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ON NORMAL FUNCTIONS IN SEVERAL COMPLEX VARIABLES

TING ZHU, SHENGYAO ZHOU AND LIU YANG ∗

Abstract. In this paper, we generalize the conception of ϕ -normal to holomorphic functions of
several complex variables. Extensions of some classical criteria for normality of holomorphic
functions of several complex variables are also given.

1. Introduction

Let D = {z; |z| < 1} be the unit disc in the complex plane C. A meromorphic
function f in D is called normal if

sup
z∈D

(1−|z|2) f #(z) < ∞,

where f #(z) = | f ′(z)|/(1+ | f (z)|2) is the spherical derivative of f . Lappan [6] showed
that there exists a set E consisting of five distinct points such that if f is a meromorphic
in D then the condition that supz∈ f−1(E)(1− |z|2) f #(z) < ∞ implies that supz∈D(1−
|z|2) f #(z) < ∞ i.e., f is a normal function. This well-known result of Lappan is called
five-point theorem. For a meromorphic function f in D and a positive integer k the
expression | f (k)(z)|/(1+ | f (z)|k+1) is an extension of the spherical derivative of f . For
this expression involves higher derivatives, some interesting results related to normal
functions were obtained.

THEOREM A. ([5]) If f is a normal function in D, then for each integer k > 0,

sup
z∈D

(1−|z|2)k | f (k)(z)|
1+ | f (z)|k+1 < ∞.

THEOREM B. ([13]) Let k be a positive integer, and let f be a meromorphic
function in D, and suppose that there exists M > 0 such that max1�i�k−1 | f (i)(z)| � M
whenever f (z) = 0. If there exists a subset E of C∪ {∞} containing at least k + 4
distinct points such that

sup
z∈ f−1(E)

(1−|z|2)k | f (k)(z)|
1+ | f (z)|k+1 < ∞,
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then f is a normal function.

In [1], R. Aulaskari and J. R ä tty ä introduced the concept of smoothly increas-
ing functions and enlarged the class of normal functions. An increasing function ϕ :
[0,1) → (0,∞) is called smoothly increasing if

ϕ(r)(1− r) → ∞, as r → 1−, (1)

and

Ra(z) :=
ϕ(|a+ z/ϕ(|a|)|)

ϕ(|a|) → 1 as |a| → 1− (2)

uniformly on compact subsets of C. For a given such ϕ , we call a function f is ϕ -
normal if f is meromorphic in D, and

sup
z∈D

f #(z)
ϕ(|z|) < ∞.

Applying Nevanlinna theory of meromorphic functions, Xu and Qiu [14] improved
Theorems A and B and establish analogues for ϕ -normal functions. In [12], condition
(1) was replaced by a weaker one as

ϕ(r)(1− r) � 1,r ∈ [0,1). (3)

So the function ϕ0(r) = 1
1−r is smoothly increasing and the concept of ϕ0 -normal func-

tions coincides with the concept of normal functions. In addition, the authors in [12]
obtained the four-point theorem on the ϕ -normal criteria for meromorphic functions
via bounding some quantities related to spherical derivatives of f and f ′.

THEOREM C. ([12]) Let ϕ : [0,1) → (0,∞) be a smoothly increasing function,
and let f be a meromorphic function in D. Assume that there is a subset E := {a1,a2,
a3,a4} ⊂ C∪{∞} such that

sup
z∈ f−1(E)

f #(z)
ϕ(|z|) < ∞, and sup

z∈ f−1(E\{∞})
( f ′)#(z) < ∞.

Then f is a ϕ -normal function.

2. Preliminaries and results

To state our main results, we first introduce some standard notations. Let

C
n = {z = (z1, · · · ,zn); z1, · · · ,zn ∈ C}

be the complex space of dimension n .
Denote the unit ball with respect norm ‖ ·‖ in Cn to by Bn = {z ∈ Cn; ‖z‖ < 1} .

