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ON BERNSTEIN-TYPE INEQUALITIES FOR
POLYNOMIALS INVOLVING THE POLAR DERIVATIVE

ADIL HUSSAIN*, ABDULLAH MIR AND ABRAR AHMAD

Abstract. In this paper, we establish some upper bound estimates for the polar derivative of a
polynomial not vanishing in a disk |z| <k, k > 1 with a zero of multiplicity s, 0 <s<n—1
at the origin. The obtained results enable us to derive polar derivative analogues of some well
known Bernstein-type inequalities as special cases.

1. Introduction

By P, we denote the space of all complex polynomials P(z) := i a,Z" of degree
v=0

n. If P € P,, then by the famous Bernstein inequality [3], we have

I‘nla)fw/( 2)| < <nﬁa>;\P( z)|- (1)

Equality holds in (1) if and only if P(z) has all its zeros at origin. If we restrict ourselves
to the class of polynomials P(z) having no zero in |z| < 1, then (1) can be sharpened.
In fact, Erdds conjectured and later Lax [6] proved that if P( ) # 0 in |z] < 1, then

g}af\P( )|<2ﬁ3>§IP( 2)|. 2)

It was shown by Frappier et al. [4] that if P € P, then

< ).
g}af\P()l n max [P(e™ )] 3)

Clearly (3) is a refinement of (1), since the maximum of |P(z)| on |z| = 1 may be larger
than maximum of |P(z)| taken over 2x"* roots of unity as one can show by taking a
simple example P(z) = 7" +ia, a > 0.

The inequality (3) was improved by Aziz [ 1] by showing that

n
/
max |P'(z)| < 5 (Mo + Mo z) (4)
[z[=1 2
Mathematics subject classification (2010): 30A10, 30C10, 30D15.
Keywords and phrases: Polar derivative, Bernstein inequality, zeros.
* Corresponding author.

© ey, Zagreb 9

Paper JCA-16-02


http://dx.doi.org/10.7153/jca-2020-16-02

10 A.HUSSAIN, A. MIR AND A. AHMAD

where

M, = max
1<i<n

P (eQ)j )

for all real o.

In the same paper, Aziz [1] also improved inequality (4) for a restricted class of poly-
nomials not vanishing in the unit disk |z| < 1. In fact, he proved that if P € P, and
P(z) #0 in |z] < 1, then

Nl—

n
max|P/(2)] < 5 (Ma+Mzr)* (6)
4

where M, is as defined in (5).

As a refinement of (6), Rather and Shah [7] proved that if P € P, and P(z) # 0 in
lz| <1, then

Nl—

max |P'(z)| <

n
=1 5 (M2 +Mtzx+7r 2m2)

(N

where m = min|;_; [P(z)| and My is as defined in (5).
As a generalization of (7), Rather and Shah [7] in the same paper proved that if P € P,
and P(z) #0in |z| <k, k> 1, then

n

max |P’ <7M2—|—M2 —2my? , (8)
max|P ()] 2(1+k2)( wt Moy =2mc)

Nl—

where my = miny_ [P(z)| and My is as defined in (5).
Recently Sunil et al. [8], extended inequality (8) to the class of polynomials P(z) =

n—s
Z (ao + > avz") , 1 < u < n—s having s-fold zero at z =0 and the remaining n — s
V=L

zeros in |z >k, k > 1 and obtained the following result.

THEOREM A. If P€ P, and P(z) =2 (ao—l— i avzv)7 I<u<n—s 0<
V=t

s <n—1 such that P(z) has s-fold zero at z =0 and the remaining n—s zeros in
|z| >k, k> 1, then

max P (9) < smax P + == (w743, 2 - ) )
X smax Y - ’
e =1 2(1_,_]{2;1) o o+ k2s
where my = min|;_x |P(z)| and
Mo = e [P ()] "

Over the last few decades different authors produced a large number of different
versions and generalizations of the above inequalities by introducing restrictions on
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the multiplicity of zero at z = 0, the modulus of largest root of P(z), restrictions on
coefficients, using higher order derivatives etc. Before proceeding to our main results,
let us introduce the concept of polar derivative involved.

