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ON THEOREMS CONNECTING MELLIN AND HANKEL TRANSFORMS

VIRENDRA KUMAR

Abstract. In the present paper four theorems connecting Mellin and Hankel transforms are es-
tablished. The theorems are general in nature. As application, four integrals involving special
functions are obtained. It is obvious from the examples that we can evaluate integrals involving
special functions with the help of the theorems established in this paper. Otherwise it is difficult
to evaluate such type of integrals.

1. Introduction

DEFINITION 1. The Mellin transform [3] of f (x) is defined by the equation

M( f ; s) =
∫ ∞

0
xs−1 f (x)dx,

where s is a complex variable.

DEFINITION 2. The Laplace transform [3] of f (x) is defined by the equation

L( f ; p) =
∫ ∞

0
e−px f (x)dx,

where p is a complex variable.

DEFINITION 3. The Hankel transform [4] of order v of f (x) is defined by the
equation

Hv( f ; ζ ) =
∫ ∞

0
(ζx)1/2Jv(ζx) f (x)dx,ζ > 0,

where Jv(z) stands for the Bessel function of the first kind [2, p. 4, Eq. (2)].

DEFINITION 4. Another form of the Hankel transform [4] of order v of f (x) is
defined by the equation

Hv( f ; ζ ) =
∫ ∞

0
xJv(ζx) f (x)dx,ζ > 0, (1)
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2. Main theorems

THEOREM 1. If ζ > 0, Re(s+ v) > 0 and Re(ρ) > 0, then

M{e−ρx f (x); s} =
∫ ∞

0
K(s, ζ )Hv( f ; ζ )dζ , (2)

where

K(s, ζ ) =
ζ v+1Γ(s+ v)

2vρv+sΓ(1+ v) 2F1

(
s+ v

2
,
s+ v+1

2
;v+1; −ζ 2

ρ2

)
.

Proof. We have by the Hankel inversion theorem [10] that

f (x) =
∫ ∞

0
ζ Hv( f ; ζ )Jv(ζx)dζ .

Hence
M{e−ρx f (x); s} =

∫ ∞

0
ζHv( f ; ζ )M{e−ρxJv(ζx); s}dζ . (3)

The change of order of integration is justified because Re(ρ) > 0 and Jv(ζx) is a
bounded function for both the variables for Landau’s bounds [5] (see also [6]) i.e

|Jv(x)| � bLv
−1/3, bL := 21/3 sup

x∈R+

(Ai(x)) (4)

and
|Jv(x)| � cL|x|−1/3, cL := sup

x∈R+

x1/3(J0(x)), (5)

where Ai(x) stands for the familiar Airy function.
Now, using the following result [3, p. 327, Eq. (6)] in (3)

M{e−axJv(βx); s} =
β vΓ(s+ v)

2vav+sΓ(1+ v) 2F1

(
s+ v

2
,
s+ v+1

2
;v+1; −β 2

a2

)
,

provided that Re(a) > |Im β | and Re(s + v) > 0 we arrive at the desired result (2),
where ζ > 0, Re(s+ v) > 0 and Re(ρ) > 0.

THEOREM 2. If 0 <Re(s) < Re(v)+3/2 and ζ > 0, then

M[(x2 + β 2)−v/2−1/4 f{(x2 + β 2)1/2}; s] =
∫ ∞

0
K(s, ζ )Hv( f ; ζ )dζ , (6)

where
K(s, ζ ) = ζ 1/2−s/2 2s/2−1 β s/2−v Γ(s/2) Jv−s/2(ζβ ).

Proof. We have by the Hankel inversion theorem [10] that

f (x) =
∫ ∞

0

√
ζx Hv( f ; ζ )Jv(ζx)dζ . (7)
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Hence

M[(x2 + β 2)−v/2−1/4 f{(x2 + β 2)1/2}; s] =
∫ ∞

0

√
ζHv( f ; ζ )M[(x2 + β 2)−v/2

×Jv{ζ (x2 + β 2)1/2}; s]dζ .

(8)

The change of order of integration is justified because ζ > 0,0 <Re(s) <Re(v)+3/2
and Jv{ζ (x2 +β 2)1/2} is a bounded function for both the variables for Landau’s bounds
[5, 6], (see (4) and (5)).
Now, using the following result [3, p. 328, Eq. (12] in (8)

M[(x2 + β 2)−v/2Jv{a(x2 + β 2)1/2; s] = 2s/2−1a−s/2β s/2−vΓ(s/2)Jv−s/2(aβ ), (9)

provided that a > 0 and 0 < Re(s) < Re(v)+ 3/2 we arrive at the desired result (6),
where ζ > 0 and 0 < Re(s) < Re(v)+3/2.

THEOREM 3. If Re(v) > −1,0 < x < a and Re(s) > 0, then

M[(a2− x2)v/2−1/4 f{(a2− x2)1/2}; s] =
∫ ∞

0
K(s, ζ )Hv( f ; ζ )dζ , (10)

where
K(s, ζ ) = ζ 1/2−s/22s/2−1av+s/2 Γ(s/2) Jv+s/2(aζ ).