The boundary of Bn will be denoted by Sn and is called the unit sphere in Cn. Thus
Sn = {z ∈ C

n; ‖z‖ = 1}.
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Let Ω ⊂ Cn be a domain and H (Ω) the collection of all holomorphic functions
in Ω. Let

∇ f (z) = ( fz1(z), . . . , fzn(z)), z ∈ Ω

where fzi(z) = ∂ f
∂ zi

(z).
For every function F of class C 2(Ω), we define at each point z ∈ Ω a Hermitian

form

Lz(F,v) =
n

∑
i, j=1

∂ 2F(z)
∂ zi∂ z j

viv j

and call it the Levi form of the function F at z. For a holomorphic function f in Ω,
set

f #(z) = sup
|v|=1

(
Lz

(
log(1+ | f |2),v)

) 1
2
,

where v = (v1, · · · ,vn) ∈ Cn, |v| = (∑n
j=1 |v j|2) 1

2 .

REMARK 1. Let Ω ⊂ Cn be a domain and f ∈ H (Ω). Then

f #(z) = sup
|v|=1

|〈∇ f (z),v〉|
1+ | f (z)|2 =

(∑n
j=1 | fz j (z)|2)

1
2

1+ | f (z)|2 , z ∈ Ω.

where 〈z,w〉 = ∑n
j=1 z jw j is the Hermitian scalar product for z = (z1, . . . ,zn),w =

(w1, . . . ,wn) ∈ Cn.

Proof. Since f (z) = f (z1, . . . ,zn) is holomorphic on Ω, we have f = fz j (z) = 0
for every z ∈ Ω and 1 � j � n. An easy computation shows that

∂
∂ z j

log(1+ | f |2)(z) =
f (z) f z j

(z)

1+ | f (z)|2 =
f (z)( fz j (z))
1+ | f (z)|2

and
∂ 2

∂ zi∂ z j
log(1+ | f |2)(z) =

f fz j

1+ | f (z)|2 =
fzi(z)( fz j (z))
(1+ | f (z)|2)2

for z ∈ Ω and 1 � i, j � n. Hence, for each v = (v1, · · · ,vn) ∈ Cn, we get

n

∑
i, j=1

∂ 2 log(1+ | f |2)(z)
∂ zi∂ z j

viv j =
n

∑
i, j=1

fzi(z)vi( fz j (z)v j)
(1+ | f (z)|2)2 =

1
(1+ | f (z)|2)2 |

n

∑
k=1

fzk (z)vk|2

=
|〈∇ f (z),v〉|2
(1+ | f (z)|2)2 .

This shows that

f #(z) = sup
|v|=1

|〈∇ f (z),v〉|
1+ | f (z)|2 .
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Now we prove the second identity. If ∇ f (z) = (0,0, · · · ,0), there is nothing to
prove. We assume that ∇ f (z) �= (0,0, · · · ,0). We have, from Cauchy-Buniakowsky-
Schwarz inequality, that |〈∇ f (z),v〉| � |∇ f (z)| · |v|. On the other hand, fix any z ∈ Ω,
we take

v∗ =
( fz1(z)
|∇ f (z)| ,

fz2(z)
|∇ f (z)| , · · · ,

fzn(z)
|∇ f (z)|

)

It is obvious that v∗ ∈ C
n, |v∗| = 1 and

|〈∇ f (z),v∗〉| =
n

∑
i=1

fzi(z) ·
f zi(z)

|∇ f (z)| = |∇ f (z)|.

This leads that sup|v|=1 |〈∇ f (z),v〉| = |∇ f (z)|. And hence,

sup
|v|=1

|〈∇ f (z),v〉|
1+ | f (z)|2 =

(∑n
j=1 | fz j (z)|2)

1
2

1+ | f (z)|2 , z ∈ Ω.

We have completed the proof of Remark 1.
Let I = (i1, . . . , in) ∈ Nn. We call I a multi-index and define |I| = ∑n

μ=1 iμ . For
z ∈ Cn and a multi-index I we define the partial derivative operators

DI :=
∂ |I|

∂ zi1
1 · · ·∂ zin

n
.

