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GENERALIZATION OF ENESTRÖM–KAKEYA THEOREM

AND ITS EXTENSION TO ANALYTIC FUNCTIONS

N. A. RATHER, ISHFAQ DAR AND A. IQBAL

Abstract. In this paper, by using standard techniques we shall obtain a result that gives regions
containing all the zeros of a polynomial with real coefficients. Our result not only generalizes
several well-known results concerning the location of zeros of polynomials but also yields an
answer to a question raised by Professor N. K. Govil. We also obtain a similar result for analytic
functions. In addition to this, we show by examples that our result gives better information about
the bounds of zeros of polynomials than some known results.

1. Introduction and statement of results

Various experimental observations and investigations when translated into math-
ematical language lead to mathematical models. The solution of these models could
lead to problems of solving algebraic polynomial equations of certain degree. The ex-
act computation of zeros of polynomials of degree at most four made possible by virtue
of algorithms having been devised for such polynomials, no such method is available
for accomplishing the same task for polynomials of higher degree. The impossibility
of achieving this feat, or in other words, the impossibility of solving by radicals the
polynomial equations of degree 5 or greater is an important milestone in the history
of mathematics, occasioned by ground breaking discoveries in algebra by N. H. Abel
and E. Galois in the first quarter of the nineteenth century. This motivated the study of
identifying suitable regions in the complex plane containing the zeros of a given poly-
nomial. A classical result due to Cauchy [3] on the distribution of zeros of a polynomial
may be stated as follows:

THEOREM A. Let P(z) = zn +an−1zn−1+ . . .+a1z+a0 be a polynomial of degree
n, then all the zeros of P(z) lie in the disk |z| � 1+max0� j�n−1 |a j|.
Although various results concerning the bounds for zeros of polynomials are available
in literature [5], but the remarkable property of the bound in Theorem A which dis-
tinguishes it from other such bounds is its simplicity of computations. However, this
simplicity comes at the cost of precision. The following elegant result on the loca-
tion of zeros of a polynomial with restricted coefficients is known as Eneström-Kakeya
Theorem (see [5], [6]) which states that:
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THEOREM B. Let P(z) = anzn + an−1zn−1 + . . . + a1z + a0 be a polynomial of
degree n with real coefficients satisfying an � an−1 � . . . � a1 � a0 � 0, then all the
zeros of P(z) lie in |z| � 1.

Joyal, Labelle and Rahman [4] extended Theorem B to polynomials whose coefficients
are monotonic but are not necessarily non-negative and proved that:

THEOREM C. Let P(z) = anzn + an−1zn−1 + . . . + a1z + a0 be a polynomial of
degree n with real coefficients satisfying an � an−1 � . . . � a1 � a0, then all the zeros
of P(z) lie in |z| � an−a0+|a0|

|an| .

Aziz and Zargar [2] relaxed the hypothesis in several ways and among other things they
proved the following results:

THEOREM D. Let P(z) = anzn + an−1zn−1 + . . . + a1z + a0 be a polynomial of
degree n with real coefficients such that for some k � 1, kan � an−1 � . . . � a1 � a0,

then all the zeros of P(z) lie in |z+ k−1|� kan−a0+|a0|
|an| .

In literature there exist several generalisations of above results (for reference see [5],
[6], [7] and [8]). In this paper, by using standard techniques we shall obtain a result
which gives regions containing all the zeros of the polynomials with real coefficients.
Our result generalizes several well-known results concerning the generalization of En-
eström-Kakeya Theorem. More precisely, we prove:

THEOREM 1.1. Let P(z) = anzn + an−1zn−1 + . . .+ a1z + a0 be a polynomial of
degree n with real coefficients such that for some k j � 1, j = 1,2, . . . ,r where 1 � r �
n,

k1an � k2an−1 � k3an−2 � . . . � kran−r+1 � an−r � . . . � a1 � a0,

then all the zeros of P(z) lie in

|z+ k1−1− (k2−1)an−1/an|

� 1
|an|

(
k1an− (k2−1)|an−1|+2

r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)

.

For r = 2, we obtain the following result which answers the question raised by Profes-
sor N. K. Govil regarding the determination of regions containing all the zeros of the
polynomial at International conference held at the University of Jammu, India, in 2007.

