢y (x) < K Vx € [—1,1],

and
n—1 1

2 o
(iii) ;ZE) e o) O(n”) as n — oo.
These conditions hold (with K = 1) for the Legendre (¢« = 1) and Chebyshev (o(x) =
1/v/1 —x?%) polynomials.

With these assumptions in place, we prove Theorem 1 below. Its first hypothesis
is less general than many in the literature dealing, as it does, only with real analytic
functions. However, virtues of Theorem 1 lie in the modesty of its second hypothesis,
and in the brevity and simplicity of proof — which uses only real variables. Classical
versions, wherein complex variables are used, can be found (for example) in [5] Theo-
rem 9.1.1, [7] Section 15.41, and [6] Theorem 1.9. In the last case, the expansions can
be treated as special cases in the Sturm-Liouville Theory. The earliest treatments via
real variables are apparently [1, 2].

Our proof of Theorem 1 relies on Lemma 1, which is of independent interest.
In these results, ||-|| denotes the usual sup-norm and Cla,b] denotes the continuous
functions on [a,b].
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THEOREM 1. Let f be real analytic on [—1,1]. If

2"0(n)
(n—1)!

£ = o(1) as n — oo,

then 1;:6 <<(1J)::,(ka>> Or(x) converges pointwise to f(x) on [—1,1].

2. Proofs
We shall appeal to the following.

LEMMA 1. Consider the bounded linear functional L on Cla,b] :

L:f'—>/ubfdw7

where w is of bounded variation. Suppose also that L(x') =0 for j=0,1,---,n—1,
and that f is n times differentiable with bounded nth derivative. Then we have

2" |wl]

(n—1)1"

Proof of Lemma 1: We may suppose that [a,b] = [—1,1]. By hypothesis, f_ll ldw =0,
so that w(—1) = w(1). Replacing w with w —w(1) does not change L, so we may
assume that w(—1) = w(l) = 0. Likewise then, fllxdw = 0, and so fil wdx = 0.
Write Wi (x) = [%, w(t)dt, so that W;(£1) = 0. Again likewise, f_llxzdw =0, and

so ['Widx = 0. Write Wa(x) = [*, Wy (1)dt, so that Wy(+1) = 0. Continuing in
this way we find that

LT < NI

if W_ 1 / Wi_ 2 1‘7 then Wk_l(:tl) =0 fork=2,3,---,n
Therefore,
1 1 1 1
L = [ gaw =~ [ winroa = [ wof oda= - [ worOod
—1 —1 -1 -1

== 1 @0,

and so we have |
LN < U [ W),

2n—1
< il S < ity

Now finally,

woeatol = | [ 42

which completes our proof. [
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Remarks: There is no requirement here that L(x") # 0, so that different upper bounds
for |L(f)| are possible, depending on the available values of n. Such may be the case,
for example, if L comes from a quadrature formula. A similar result appears in [4]. We
point out also that any bounded linear functional on C|a, b] is given by such a w, by the
Riesz Representation Theorem.

Proof of Theorem 1: We show that for each x € [—1,1],

1 if x<t
and
I =)
a0 = [ (k_o o 0c(0) |
We may thus write
1
L,(f) := fdwy,

with w, being of bounded variation. Since the ¢;’s are orthogonal and ¢ is of degree
k (assumption (i)), we have

L,(x)) =0 for j=0,1,---,n—1,
and so applying Lemma 1, we get

2" |wal|

(n—1)1"

ILa(f)] < [1F]]

Now using assumptions (ii) and (iii), we have

1

)] < 1+1a,0] = [ 06R)ae < [ o6tau = o).

Therefore
2"0(n?)
(n—1)1"

ILa(f)] < (£

and the proof is complete. [J

Remarks: As regards (iii), for the Chebyshev polynomials we have in fact
n—1 1

,Z{) {0k, Ox)

= 0(n) as n — oo.



122

A.McD. MERCER AND P. R. MERCER

For the Legendre polynomials, the O(n?) in (*) can be improved to O(y/n) by applying
estimate (4.1) from [3], but this would make the present investigation less elementary.
In each of these cases, the second hypothesis in Theorem 1 could be relaxed accord-
ingly. For Gegenbauer (or even Jacobi) polynomials, much more subtle versions of (ii)
and (iii) would be required. Here again, the investigation would be non-elementary.
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