Now we extend the concepts of smoothly increasing functions and ϕ -normal func-
tions to the case of several complex variables.

DEFINITION 1. An increasing function ϕ : [0,1) → (0,∞) is called smoothly in-
creasing if

ϕ(r)(1− r) � 1, r ∈ [0,1), (4)

and

Ra(z) :=
ϕ(‖a+ z/ϕ(‖a‖)‖)

ϕ(‖a‖) → 1 as ‖a‖→ 1− (5)

uniformly on compact subsets of Cn.

DEFINITION 2. For a smoothly increasing function ϕ , a function f ∈ H (Bn) is
called ϕ -normal if

|| f ||N ϕ := sup
z∈Bn

f #(z)
ϕ(‖z‖) < ∞. (6)

The class of all ϕ -normal functions is denoted by N ϕ (Bn).

We generalize Theorems A, B and C to holomorphic functions of several complex
variables. More precisely, we have the following results.
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THEOREM 1. If f is a ϕ -normal function in Bn, then, for each multi-index I =
(i1, . . . , in), there exists a constant MI > 0 such that

1
ϕ(‖z‖)k

|DI f (z)|
1+ | f (z)|k+1 � MI, z ∈ Bn,

where k = |I|.

THEOREM 2. Let ϕ be a smoothly increasing function, and let k be a positive
integer. Suppose f ∈ H (Bn) such that

sup{|DJ f (z)|; z ∈ f−1({0}),J ∈ N
n, 1 � |J| � k−1} < ∞. (7)

If there exists a set E of three distinct points in C such that

sup
{ 1

ϕ(‖z‖)k

|DI f (z)|
1+ | f (z)|k+1 ; z ∈ f−1(E)

}
< ∞, I ∈ N

n with |I| = k.

Then f is ϕ -normal.

We notice that the number of points in E has nothing to do with k which is related
to the order of the derivatives. In particular, when k = 1, we get the following corollary:

COROLLARY 1. Let ϕ be a smoothly increasing function and f ∈ H (Bn). If
there exists a set E of three distinct points in C such that

sup
z∈ f−1(E)

f #(z)
ϕ(||z||) < ∞.

Then f is ϕ -normal.

THEOREM 3. Let ϕ be a smoothly increasing function and f ∈ H (Bn). If there
exists a subset E of C containing two distinct points such that

sup
z∈ f−1(E)

f #(z)
ϕ(||z||) < ∞ and sup

z∈ f−1(E)

( ∂ f
∂ zi

)#
(z) < ∞, 1 � i � n.

Then f is ϕ -normal.

3. Proof of Theorem 1

The theory of normal family is used to prove our main results. For the relationship
between normal family and normal function, see [8].

DEFINITION 3. A family F of holomorphic functions on Ω ⊂ Cn is normal in
Ω if every sequence of functions { fμ} ⊆ F contains either a subsequence which con-
verges to a limit function f �≡ ∞ uniformly on each compact subset of Ω, or a subse-
quence which converges uniformly to ∞ on each compact subset.
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LEMMA 1. ([3]) A family F of functions holomorphic on Ω ⊂ Cn is normal on
Ω if and only if for each compact subset K ⊂ Ω there exists a constant M(K) > 0 such
that at each point z ∈ K, f #(z) � M(K) for all f ∈ F .

LEMMA 2. Let ϕ be a smoothly increasing function and f ∈ H (Bn). Then f ∈
N ϕ(Bn) if and only if for every sequence {aμ} ⊂ Bn with ‖aμ‖→ 1, the family

F =
{

gμ(z) := f
(
aμ +

1
ϕ(||aμ ||) z

)
; μ = 1,2, . . .

}

is normal in Bn.

Proof. Since ϕ is a smoothly increasing function, from (4) we have 1
ϕ(‖aμ‖) �

1−‖aμ‖ for μ = 1,2,3, . . . . Thus, for each z ∈ Bn,

‖aμ +
1

ϕ(||aμ ||) z‖ � ‖aμ‖+
‖z‖

ϕ(||aμ ||) < ‖aμ‖+
1

ϕ(||aμ ||) � 1.

