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ON BERNSTEIN–TYPE INEQUALITIES FOR

POLYNOMIALS INVOLVING THE POLAR DERIVATIVE

ADIL HUSSAIN ∗ , ABDULLAH MIR AND ABRAR AHMAD

Abstract. In this paper, we establish some upper bound estimates for the polar derivative of a
polynomial not vanishing in a disk |z| < k, k � 1 with a zero of multiplicity s , 0 � s � n− 1
at the origin. The obtained results enable us to derive polar derivative analogues of some well
known Bernstein-type inequalities as special cases.

1. Introduction

By Pn we denote the space of all complex polynomials P(z) :=
n
∑

v=0
avzn of degree

n . If P ∈ Pn , then by the famous Bernstein inequality [3], we have

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|. (1)

Equality holds in (1) if and only if P(z) has all its zeros at origin. If we restrict ourselves
to the class of polynomials P(z) having no zero in |z| < 1, then (1) can be sharpened.
In fact, Erdös conjectured and later Lax [6] proved that if P(z) �= 0 in |z| < 1, then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (2)

It was shown by Frappier et al. [4] that if P ∈ Pn , then

max
|z|=1

|P′(z)| � n max
1�l�2n

|P(e
ilπ
n )|. (3)

Clearly (3) is a refinement of (1), since the maximum of |P(z)| on |z|= 1 may be larger
than maximum of |P(z)| taken over 2nth roots of unity as one can show by taking a
simple example P(z) = zn + ia , a > 0.
The inequality (3) was improved by Aziz [1] by showing that

max
|z|=1

|P′(z)| � n
2

(Mα +Mα+π) , (4)
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where

Mα = max
1�l�n

∣∣∣P(
ei (α+2lπ)

n

)∣∣∣ (5)

for all real α .
In the same paper, Aziz [1] also improved inequality (4) for a restricted class of poly-
nomials not vanishing in the unit disk |z| < 1. In fact, he proved that if P ∈ Pn and
P(z) �= 0 in |z| < 1, then

max
|z|=1

|P′(z)| � n
2

(
M2

α +M2
α+π

) 1
2 , (6)

where Mα is as defined in (5).
As a refinement of (6), Rather and Shah [7] proved that if P ∈ Pn and P(z) �= 0 in
|z| < 1, then

max
|z|=1

|P′(z)| � n
2

(
M2

α +M2
α+π −2m2) 1

2 . (7)

where m = min|z|=1 |P(z)| and Mα is as defined in (5).
As a generalization of (7), Rather and Shah [7] in the same paper proved that if P ∈ Pn

and P(z) �= 0 in |z| < k, k � 1, then

max
|z|=1

|P′(z)| � n√
2(1+ k2)

(
M2

α +M2
α+π −2mk

2) 1
2 , (8)

where mk = min|z|=k |P(z)| and Mα is as defined in (5).
Recently Sunil et al. [8], extended inequality (8) to the class of polynomials P(z) =

zs

(
a0 +

n−s
∑

v=μ
avzv

)
, 1 � μ � n− s having s-fold zero at z = 0 and the remaining n− s

zeros in |z| � k, k � 1 and obtained the following result.

THEOREM A. If P ∈ Pn and P(z) = zs

(
a0 +

n−s
∑

v=μ
avzv

)
, 1 � μ � n− s, 0 �

s � n− 1 such that P(z) has s-fold zero at z = 0 and the remaining n− s zeros in
|z| � k, k � 1 , then

max
|z|=1

|P′(z)| � smax
|z|=1

|P(z)|+ n− s√
2(1+ k2μ)

(
M∗

α
2 +M∗

α+π
2− 2m2

k

k2s

) 1
2

, (9)

where mk = min|z|=k |P(z)| and

M∗
α = max

1�l�n−s

∣∣∣P(
e

i(α+2lπ)
n−s

)∣∣∣ . (10)

Over the last few decades different authors produced a large number of different
versions and generalizations of the above inequalities by introducing restrictions on
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the multiplicity of zero at z = 0, the modulus of largest root of P(z) , restrictions on
coefficients, using higher order derivatives etc. Before proceeding to our main results,
let us introduce the concept of polar derivative involved.
For P ∈ Pn the polar derivative Dβ P(z) of P(z) with respect to point β is defined as,

Dβ P(z) := nP(z)+ (β − z)P′(z).