COROLLARY 1.1. Let P(z) = anzn + an−1zn−1 + . . .+ a1z + a0 be a polynomial
of degree n with real coefficients such that for some k1 � 1,k2 � 1,

k1an � k2an−1 � an−2 � an−3 � . . . � a1 � a0,

then all the zeros of P(z) lie in

|z+ k1−1− (k2−1)an−1/an| � 1
|an|

(
k1an +(k2−1)|an−1|−a0 + |a0|

)
.
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REMARK 1.1. On setting k2 = 1, Corollary 1.1 reduces to Theorem D and if
k1 = k2 = 1, Corollary 1.1 yields Theorem C.

If we assume a0 � 0 in Theorem 1.1, we get the following result:

COROLLARY 1.2. Let P(z) = anzn + an−1zn−1 + . . .+ a1z + a0 be a polynomial
of degree n with real coefficients such that for some k j � 1, j = 1,2, . . . ,r where
1 � r � n,

k1an � k2an−1 � k3an−2 � . . . � kran−r+1 � an−r � . . . � a1 � a0 � 0,

then all the zeros of P(z) lie in

|z+ k1−1− (k2−1)an−1/an| � 1
an

(
k1an− (k2−1)an−1 +2

r

∑
j=2

(k j −1)an− j+1

)
.

REMARK 1.2. In Corollary 1.2 if we take k j = 1, j = 1,2,3, . . . ,r then we obtain
the famous Eneström-Kakeya Theorem stated in Theorem B.

Dynamical systems are frequently used as models for the temporal evolution of techni-
cal processes. In this case, the stability analysis for an equilibrium state of the system
naturally leads to the problem of finding all the zeros or at least bounds on the set of
zeros of a certain analytic function f : C → C . For instance, if there is no temporal
delay to be taken into account in the underlying system then one has to consider the
spectrum of the Jacobian of a vector field evaluated at the equilibrium. This can e.g.,
be done by using efficient eigenvalue solvers. However, if the technical process has to
be modelled by a delay differential equation then the zero set of a non-polynomial but
holomorphic function has to be approximated.
Motivated by this application, we propose in this paper to study the zeros of a class of
analytic functions. In this direction, we prove the following result:

THEOREM 1.2. Let f (z) =
∞
∑
j=0

a jz j �≡ 0 be analytic in |z|� 1. If for some k1,k2 �

1,
k1a0 � k2a1 � a2 � a3 � . . . , a j > 0, j = 1,2,3 . . . ,

then f (z) does not vanish in the region
∣∣∣∣z− (k1 −1)a0− (k2−1)a1

(2k1−1)(a0 +2(k2−1)a1)

∣∣∣∣ <
k1a0 +(k2−1)a1

(2k1−1)(a0 +2(k2−1)a1)
.

For k2 = 1, Theorem 1.2 yields the following result:

COROLLARY 1.3. Let f (z) =
∞
∑
j=0

a jz j �≡ 0 be analytic in |z| � 1. If for some k �

1,
ka0 � a1 � a2 � a3 � . . . , a j > 0, j = 1,2,3 . . . ,
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then f (z) does not vanish in the region

∣∣∣∣z− k−1
2k−1

∣∣∣∣ <
k

2k−1
.

The above result was also proved by Aziz and Shah [1].

2. Computations and analysis

In this section, we give some examples of polynomials to show that Theorem 1.1
gives better information about the location of the zeros than Theorem A. It is worth
mentioning that all existing Eneström-Kakeya type results are not applicable for these
polynomials.

EXAMPLE 2.1. Let P(z) = 19z4 +18z3 +20z2 +15z+2

Results Radius of Disk Area of Disk
Theorem A 2.053 13.2
Theorem 1.1 1.157 4.2
Actual Bound 0.94 2.78

By taking r = 2 with k1 = 20/19 and k2 = 10/9 in Theorem 1.1, it is evident from
the above table that the Theorem 1.1 gives better bound, with 68% improvement in the
area over Theorem A.

EXAMPLE 2.2. Let P(z) = 3z4 +2.8z3 +2.6z2 +3.2z+1

Results Radius of Disk Area of Disk
Theorem A 2.06 13.32
Theorem 1.1 1.6 8.03
Actual Bound 0.97 2.96

By taking r = 3 with k1 = 16/15, k2 = 8/7 and k3 = 16/13 in Theorem 1.1, it is
evident from the above table that the Theorem 1.1 gives better bound, with 40% im-
provement in the area over Theorem A.