Then gμ(z) := f
(
aμ + 1

ϕ(‖aμ‖)z) is well-defined and holomorphic on Bn.

Suppose that f ∈ N ϕ (Bn). Then || f ||N ϕ < ∞. An easy computation shows that

g#
μ(z) =

1
ϕ(‖aμ‖) f #

(
aμ +

z
ϕ(‖aμ‖)

)
=

ϕ(‖aμ + z
ϕ(‖aμ‖)‖)

ϕ(‖aμ‖) ·
f #(aμ + z

ϕ(‖aμ‖) )

ϕ(‖aμ + z
ϕ(‖aμ‖)‖)

�
ϕ(‖aμ + z

ϕ(‖aμ‖)‖)
ϕ(‖aμ‖) · ‖ f ‖N ϕ = Raμ (z)· ‖ f ‖N ϕ

Together with (5), this implies that {gμ(z)} is bounded uniformly on compact subsets
of Bn. Hence, it follows from Lemma 1 that {gμ(z)} is a normal family in Bn.

Conversely assume, to the contrary, that f �∈ N ϕ (Bn). Then by (2), there exist
{bμ} ⊂ Bn with ‖bμ‖→ 1, such that

lim
μ→∞

f #(bμ)
ϕ(‖bμ‖) = ∞. (8)

Now, we investigate the family

F =
{

gμ(z) := f
(
bμ +

1
ϕ(||bμ ||) z

)
; μ = 1,2, . . .

}
.

It follows from (8) that

g#
μ(0) =

f #(bμ)
ϕ(‖bμ‖) → ∞

as μ → ∞. Because of Lemma 1, we get the family {gμ(z) = f
(
bμ + 1

ϕ(‖bμ‖) z); μ =
1,2, . . .} is not normal in Bn.
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REMARK 2. If the function ϕ satisfies condition (1) instead of (4), that is limr→1−
ϕ(r)(1− r) = ∞, we have a similar fact. Take R > 0. It follows from ‖aμ‖ → 1− that

1
ϕ(‖aμ‖) <

1−‖aμ‖
R for sufficiently large μ . Thus, we have

‖aμ +
1

ϕ(||aμ ||) z‖ � ‖aμ‖+
‖z‖

ϕ(||aμ ||) � ‖aμ‖+
R

ϕ(‖aμ‖) < 1

for ‖z‖� R and sufficiently large μ . Therefore, for each compact set K in C
n, gμ(z) :=

f
(
aμ + 1

ϕ(‖aμ‖) z) is well-defined and holomorphic on K for sufficiently large μ . By the

proof of Lemma 2, we obtain f ∈N ϕ(Bn) if and only if for every sequence {aμ} ⊂Bn

with ‖aμ‖→ 1, the family
{
gμ(z) := f

(
aμ + 1

ϕ(||aμ ||)z); μ = 1,2, . . .
}

is normal in Cn.

Proof of Theorem 1. If k = 1, there really isn’t anything to do once we notice
the definition of f as a ϕ -normal function. It suffices to prove the theorem in the
case where k � 2. Suppose the conclusion is not valid, then there exists a sequence
{zμ} ⊂ Bn, such that

1
ϕ(‖zμ‖)k

|DI f (zμ)|
1+ | f (zμ)|k+1 → ∞, μ → ∞. (9)

Since f is ϕ -normal in Bn, by Lemma 2, we get

{
gμ(z) = f

(
zμ +

1
ϕ(‖zμ‖) z

)
, z ∈ Bn

}

is a normal family. Then, for each sequence {gμ}, in view of Definition 3, there exists
a subsequence of {gμ} (without loss of generality, we still denote by {gμ} for con-
venience) which either converges locally uniformly to holomorphic function g(z) or
tends locally uniformly to infinity in Bn.