Note that Dβ P(z) is a polynomial of degree at most n− 1. This is so called polar
derivative of P(z) with respect to β . It generalises the ordinary derivative in the sense
that

lim
β→∞

{
Dβ P(z)

β

}
= P′(z), (11)

uniformly with respect to z for |z| � R, R > 0.
In 1998, Aziz and Shah [2] established the polar derivative analogue of (1) by proving
that if P(z) is a polynomial of degree n, then for every complex number β with |β |�
1,

max
|z|=1

|Dβ P(z)| � n|β |max
|z|=1

|P(z)|. (12)

Clearly the above inequality generalizes (1) and to obtain (1) from it, simply divide
both sides of (12) by |β | and let |β | → ∞ .
The main aim of the present paper is to obtain some upper bound estimates for the max-
imum modulus of polar derivative of a polynomial on a unit disk under the assumption
that the polynomial has no zeros in the disk |z|< k, k � 1, but having s-fold zero at the
origin. The obtained results generalizes some already known estimates for the ordinary
derivative of polynomial as special cases.

THEOREM 1. (Main) If P(z) = zs

(
a0 +

n−s
∑

v=μ
avzv

)
, 1 � μ � n− s, 0 � s � n−1

is a polynomial of degree n having s-fold zero at z = 0 and remaining n− s zeros in
|z| � k , k � 1 , then for any complex number β with |β | � 1 , we have

max
|z|=1

|Dβ P(z)|�
[
n+s(|β |−1)

]
max
|z|=1

|P(z)|+(n−s)(|β |−1)√
2(1+k2μ)

(
M∗

α
2+M∗

α+π
2−2m2

k

k2s

) 1
2

,

(13)

mk = min|z|=k |P(z)| and M∗
α is as defined in (10).

REMARK 1. If we divide both sides of inequality (13) by |β | and let |β | → ∞ and
noting (11), we get inequality (9).
If we take s = 0 and μ = 1 in (13), we get the following polar derivative analogue of
(8).
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COROLLARY 1. If P(z) =
n
∑

v=0
avzv, is a polynomial of degree n and having no

zeros in |z| < k , k � 1 , then for every complex number β with |β | � 1 , we have

max
|z|=1

|Dβ P(z)| � nmax
|z|=1

|P(z)|+ n(|β |−1)√
2(1+ k2)

(
Mα

2 +Mα+π
2 −2m2

k

) 1
2 , (14)

mk = min|z|=k |P(z)| and Mα is as defined in (5).

REMARK 2. Dividing both sides of inequality (14) by |β | and let |β | → ∞ and
noting (11), we get inequality (8).
By taking s = 0, μ = 1 and k = 1 in (13), we get the following polar derivative ana-
logue of (7).

COROLLARY 2. If P(z) =
n
∑

v=0
avzv, is a polynomial of degree n and having no

zeros in |z| < 1 , then for every complex number β with |β | � 1 , we have

max
|z|=1

|Dβ P(z)| � nmax
|z|=1

|P(z)|+ n(|β |−1)
2

(
Mα

2 +Mα+π
2−2m2) 1

2 , (15)

m = min|z|=1 |P(z)| and Mα is as defined in (5).

REMARK 3. Dividing both sides of inequality (15) by |β | and let |β | → ∞ and
noting (11), we get inequality (7).
From Corollary 2, we easily get the following result.

COROLLARY 3. If P(z) =
n
∑

v=0
avzv, is a polynomial of degree n and having no

zeros in |z| < 1 , then for every complex number β with |β | � 1 , we have

max
|z|=1

|Dβ P(z)| � nmax
|z|=1

|P(z)|+ n(|β |−1)
2

(
Mα

2 +Mα+π
2) 1

2 , (16)

Mα is as defined in (5).

REMARK 4. For the class of polynomials having no zeros in the unit disk {z ∈
C; |z| < 1} , the inequality (16) represents a refinement of (12) because, since |β | � 1

and the maximumof |P(z)| on |z|= 1 may be larger than the quantity 1
2

(
Mα

2+Mα+π
2
) 1

2

for every real α .

REMARK 5. Dividing both sides of inequality (16) by |β | and let |β | → ∞ and
noting (11), we get inequality (6).
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2. Lemmas

We need the following lemmas to prove the theorem.
The following lemma is due to Sunil et al. [8].

LEMMA 1. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n, P(z) �= 0 in |z| < k, k � 1 and

mk = min|z|=k |P(z)| , then for every real α ,

max
|z|=1

|P′(z)| � n√
2(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2 , (17)

where Mα is as defined in (5).