EXAMPLE 2.3. Let P(z) = 4z5 +3.8z4 +3.5z3 +4z2 +2z+1

Results Radius of Disk Area of Disk
Theorem A 2 12.56
Theorem 1.1 1.3 5.3
Actual Bound 0.91 2.61

By taking r = 3 with k1 = 1, k2 = 20/19 and k3 = 8/7 in Theorem 1.1, it is evident
from the above table that the Theorem 1.1 gives better bound, with 58% improvement
in the area over Theorem A.
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3. Proof of the theorems

Proof of Theorem 1.1. Consider the polynomial

F(z) =(1− z)P(z)

=−anz
n+1 +(an−an−1)zn + . . .+(an−r−an−r−1)zn−r + . . .+(a1−a0)z+a0

=−anz
n+1 +(k1an− k2an−1− (k1−1)an +(k2−1)an−1)zn

+(k2an−1− k3an−2− (k2−1)an−1 +(k3−1)an−2)zn−1

+ . . .+(kr−1an−r+2− kran−r+1− (kr−1−1)an−r+2 +(kr −1)an−r+1)zn−r+2

+(kran−r+1−an−r− (kr −1)an−r+1)zn−r+1 +(an−r−an−r−1)zn−r + . . .

+(a1−a0)z+a0,

which implies,

|F(z)| = |−anz
n+1 − (k1−1)anz

n +(k1an− k2an−1)zn +(k2−1)an−1z
n

+(k2an−1− k3an−2)zn−1− (k2−1)an−1z
n−1 +(k3−1)an−2z

n−1 + . . .

+(kr−1an−r+2− kran−r+1)zn−r+2− (kr−1−1)an−r+2z
n−r+2

+(kr −1)an−r+1z
n−r+2 +(kran−r+1−an−r)zn−r+1 − (kr −1)an−r+1z

n−r+1

+(an−r−an−r−1)zn−r + . . .+(a1−a0)z+a0|,
that is,

|F(z)| � |z|n[|(z+ k1−1)an− (k2−1)an−1|−
(|k1an− k2an−1|+ |k2an−1− k3an−2|/|z|

+ |k2−1||an−1|/|z|+ |k3−1||an−2|/|z|+ . . .

+ |kr−1an−r+2− kran−r+1|/|z|r−2 + |kr−1−1||an−r+2|/|z|r−2

+ |kr −1||an−r+1|/|z|r−2 + |kran−r+1−an−r|/|z|r−1

+ |kr −1||an−r+1|/|z|r−1 + |an−r−an−r−1|/|z|r + . . .+ |a1−a0|/|z|n−1

+ |a0|/|z|n
)]

.

By using hypothesis, we have for |z| > 1,

|F(z)| � |z|n[|(z+ k1−1)an− (k2−1)an−1|−
(
k1an− k2an−1 + k2an−1− k3an−2

+(k2−1)|an−1|+(k3−1)|an−2|+ . . .+ kr−1an−r+2− kran−r+1

+(kr−1−1)|an−r+2|+(kr −1)|an−r+1|+ kran−r+1−an−r

+(kr −1)|an−r+1|+an−r−an−r−1 + . . .+a1−a0 + |a0|
)]

,

implies,

|F(z)| � |an||z|n
[
|z+ k1−1− (k2−1)an−1/an|− 1

|an|
(

k1an− (k2−1)|an−1|

+2
r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)]

> 0
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if

|z+ k1−1− (k2−1)an−1/an|

>
1
|an|

(
k1an− (k2−1)|an−1|+2

r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)

.

This shows that those zeros of F(z) whose modulus is greater than 1 lie in

|z+ k1−1− (k2−1)an−1/an|

� 1
|an|

(
k1an− (k2−1)|an−1|+2

r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)

.

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this
region. Hence it follows that all the zeros of F(z) and therefore of P(z) lie in

|z+ k1−1− (k2−1)an−1/an|

� 1
|an|

(
k1an− (k2−1)|an−1|+2

r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)

.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Since f (z) =
∞
∑
j=0

a jz j is analytic in |z| � 1 and it is easy to

observe that lim
j→∞

a j = 0. Now consider the function

F(z) =(z−1) f (z)

=(z−1)
(
a0 +a1z+a2z

2 +a3z
3 + . . .