We distinguish two cases.
Case 1. g(z) ∈ H (Bn).
Then g(z) is holomorphic in Br0 = {z : ||z||< r0}, where 0 < r0 < 1. Weierstrass

Theorem of several complex variables (see [11], p.16) implies that

DIgμ(z) → DIg(z), z ∈ Br0 .

Then, we have
|DIgμ(z)|

1+ |gμ(z)|k+1 → |DIg(z)|
1+ |g(z)|k+1 , z ∈ Br0 .

Since g is holomorphic, then |g(z)| and |DIg(z)| is bounded in Br0 = {z : ||z|| � r0},
obviously, there exists Q > 0 such that

max
z∈Br0

|DIg(z)|
1+ |g(z)|k+1 � Q.



52 T. ZHU, S. ZHOU AND L. YANG

Then, for sufficiently large μ , we obtain

max
z∈Br0

|DIgμ(z)|
1+ |gμ(z)|k+1 � Q+1.

In particular, for sufficiently large μ , taking z = 0, we get

|DIgμ(0)|
1+ |gμ(0)|k+1 =

1
ϕ(‖zμ‖)k

|DI f (zμ)|
1+ | f (zμ)|k+1 � Q+1.

we get a contradiction with (9).
Case 2. g(z) ≡ ∞.

Then 1
g ≡ 0 in Bn. For sufficiently large μ , 1

gμ
is holomorphic and 1

gμ
→ 0 in

Bn. Next we prove that DIgμ
gk+1

μ
→ 0 by using induction on k = |I|.

If k = 1, set DI = ∂
∂ zi

for some i ∈ {1,2, · · · ,n}, we deduce that 1
g2

μ
· ∂gμ

∂ zi
=

− ∂ 1
gμ

∂ zi
→ 0, i = 1,2, · · · ,n, z ∈ Bn.

By the induction principle, we have to prove that DIgμ
gk+1

μ
→ 0 when |I| = m under

the induction hypothesis that DIgμ
gk+1

μ
→ 0 when 1 � |k| � m−1. It is easy to check that

for each I with |I| = m,

DIgμ

gm+1
μ

= −
DI( 1

gμ
)

gm−1
μ

+ a polynomial of
DJgμ

g|J|+1
μ

, 1 � |J| � m−1.

Hence DIgμ
gm+1

μ
→ 0, z ∈ Bn, |I| = m.

Obviously,
|DIgμ(z)|

1+ |gμ(z)|k+1 � |DIgμ(z)|
|gμ(z)|k+1 → 0, z ∈ Bn.

Taking z = 0, we obtain

|DIgμ(0)|
1+ |gμ(0)|k+1 =

1
ϕ(‖zμ‖)k

|DI f (zμ )|
1+ | f (zμ)|k+1 → 0,

which is also a contradiction with (9).

4. Proof of Theorem 2

Zalcman’s Rescalling Lemma in several complex variables plays an important role
in the proofs of Theorems 2 and 3 .
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LEMMA 3. ([4]) Suppose that a family F of functions holomorphic on Ω ⊂ Cn

is not normal at some point z0 ∈ Ω. Then there exist sequences { fμ} ∈ F , zμ → z0,
ρμ = 1/ f #

μ(zμ) → 0 such that the sequence

gμ(z) = fμ(zμ + ρμz)

converges locally uniformly in Cn to a non-constant entire function g satisfying g#(z)�
g#(0) = 1.

LEMMA 4. ([9, 10]) Let Ω ⊆ Cn be open. Let f j be holomorphic functions on Ω
for j = 1,2, · · · ,n. Suppose that f is holomorphic on Ω and that f j → f normally. If
each f j is zero-free, then prove that either f is zero-free or f ≡ 0 on Ω.

Proof. Because the reference [9] is written in Chinese, we give here a detailed
proof of Lemma 4. Assume that f �≡ 0. For any a ∈ Ω, we prove f (a) �= 0. Take
polydisc P(a,r) ⊂ Ω, and take α1, · · · , αn and λ such that |α j| < r, |λ | < 1. Then
(a1 + α1λ , · · · ,an + αnλ ) ∈ P(a,r) ⊂ Ω. Select a group of a j that satisfies the above
conditions so that ψ(λ ) = f (a1 +α1λ , · · · ,an +αnλ ) �≡ 0 in |λ |< 1. This can be done,
otherwise f ≡ 0 in P(a,r) . Let

ψk(λ ) = fk(a1 + α1λ , · · · ,an + αnλ ).