For P € IP, the polar derivative DgP(z) of P(z) with respect to point f3 is defined as,

DgP(z) :=nP(z) + (B —2)P'(2).

Note that DgP(z) is a polynomial of degree at most n— 1. This is so called polar
derivative of P(z) with respect to 3. It generalises the ordinary derivative in the sense

that

uniformly with respect to z for |z] <R, R > 0.

In 1998, Aziz and Shah [2] established the polar derivative analogue of (1) by proving
that if P(z) is a polynomial of degree n, then for every complex number f§ with |B] >
L,

ﬁa71<|D/3P(Z)| < n\ﬁlﬁaf\P(Z)\- (12)
z|= z|=

Clearly the above inequality generalizes (1) and to obtain (1) from it, simply divide
both sides of (12) by || and let |3| — .

The main aim of the present paper is to obtain some upper bound estimates for the max-
imum modulus of polar derivative of a polynomial on a unit disk under the assumption
that the polynomial has no zeros in the disk |z| < k, k> 1, but having s-fold zero at the
origin. The obtained results generalizes some already known estimates for the ordinary
derivative of polynomial as special cases.

THEOREM 1. (Main) If P(z) =2 <a0+ i avz"), I<u<n—s50<s<n—1
V=t

is a polynomial of degree n having s-fold zero at z =0 and remaining n — s zeros in
lz| >k, k> 1, then for any complex number B with |B| > 1, we have

ol B (e 2 2
max [DP(2)] < |n-+5(81-1)| max[ ) + s (w22

13)

my = miny,_ |P(z)| and M, is as defined in (10).

REMARK 1. If we divide both sides of inequality (13) by || and let || — e and
noting (11), we get inequality (9).
If we take s =0 and p =1 in (13), we get the following polar derivative analogue of

(8).
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n
COROLLARY 1. If P(z) = 3 a,2", is a polynomial of degree n and having no
v=0

zeros in |z| < k, k > 1, then for every complex number B with |B| > 1, we have

max [DgP(z)| < nmax\ ()| + n(Bl-1)

1
L (M + Mgy a2 —2m})? 14
=1 jel=1 2(1+k2)( o e J (19

my = miny,_ |P(z)| and My, is as defined in (5).

REMARK 2. Dividing both sides of inequality (14) by |B| and let || — e and
noting (11), we get inequality (8).
By taking s =0, uy =1 and k=1 in (13), we get the following polar derivative ana-
logue of (7).

n
COROLLARY 2. If P(z) = Y ayZ', is a polynomial of degree n and having no
y=
zeros in |z| < 1, then for every complex number B with |B| > 1, we have

1|n‘a>1§\DﬁP( z7)| < nlln‘ax\P( z)| +M (Mo + Moy z” —2m )% 15)

m = min_ |P(z)| and My is as defined in (5).

REMARK 3. Dividing both sides of inequality (15) by |B| and let || — o and
noting (11), we get inequality (7).
From Corollary 2, we easily get the following result.

COROLLARY 3. If P(z) = 2 a,7’, is a polynomial of degree n and having no

zeros in |z| < 1, then for every complex number [ with |B| > 1, we have

n([Bl-1)
7 (

1
max |DgP(z)| < n1|n‘ax\P( z)|+ Mo? +Maix%)?, (16)

|z]=1

My, is as defined in (5).

REMARK 4. For the class of polynomials having no zeros in the unit disk {z €
C;|z| < 1}, the inequality (16) represents a refinement of (12) because, since || > 1
1
and the maximum of |P(z)| on |z| = 1 may be larger than the quantity 3 (Mo +Meqir?)>
for every real o.

