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A PROBLEM CONCERNING RIEMANN SUMS

T10SIF PINELIS

Abstract. An open problem concerning Riemann sums, posed by O. Furdui, is considered.

Let f: [0,1] — R be a continuous function. For natural n, let

n—1

xn:=2f(§> and  y, = Xp41 — X (1)

One may note here that x,/n is a Riemann sum approximating the integral fol f(x)dx.
Part (a) of Problem 1.32 in the book [3] is to find lim,, .y, if the function f is
continuously differentiable. It is not hard to do a bit more:

PROPOSITION 1. Whenever f is absolutely continuous, one has

fim y, = / ') d. )
0

n—oo

On the other hand, it is even easier to show this:

PROPOSITION 2. Whenever lim,_...y, exists, equality (2) holds.

Propositions 1 and 2 will be proved at the end of this note.
Part (b) of Problem 1.32 in [3] is the following question, which has so far remained
apparently unanswered:

What is the limit [in (2)] when f is only continuous?

By Proposition 2, this limit, if it exists, may only be fol f(x)dx. However, we have

THEOREM 3. There are continuous functions f: [0,1] = R for which limy_.c yn
does not exist.
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This is a pure existence theorem, and its proof, given below, is non-constructive.
So, the problem of explicitly constructing a continuous function for which lim,, .y,
does not exist remains open.

Proof of Theorem 3. It may come as a surprise that this proof uses a probabilistic
method. Let f be the random function W that is a standard Wiener process (Brownian
motion) over the interval [0, 1]. Then the probability that f is continuous everywhere
on [0,1] is I; see e.g. [4]. In fact, without loss of generality we may assume that all
realizations of the random function f = W are everywhere continuous.

Informally, the idea of this proof of Theorem 3 is that, while all realizations of W
are everywhere continuous, they are rather non-smooth, not only in the sense of being
nowhere differentiable, but also not being Hélder continuous with any exponent > 1/2,
in view of the (local) law of the iterated logarithm [4].

Now back to the formal proof: actually, Theorem 3 follows immediately from

LEMMA 4. For f =W, the distribution of the random variable y4; — y)s con-
verges to the centered normal distribution with variance 1/4.

(The convergence here and in the rest of the proof of Theorem 3 is as N 3 5 — oo.)

Indeed, if Theorem 3 were false, we would have y45 — yo; — O almost surely and
hence in distribution, which would contradict Lemma 4. So, to complete the proof of
Theorem 3, it remains to prove the lemma.

Proof of Lemma 4. Since y45 —yys is a centered normal random variable, it suffices
to show that

?
Eyas — v25)> 5 1/4, 3)

The proof of (3) consists in direct calculations, which are somewhat involved, though,
as we have to deal carefully enough with the discreteness in the definition of x,. In
carrying out this task, the choice of indices, 4s and 2s, in the statement of Lemma 4
turns out to be sufficiently convenient.

The just mentioned calculations are based on the formula

EW)W(v)=unv
for all u,v in [0,1]. By (1), for f =W,
ky 'S i ky o 2nt=3n+1
ijIEWU G)=2,Gr)-——— @

Somewhat similarly,

Expxpy1 =

&)
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It follows from (1), (4), and (5) that
Ey2=Exi.  +Ex2—2Exux,1 = 1/2. (6)
Now take any natural s. Similarly to (5), we have

45—12s—1 . k

J
Exgsx05 = 2 (— —)
o N\As 2
212k 5 21 4l
3252 — 185 +1
Z Z 4s+ 2 2 2s -7 12
=1 j=2k+1
4s 2s . k
Ex X ( A )
4s+1X25+1 = Jz’lg 4S—|— I 71
2s 2k—1 2s 4s—1 k 32S3 + 14S2
k=1 j=1 =1j= 2k25+1 125 +3 ’
4s 25—1
J k
Exgsy1xs = Z Z ( )
j 1 k=1 S+l 2S
NS f“‘i < k328728551
k=1 j=1 s+l 5 j=2k+1 2s 12s+3 ’
4s—1 2s .
J k
Exysxogr = 3, (— A >
SiisiNas s+l
Zizkz_,li—k s 4=l g
s B B e W A R
+ § 2k_2i+ i 4Sz_‘l k _ 6453 +28s> —7s—1
k=s+1 j=1 as k=s+1 j=2k—1 2s+1 245412

So,

Eyasyss = Exgsxog + Exagp 120541 — Exgg 1005 — Exggxogi g
125?495 +2 12
= 5 —
3252 4245+ 4 32

Thus, in view of (6),

11 12
E(yvas — yas)> =Ey2 +E 2 Eyu,vas 2 X— ==
(vas —¥2s) Vis +Ey3s — 2Eyaya — 2+2 T

so that (3) is verified, which completes the proof of Lemma 4. [

The proof of Theorem 3 is now complete as well. [

To conclude this note, it remains to prove Propositions 1 and 2.
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Proof of Proposition 1. Since f is absolutely continuous, there is a function g €
L'[0,1] such that

O)—l—/oxg(u)du:f(O)+/Olg(u)1{u <x}du (7

forall x € [0,1], where I{-} denotes the indicator. So, by (1),
k
xp=m—=1)f —|—/ g(u }du
yn = f(0) +1,(g) — Ju(g), 3)

L(g) = /Olg(u)l{u < nn?}du, Jau(g) = /Olg(u)h (u)du

and hence

where

and
ok k
(1) :%I{n+1<u<;}. )
Clearly,
lg) = ()~ 110) — £(1) - £(0). (10)

Here and in the rest of this proof, the convergence is as n — oo.

To deal with J,,(g), take any real € > 0. Since g € L'[0,1], by [, Corollary 4.2.2],
Jo |g(u) — g(u)|du < & for some continuous function g: [0,1] — R. Note also that
0< h, <1,since [L Ky [ﬂ Ky fork=1,...,n—1. So,

n+l’n n'n

[Jn(g) — Jn(8)] / lg(u) — g(u)|du < €. (11)

Introduce now the function g, by the formula

=Y (A <ty

k=1 n n

for u € [0,1]. Since the function g is continuous, it is uniformly continuous on [0, 1],
so that, in view of (9), ||gh, — &nhn|e = ||hn — &n||- — O and hence

[0 (&) = In(8n)| — 0. (12)

On the other hand, using the continuity of ¢ and integration by parts, we have

g‘ ()nnn+1 /g judu=Ff /f (13
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where f(x) := f(0)+ [ (u)du for x € [0,1]. By (7) and the second inequality in (11),

we have |7 — f| < & and hence | fy f(u)du— [, f(u)du| < €. Collecting now (8), (10),
(11), (12), and (13), we see that
/ Fu du

for any real € > 0, which completes the proof of Proposition 1. [

Proof of Proposition 2. The Stolz—Cesaro theorem ([5, pages 173-175] and

[2, page 54]) states the following: if (a,) and (b,) are sequences of real numbers

such that b, is strictly increasing to o and "*i Z: — ¢ e R, then Z—: — £. Now

Proposition 2 follows immediately by applying the Stolz—Cesaro theorem with a, = x;
and b, = n, since * — fol f(x)dx. O
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