Thus, ψk converges locally uniformly to ψ in |λ | < 1, and ψ �≡ 0. From Hurwitz’s
theorem of one complex variable, ψ is not equal to 0 everywhere in |λ |< 1. In partic-
ular, ψ(0) �= 0, that is, f (a) �= 0.

Proof of Theorem 2. Suppose f is not ϕ -normal. Then, by Lemma 2, the family
F = {gμ(z)} is not normal at some point z0 ∈ Bn . In view of Lemma 3, there exist
sequences {gμ(z)}⊂F (we still denote by {gμ} for convenience), a sequence {zμ}⊂
B

n with zμ → z0, ρμ → 0 such that

Gμ(z) = gμ(zμ + ρμz) = f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z
)
→ G(z) (10)

uniformly on compact subsets of Cn, where G(z) is a nonconstant holomorphic func-
tion on Cn. Therefore, for each J ∈ Nn,

DJGμ(z) =
( ρμ

ϕ(‖aμ‖)
)|J|

DJ f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z
)
→ DJG(z) (11)

uniformly on compact subsets of Cn.
Let K be a compact set containing z0 and assume that G(z0) = 0. Lemma 4

implies that there exists a sequence z∗μ → z0 such that

f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z∗μ
)

= Gμ(z∗μ) = 0.
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For brevity, set ẑμ = aμ + zμ
ϕ(‖aμ‖) + ρμ

ϕ(‖aμ‖) z
∗
μ . Since ρμ → 0, ẑμ ∈ Bn for sufficiently

large μ . Then, by the hypothesis, there exists M > 0 such that

|DJ f (ẑμ)| � M

for 0 � |J| � k−1. Since ϕ : [0,1) → (0,∞) is a smoothly increasing function, we
obtain

DJGμ(z∗μ) =
( ρμ

ϕ(‖aμ‖)
)|J|

DJ f (ẑμ) �
( ρμ

ϕ(0)

)|J|
DJ f (ẑμ).

This and (11) imply that DJG(z0) = 0 for 0 � |J| � k−1. Thus all zeros of G(z), if
any, have multiplicity at least k, and DIG �≡ 0. Suppose z0 ∈ Cn such that G(z0) = a∈
E, then by (10) and applying Lemma 4 (see [10], p.316), there exists z∗μ → z0 such
that

f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z∗μ
)

= Gμ(z∗μ) = a.

Then, by the assumption, there exists M > 0 such that

1
ϕ(‖ẑμ‖)k

|DI f (ẑμ)|
1+ | f (ẑμ)|k+1 � M

for sufficiently large μ . Thus, we obtain

|DIGμ(z∗μ)|
1+ |Gμ(z∗μ)|k+1 =

( ρμ

ϕ(‖aμ‖)
)k |DI f (ẑμ )|

1+ | f (ẑμ)|k+1 � (ρμ)k
( ϕ(‖ẑμ‖)

ϕ(‖aμ‖)
)k

M

for sufficiently large μ . From (5) and letting μ → ∞, we obtain |DIG(z0)|
1+|G(z0)|k+1 = 0. It

implies that z0 is a zero of DIG(z). Thus, DIG(z) = 0, z ∈ f−1(E), |I| = k.
We next prove that G(z) is constant. For any b ∈ Cn, we define

gb(ξ ) := G(ξb) = G(ξb1,ξb2, · · · ,ξbn), ξ ∈ C.

Then, the zero multiplicity of gb(ξ ) is at least k and g(k)
b �≡ 0. For I = (i1, i2, · · · , in),

g(k)
b (ξ ) =

n

∑
i1,i2,···,in=1

bi1bi2 · · ·bin
∂ |I|G

∂ξi1∂ξi2 · · ·∂ξin
(ξb), |I| = k.