Proof. Again, by (7) we have that

M[(a2− x2)v/2−1/4 f{(a2− x2)1/2}; s]

=
∫ ∞

0

√
ζHv( f ; ζ )M[(a2 − x2)v/2Jv{ζ (a2− x2)1/2}; s]dζ .

(11)

The change of order of integration is justified because Re(v) > −1,0 < x < a, Re(s) >
0 and Jv{ζ (a2 − x2)1/2} is a bounded function for both the variables for Landau’s
bounds [5, 6], (see (4) and (5)).
Now, using the following result [3, p. 329, Eq. (13)] in (11)

M[(a2 − x2)v/2Jv{β (a2− x2)1/2; s] = 2s/2−1av+s/2β−s/2Γ(s/2)Jv+s/2(aβ ), (12)

provided that Re(v) >−1,0 < x < a and Re(s) > 0 we arrive at the desired result (10),
where Re(v) > −1,0 < x < a and Re(s) > 0.

THEOREM 4. If 0 < x < a, Re(s) > 0 and ζ > 0, then

M[(a2− x2)−v/2−1/4 f{(a2− x2)1/2}; s] =
∫ ∞

0
K(s, ζ )Hv( f ; ζ )dζ , (13)

where
K(s, ζ ) = ζ 1/2−s/221−vas/2−v [Γ(v)]−1 Sv+s/2−1, s/2−v(aζ ).
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Proof. Again, by (7) we have that

M[(a2− x2)−v/2−1/4 f{(a2− x2)1/2}; s]

=
∫ ∞

0

√
ζHv( f ; ζ )M[(a2 − x2)−v/2Jv{ζ (a2− x2)1/2}; s]dζ .

(14)

The change of order of integration is justified because 0 < x < a, Re(s) > 0,ζ > 0 and
Jv{ζ (a2− x2)1/2} is a bounded function for both the variables for Landau’s bounds [5,
6], (see (4) and (5)).
Now, using the following result [3, p. 329, Eq. (14)] in (14)

M[(a2− x2)−v/2Jv{β (a2− x2)1/2; s] = 21−vas/2−vβ−s/2[Γ(v)]−1Sv+s/2−1, s/2−v(aβ ),
(15)

where Sμ, v(z) stands for the Lommel’s function [2, p. 40, Eq. (71)], 0 < x < a and
Re(s) > 0 we arrive at the desired result (13), where 0 < x < a, Re(s) > 0 and ζ > 0.

3. Applications

EXAMPLE 1. Let f (x) = xηe−ξx.
Then

M{e−ρx f (x); s} =
∫ ∞

0
e−(ρ+ξ )xx(s+η)−1dx. (16)

Using the following result [8, p. 322, Eq, 2.3.3.1] in (16)

∫ ∞

0
e−cxxλ−1dx =

Γ(λ )
cλ , Re(λ ) > 0, Re(c) > 0,

we get

M{e−ρx f (x); s} =
Γ(s+ η)

(ρ + ξ )s+η , Re(s+ η) > 0, Re(ρ + ξ ) > 0. (17)

Now, from (1) we have

Hv( f ; ζ ) = L{xη+1Jv(ζx); ξ}, (18)

where L stands for the Laplace transform.
Using the following result [3, p. 182, Eq. (9)] in (18)

L{tμJv(at); p} = Γ(μ + v+1)(p2 +a2)(−μ−1)/2P−v
μ

(
p√

p2 +a2

)
,

where P−v
μ (z) stands for the Legendre function of the first kind [1, p. 143, Eq. (6)],

Re(p) > |Im a| and Re(μ + v) > −1 we get

Hv( f ; ζ ) = Γ(η + v+2)(ξ 2 + ζ 2)−(η+2)/2P−v
η+1

(
ξ√

ξ 2 + ζ 2

)
, (19)
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where ζ > 0, Re(ξ ) > 0 and Re(η + v) > −2.
Now, using the results (17) and (19) in (2), we get

∫ ∞

0
ζ v+1

2F1

(
s+ v

2
,
s+ v+1

2
;v+1; −ζ 2

ρ2

)
(ξ 2 + ζ 2)−(η+2)/2

×P−v
η+1

(
ξ√

ξ 2 + ζ 2

)
dζ

=
2vρv+sΓ(v+1)Γ(s+ η)

(ρ + ξ )s+ηΓ(s+ v)Γ(η + v+2)
,

(20)

where ζ > 0, Re(ξ ) > 0, Re(s+ η) > 0 and Re(v+1) > 0.

EXAMPLE 2. Let f (x) = xv−μ+1/2Jμ(ax), a > 0, −1 <Re(v) <Re(μ).
Then

f{(x2 + β 2)1/2} = (x2 + β 2)v/2−μ/2+1/4Jμ{a(x2 + β 2)1/2}
and

M[(x2 + β 2)−v/2−1/4 f{(x2 + β 2)1/2}; s] = M[(x2 + β 2)−μ/2Jμ{a(x2 + β 2)1/2}; s]
(21)

Using the result (9) in (21), we get

M[(x2 + β 2)−v/2−1/4 f{(x2 + β 2)1/2}; s] = 2s/2−1a−s/2β s/2−μΓ(s/2)Jμ−s/2(aβ ),
(22)

where a > 0 and 0 <Re(s) <Re(μ)+3/2.