REMARK 5. Dividing both sides of inequality (16) by |B| and let || — o and
noting (11), we get inequality (6).
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2. Lemmas

We need the following lemmas to prove the theorem.
The following lemma is due to Sunil et al. [8].

n
LEMMA 1. If P(z) =ao+ X ayz’, 1 <u<n, Plz) #0in |z| <k, k> 1 and
v=u

my = miny,_ |P(z)], then for every real a,

n 1
max [P (2)| < ——— (M2 +M>, . —2m2)?, (17)
max P 0) € s (VMG 20)
where My, is as defined in (5).

The following lemma is a special case of a result due to Govil and Rahman [5].

LEMMA 2. If P(z) is a polynomial of degree n, then for |z| = 1,
P @) +10' @) < nmax |P(z)], (18)
2=

where Q(z) =7"P(3).

Next we prove a lemma in which we generalize lemma 1 to the polar derivative of a
polynomial. More precisely, we prove the following.

2=

n
LEMMA 3. If PEP, and P(z) =ao+ Y, a2, 1 <u<n, P(z) #0 in |z <k,
v=u

k> 1 and my = min,_ |P(z)], then for every real o and for every complex number [3
with |B| > 1, we have

max|DgP(z)| < 2 V2Pe)|+ UBI=1) (Ma2+Ma+n2—2mﬁ)% 7 (19)

jel=1 V2 1+
where My, is as defined in (5).
Proof. Since P(z) is a polynomial of degree n which does not vanish in |z] < k,
k > 1. Applying the inequality (17), we have

n

1
max |P'(z)| < (M +Mp, . —2mi)> . (20)

jal=1 V200 k2
Now for € C, with || > 1

DgP(2)| = [nP(z) + (B —2)P'(z)| = |nP(2) + BP'(z) — 2P (z)]
< [nP(2) = 2P'(2)| + |BIIP'(2)].
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It can be easily seen that
nP(z) = 2P'(2)| = |Q'(z)| for |z =1.
Therefore we have for |z| = 1

IDpP(2)| <[Q'(2)| +[BIIP' ()] = 1Q' ()| + P ()| = [P ()| + BIIP'(2)I-

Using lemma 2, we get for |z| =1,

IDgP(2)] < nlP(z)| + (IB] = DIP'(2)],

which on using (20), we get

PO <P+ (11— 20’
Equivalently,
o A=Y e o)t
max |DgP ()| < \/—{\/_IP()| T (Mg + Mg 5 —2my) }

which proves lemma 3.
3. Proof of the theorem

Proof. Let P(z) = z°¢(z) where ¢(z) = ap+ i ayz’, 1<u<n—sand 0<s<
v=n

n— 1 is the polynomial of degree n— s having no zeros in |z| < k, k > 1. Applying
lemma 3 to polynomial ¢(z) of degree n — s, we get for every § € C, with || > 1,

( ) (ﬁ_l) * * / %
max|Dpo(a) < U {Vamas oo+ Bt (w37 b - 2n) |
(2D

where mj = min,_[¢(z)].
Now for § € C with |B| > 1, we have

DpP(z) = nP(2) + (B~ 2)P'(z) =nZ'9(2) + (B —2) [£'9"(2) + 9 (2) 52"~ ']
=2'Dpo(2) + P9 (2),
which implies
zDgP(z) ="' D (2) + sBP(2).
Hence for |z] = 1, we get from the above inequality that

IDpP(2)| < [Dpd(2)] +51B[P(2)],
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which in particular implies,

This

max
|z[=1

max |DgP(z)| < max|Dgo (2)] +|B| max|P(2).
|z[=1 |z[=1 |z[=1

gives by using inequality (21),

IDgP(z)| < (n\/_;) {\/Ell?wli 0(2)| + % (MZ2 + My g me) ' }

+s1B| ﬁglP(Z)l- (22)

Now the relation between P(z) and ¢(z) is P(z) =2°9(2).

This

implies |P(2)| = |6 (2)| for |2 = 1 and m|, = miny_¢(z)] = & ming,_ |P() =

&My, where my. = min,_ |P(z)|.
Using these observations in (22), we get (13).

This

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]

completes the proof of Theorem 1.
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