Suppose that G(ξ0b) ∈ E, then gb(ξ0) ∈ E. From DIG(ξ0b) = 0 with |I| = k, we get

g(k)
b (ξ0) = 0. This implies that

3

∑
i=1

N
(
r,

1
gb−ai

)
� N

(
r,

1

g(k)
b

)

Suppose that the entire function gb is not constant, by standard symbols and fun-
damental results of Nevanlinna theory (for details, see for example [16]), we obtain

2T (r,gb) �
3

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb) � N

(
r,

1

g(k)
b

)
+S(r,gb)

� T (r,g(k)
b )+S(r,gb) � T (r,gb)+S(r,gb).

(12)
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So, T (r,gb) � S(r,gb), which is a contradiction. Thus,

gb(ξ ) = C(b),

where C(b) is constant with respect to ξ (but depends on b ). Therefore

C(b) = gb(ξ ) = gb(0) = G(0), ξ ∈ C.

In particular, G(b) = gb(1) = G(0). Since b ∈ Cn is taken arbitrarily, we then have
G(z) ≡ G(0), a contradiction.

5. Proof of Theorem 3

In order to prove Theorem 3, we first give the following lemma.

LEMMA 5. Let f (z) be a holomorphic function in Cn, and the integer k = 2 or
3. If there exists a subset E of C containing 5− k distinct points such that

DI f (z) = 0, |I| = 1, · · · ,k−1, z ∈ f−1(E).

Then f is constant.

Proof. For any b ∈ Cn, we define

gb(ξ ) := f (ξb) = f (ξb1,ξb2, · · · ,ξbn), ξ ∈ C.

Suppose that f is not constant and f (ξ0b)∈ E, then gb is not constant and gb(ξ0)∈ E.
Moreover,

g′b(ξ0) =
n

∑
i=1

bi
∂ f
∂ξi

(ξ0b), (13)

g′′b(ξ0) =
n

∑
i, j=1

bib j
∂ 2 f

∂ξi∂ξ j
(ξ0b). (14)

If k = 2, by the assumption DI f (ξ0b) = 0, |I| = 1, together with (13), we have

g′b(ξ0) = 0.

This means that ξ0 is a a -point of gb with multiplicity at least 2. Applying Nevanlinna
theory for meromorphic functions, it is clear that

2T (r,gb) �
3

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb) � 1

2

3

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb)

� 3
2
T (r,gb)+S(r,gb).
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So, 1
2T (r,gb) � S(r,gb), which is a contradiction. Thus,

gb(ξ ) = C(b),

where C(b) is constant with respect to ξ (but depends on b ). Therefore, C(b) =
gb(ξ ) = gb(0) = f (0). Similar to the argument in Proof of Theorem 2 we have f is
constant.

If k = 3, by the assumption DI f (ξ0b) = 0, |I| = 1,2, combination with (13) and
(14), it implies that

g′b(ξ0) = g′′b(ξ0) = 0.

Then ξ0 is a a -point of gb with multiplicity at least 3. Similarly, applying Nevanlinna
theory for meromorphic functions, we obtain

T (r,gb) � N(r,g)+
2

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb) =

2

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb)

� 1
3

2

∑
i=1

N
(
r,

1
gb−ai

)
+S(r,gb) � 2

3
T (r,gb)+S(r,gb).

So, 1
3T (r,gb) � S(r,gb), which is a contradiction. Thus, gb(ξ ) = C(b), where C(b) is

constant. Again, similar to the argument in Proof of Theorem 2 we get f is constant.