Hv( f ; ζ ) = Hv{xv−μ+1/2Jμ(ax); ζ}. (23)

Using the following result [4, p. 48, Eq. (7)] in (23)

Hv{xv−μ+1/2Jμ(ax); y} =
2v−μ+1yv+1/2

Γ(μ − v)aμ (a2− y2)μ−v−1, (24)

provided that a > 0, −1 <Re(v) <Re(μ) and 0 < y < a we get

Hv( f ; ζ ) =
2v−μ+1ζ v+1/2

Γ(μ − v)aμ (a2− ζ 2)μ−v−1, (25)

where a > 0, −1 <Re(v) <Re(μ) and 0 < ζ < a.
Now, using the results (22) and (25) in (6), we get∫ ∞

0
ζ v−s/2+1(a2 − ζ 2)μ−v−1Jv−s/2(ζβ )dζ

= 2μ−v−1aμ−s/2β v−μΓ(μ − v)Jμ−s/2(aβ ),
(26)

where a > 0, −1 <Re(v) <Re(μ), 0 < ζ < a and Re(μ − v) > 0.
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The formula (26) extends the formula collection given in [9], because there [9, p. 178,
Eq. (17)] exists an integral representation for∫ ∞

a
x1±v(x2 −a2)β−1Jv(cx)dx,

valid when a > 0.

EXAMPLE 3. Let f (x) = xμ−v+1/2Jμ(bx),b > 0,Re(v) >Re(μ) > −1.
Then

f{(a2 − x2)1/2} = (a2− x2)μ/2−v/2+1/4Jμ{b(a2− x2)1/2}
and

M[(a2 − x2)v/2−1/4 f{(a2− x2)1/2}; s] = M[(a2 − x2)μ/2Jμ{b(a2− x2)1/2}; s]. (27)

Using the result (12) in (27), we get

M[(a2 − x2)v/2−1/4 f{(a2− x2)1/2}; s] = 2s/2−1aμ+s/2b−s/2Γ(s/2)Jμ+s/2(ab), (28)

where 0 < x < a, b > 0, Re(μ) > −1 and Re(s) > 0.

Hv( f ; ζ ) = Hv{xμ−v+1/2Jμ(bx); ζ}. (29)

Using the following result [4, p. 48, Eq. (8)] in (29)

Hv{xμ−v+1/2Jμ(ax); y} =
2μ−v+1aμ

Γ(v− μ)yv−1/2
(y2 −a2)v−μ−1,

provided that a > 0, Re(v) >Re(μ) > −1 and a < y < ∞ we get

Hv( f ; ζ ) =
2μ−v+1bμ

Γ(v− μ)ζ v−1/2
(ζ 2 −b2)v−μ−1, (30)

where Re(v) >Re(μ) > −1 and 0 < b < ζ < ∞.
Now, using the results (28) and (30) in (10), we get∫ ∞

0
ζ 1−v−s/2(ζ 2 −b2)v−μ−1Jv+s/2(aζ )dζ

= 2v−μ−1aμ−vb−μ−s/2Γ(v− μ)Jμ+s/2(ab),
(31)

where a > 0, 0 < b < ζ < ∞ and Re(v− μ) > 0.

EXAMPLE 4. Let f (x) = xv−μ+1/2Jμ(bx), b > 0,−1 <Re(v) <Re(μ).
Then

f{(a2 − x2)1/2} = (a2− x2)v/2−μ/2+1/4Jμ{b(a2− x2)1/2}
and

M[(a2−x2)−v/2−1/4 f{(a2−x2)1/2}; s] = M[(a2−x2)−μ/2Jμ{b(a2−x2)1/2}; s]. (32)
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Using the result (15) in (32), we get

M[(a2 − x2)−v/2−1/4 f{(a2− x2)1/2}; s]

= 21−μas/2−μb−s/2[Γ(μ)]−1Sμ+s/2−1, s/2−μ(ab),
(33)

where 0 < x < a, b > 0 and Re(s) > 0.

Hv( f ; ζ ) = Hv{xv−μ+1/2Jμ(bx); ζ}. (34)

Using the result (24) in (34), we get the result which is obtained by replacing a by b in
(25).
Now, using the results (25) and (33) in (13), we get∫ ∞

0
ζ v−s/2+1(b2− ζ 2)μ−v−1Sv+s/2−1, s/2−v(aζ )dζ

= 2−1av−μbμ−s/2[Γ(μ)]−1Γ(v)Γ(μ − v)Sμ+s/2−1, s/2−μ(ab),
(35)

where a > 0, Re(v) > 0, 0 < ζ < b and Re(μ − v) > 0.

In this section, four integral formulae (20), (26), (31) and (35) involving special func-
tions have been obtained. Several other integral formulae extending the results given
in [8, 9] may be obtained with the help of the theorems established in this paper and
Mellin transforms available in [7].
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