)
=−a0 +(a0−a1)z+(a1−a2)z2 +(a2−a3)z3 + . . .

=−a0 +(k1a0−k2a1)z+((1−k1)a0 +(k2−1)a1)z+((k2a1−a2)− (k2−1)a1)z2

+(a2−a3)z3 + . . .

=−a0− ((k1−1)a0− (k2−1)a1)z+ φ(z),

where φ(z) = (k1a0− k2a1)z+((k2a1−a2)− (k2−1)a1)z2 +
∞
∑
j=3

(a j−1−a j)z j.

Clearly φ(z) is analytic for |z| � 1 with φ(0) = 0. Moreover, for |z| = 1

|φ(z)| � |k1a0− k2a1||z|+ |(k2a1−a2)− (k2−1)a1||z|2 +
∞

∑
j=3

|a j−1−a j||z| j

� k1a0− k2a1 + k2a1−a2 +(k2−1)a1 +a2−a3 +a3−a4 + . . .

= k1a0 +(k2−1)a1.

Therefore, by the Schwarz Lemma,

|φ(z)| � (k1a0 +(k2−1)a1)|z| for |z| < 1.
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Hence, for |z| < 1,

|F(z)| � |a0 +((k1−1)a0− (k2−1)a1)z|− |k1a0 +(k2−1)a1||z| > 0

if

|((k1 −1)a0− (k2−1)a1)z+a0| > |k1a0 +(k2−1)a1||z|,

that is, F(z) and therefore f (z) does not vanish in

(k1a0 +(k2−1)a1)|z| < |((k1 −1)a0− (k2−1)a1)z+a0|,

which is precisely the region
∣∣∣∣z− (k1 −1)a0− (k2−1)a1

(2k1−1)(a0 +2(k2−1)a1)

∣∣∣∣ <
k1a0 +(k2−1)a1

(2k1−1)(a0 +2(k2−1)a1)
.

That completes the proof of Theorem 1.2.

4. Concluding remarks

Applying Theorem 1.1 to the polynomial P(tz) , we obtain the following result:

COROLLARY 4.1. Let P(z) = anzn + an−1zn−1 + . . .+ a1z + a0 be a polynomial
of degree n with real coefficients such that for some t > 0 and k j � 1, j = 1,2, . . . ,r
where 1 � r � n,

k1t
nan � k2t

n−1an−1 � k3t
n−2an−2 � . . . � kran−r+1t

n−r+1 � an−rt
n−r � . . . � a1t � a0,

then all the zeros of P(z) lie in

|z+(k1−1)t− (k2−1)an−1/an|

� 1
|an|

(
k1tan− (k2−1)|an−1|+2

r

∑
j=2

(k j −1)
|an− j+1|

t j−2 +
|a0|−a0

tn−1

)
.

Taking r = 2 and a0 � 0 in the above Corollary, we obtain the following result:

COROLLARY 4.2. Let P(z) = anzn + an−1zn−1 + . . .+ a1z + a0 be a polynomial
of degree n with real coefficients such that for some k1 � 1, k2 � 1 and t > 0,

k1t
nan � k2t

n−1an−1 � tn−2an−2 � . . . � a1t � a0 � 0,

then all the zeros of P(z) lie in

|z+(k1−1)t− (k2−1)an−1/an| � k1t +
(k2−1)an−1

an
.
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Similarly applying Theorem 1.2 to the function f (tz), we obtain the following result:

COROLLARY 4.3. Let f (z) =
∞
∑
j=0

a jz j �≡ 0 be analytic in |z| � t. If for some

k1,k2 � 1,

k1a0 � k2ta1 � t2a2 � t3a3 � . . . , a j > 0, j = 1,2,3 . . . ,

then f (z) does not vanish in the region
∣∣∣∣z− (k1−1)a0t − (k2−1)a1t2

(2k1−1)(a0 +2(k2−1)a1t)

∣∣∣∣ <
k1a0t +(k2−1)a1t2

(2k1−1)(a0 +2(k2−1)a1t)
.

For different choices of t,k1 and k2 several interesting results can be obtained.
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