Proof of Theorem 3. Assume for a contradiction. If f is not ϕ -normal in Bn.
From Lemma 2, the family F = {gμ(z)} is not normal at z0 ∈ Bn , by Lemma 3,
there exist sequences {gμ(z)} (without loss of generality, we still denote by {gμ} for
convenience) ∈ F , zμ → z0, ρμ → 0 such that

Gμ(z) = gμ(zμ + ρμz) = f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z
)
→ G(z) (15)

uniformly on compact subsets of Cn, where G(z) is a nonconstant holomorphic func-
tion on Cn. Therefore, for 1 � i � n,

∂Gμ(z)
∂ zi

=
ρμ

ϕ(‖aμ‖)
∂ f
∂ zi

(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖)z
)
→ ∂G(z)

∂ zi
(16)

uniformly on compact subsets of C
n.

Let K be a compact set containing z0. Suppose z0 ∈ Cn such that G(z0) = a ∈ E,
then by (15) and applying Lemma 4, there exists a sequence {z∗μ}→ z0 such that

f
(
aμ +

zμ

ϕ(‖aμ‖) +
ρμ

ϕ(‖aμ‖) z∗μ
)

= Gμ(z∗μ) = a.

For brevity, set ẑμ = aμ + zμ
ϕ(‖aμ‖) + ρμ

ϕ(‖aμ‖)z
∗
μ . Clearly, ẑμ ∈ Bn for sufficiently large

μ . Then, by the assumption, for sufficiently large μ , there exists M > 0 such that

sup
z∈ f−1(E)

f #(ẑμ)
ϕ(‖ẑμ‖) � M. (17)
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Thus,

G#
μ(z∗μ) =

ρμ

ϕ(‖aμ‖) f #(ẑμ) = ρμ
f #(ẑμ)

ϕ(‖ẑμ‖) ·
ϕ(‖ẑμ‖)
ϕ(‖aμ‖) � ρμM

ϕ(‖ẑμ‖)
ϕ(‖aμ‖) .

From (5), taking the limit, we have G#(z0) = lim
μ→∞

G#
μ(z∗μ) = 0. Hence, ∂G

∂ zi
(z0) =

lim
μ→∞

∂Gμ
∂ zi

(z∗μ) = 0 for all 1 � i � n. By the definition of f # and (17), we have

∣∣∣ ∂ f
∂ zi

(ẑμ)
∣∣∣ � (1+ | f (ẑμ)|2) f #(ẑμ) � M(1+max

b∈E
|b|2)ϕ(‖ẑμ‖). (18)

Therefore,

| ∂ 2Gμ
∂ zi∂ z j

(z∗μ)|
1+

∣∣∂Gμ
∂ zi

(z∗μ)
∣∣2 =

ρ2
μ

ϕ2(‖aμ‖) ·
| ∂ 2 f

∂ zi∂ z j
(ẑμ)|

1+ ρ2
μ

ϕ2(‖aμ‖) |
∂ f
∂ zi

(ẑμ)|2

=
ρ2

μ

ϕ2(‖aμ‖) ·
| ∂ 2 f

∂ zi∂ z j
(ẑμ)|

1+ | ∂ f
∂ zi

(ẑμ)|2
·

1+ | ∂ f
∂ zi

(ẑμ)|2

1+ ρ2
μ

ϕ2(‖aμ‖) |
∂ f
∂ zi

(ẑμ)|2

� M
ρ2

μ

ϕ2(‖aμ‖)
(
1+

∣∣∂ f
∂ zi

(ẑμ)
∣∣2)

� M
ρ2

μ

ϕ2(‖aμ‖)
(
1+[M(1+max

b∈E
|b|2)]2ϕ2(‖ẑμ)‖)

)

� ρμ
2M

(
1+[M(1+max

b∈E
|b|2)]2

)( ϕ(‖ẑμ‖)
ϕ(‖aμ‖)

)2

for all 1 � i, j � n. From (5) and (16), it implies that

(∂G
∂ zi

)#
(z0) = lim

μ→∞

(∂Gμ

∂ zi

)#
(z∗μ) = 0, 1 � i � n.

Hence, ∂ 2G
∂ zi∂ z j

(z0) = lim
μ→∞

∂ 2Gμ
∂ zi∂ z j

(z∗μ) = 0 for all 1 � i, j � n. It follows from Lemma 5

that G(z) is constant, a contradiction.
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