The following lemma is a special case of a result due to Govil and Rahman [5].

LEMMA 2. If P(z) is a polynomial of degree n, then for |z| = 1 ,

|P′(z)|+ |Q′(z)| � nmax
|z|=1

|P(z)|, (18)

where Q(z) = znP( 1
z ) .

Next we prove a lemma in which we generalize lemma 1 to the polar derivative of a
polynomial. More precisely, we prove the following.

LEMMA 3. If P ∈ Pn and P(z) = a0 +
n
∑

v=μ
avzv, 1 � μ � n, P(z) �= 0 in |z| < k ,

k � 1 and mk = min|z|=k |P(z)| , then for every real α and for every complex number β
with |β | � 1 , we have

max
|z|=1

|Dβ P(z)| � n√
2

[√
2|P(z)|+ (|β |−1)√

1+ k2μ

(
Mα

2 +Mα+π
2−2m2

k

) 1
2

]
, (19)

where Mα is as defined in (5).

Proof. Since P(z) is a polynomial of degree n which does not vanish in |z| < k ,
k � 1. Applying the inequality (17), we have

max
|z|=1

|P′(z)| � n√
2(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2 . (20)

Now for β ∈ C , with |β | � 1

|Dβ P(z)| = |nP(z)+ (β − z)P′(z)| = |nP(z)+ βP′(z)− zP′(z)|
� |nP(z)− zP′(z)|+ |β ||P′(z)|.



14 A. HUSSAIN, A. MIR AND A. AHMAD

It can be easily seen that

|nP(z)− zP′(z)| = |Q′
(z)| for |z| = 1.

Therefore we have for |z| = 1

|Dβ P(z)| � |Q′(z)|+ |β ||P′(z)| = |Q′(z)|+ |P′(z)|− |P′(z)|+ |β ||P′(z)|.
Using lemma 2, we get for |z| = 1,

|Dβ P(z)| � n|P(z)|+(|β |−1)|P′(z)|,
which on using (20), we get

|Dβ P(z)| � n|P(z)|+ n(|β |−1)√
2(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2 .

Equivalently,

max
|z|=1

|Dβ P(z)| � n√
2

{√
2|P(z)|+ (|β |−1)√

(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2

}
,

which proves lemma 3.

3. Proof of the theorem

Proof. Let P(z) = zsφ(z) where φ(z) = a0 +
n−s
∑

v=μ
avzv , 1 � μ � n− s and 0 � s �

n− 1 is the polynomial of degree n− s having no zeros in |z| < k, k � 1. Applying
lemma 3 to polynomial φ(z) of degree n− s , we get for every β ∈ C , with |β | � 1,

max
|z|=1

|Dβ φ(z)| � (n− s)√
2

{√
2max
|z|=1

|φ(z)|+ (β −1)√
(1+ k2μ)

(
M∗

α
2 +M∗

α+π
2−2m′2

k

) 1
2
}

,

(21)

where m′
k = min|z|=k |φ(z)| .

Now for β ∈ C with |β | � 1, we have

Dβ P(z) = nP(z)+ (β − z)P′(z) = nzsφ(z)+ (β − z)
[
zsφ ′(z)+ φ(z).szs−1]

= zsDβ φ(z)+ sβ zs−1φ(z),

which implies

zDβ P(z) = zs+1Dβ φ(z)+ sβP(z).

Hence for |z| = 1, we get from the above inequality that

|Dβ P(z)| � |Dβ φ(z)|+ s|β ||P(z)|,
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which in particular implies,

max
|z|=1

|Dβ P(z)| � max
|z|=1

|Dβ φ(z)|+ s|β |max
|z|=1

|P(z)|.

This gives by using inequality (21),

max
|z|=1

|Dβ P(z)| �
[

(n− s)√
2

{√
2max
|z|=1

|φ(z)|+ (β −1)√
(1+ k2μ)

(
M∗

α
2 +M∗

α+π
2−2m′2

k

) 1
2
}]

+ s|β |max
|z|=1

|P(z)|. (22)

Now the relation between P(z) and φ(z) is P(z) = zsφ(z) .
This implies |P(z)| = |φ(z)| for |z| = 1 and m′

k = min|z|=k |φ(z)| = 1
ks min|z|=k |P(z)| =

1
ks mk , where mk = min|z|=k |P(z)| .
Using these observations in (22), we get (13).
This completes the proof of Theorem 1.
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