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NEW CONVOLUTIONS ASSOCIATED WITH THE MELLIN TRANSFORM

AND THEIR APPLICATIONS IN INTEGRAL EQUATIONS

L. P. CASTRO ∗ , A. S. SILVA AND N. M. TUAN

In honor of Frank-Olme Speck on the occasion of his 75th birthday

Abstract. In this paper, we introduce two new convolutions associated with the Mellin transform
which exhibit factorization properties upon the use of certain weight functions. This is applied to
the solvability analysis of classes of integral equations. In particular, we present sufficient condi-
tions for the solvability of an integral equation and a system of integral equations of convolution
type.

1. Introduction

Integral transforms and its associated convolution operators have been studied and
used for a long time to solve many problems in applied mathematics, mathematical
physics and engineering science. A well-known and useful integral transform is the
Mellin transform. It was H. Mellin (1854–1933)who first gave a systematic formulation
of Mellin transform and its inverse. Although a change of variables shows that the
Mellin transform is closely related to the Laplace and Fourier transforms, there are
certain applications where it is convenient to operate directly with the Mellin transform.
Besides the applications to other sciences, also in mathematics the Mellin transform is
an important tool to the study of the behavior of many important functions such as
the zeta function and Dirichlet series occurring in number theory, and also the gamma
function occurring in the complex function theory (cf., e.g., [10, 13, 14]). The Mellin
transform shows to be also important in many other different subareas, as e.g. it is the
case of analysis of certain algorithms and probability theory (cf., e.g., [11]).

Convolutions are frequently used to help in the modeling of applied problems. If
considered in different ways and types, they allow distinct possibilities of “multiplica-
tion”, as well as different kinds of integral equations of convolution type. Additionally,
the convolutions of mathematical physics are often represented in form of some inte-
grals. Therefore, one of the important applications of convolutions is their association

Mathematics subject classification (2010): 44A35, 42A85, 44A15, 45E10, 45P05.
Keywords and phrases: Convolution, Mellin transform, convolution operator, factorization, integral

equations of the convolution type.
This work was supported by Fundação para a Ciência e a Tecnologia (FCT), within project UIDB/04106/2020

(CIDMA) and by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the num-
bers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

∗ Corresponding author.

c© � � , Zagreb
Paper JCA-16-08

65

http://dx.doi.org/10.7153/jca-2020-16-08


66 L. P. CASTRO, A. S. SILVA AND N. M. TUAN

to corresponding integral equations of convolution type (cf., e.g., [1, 3, 4, 5, 6, 7, 8, 9]),
and the consequent possibility to consider new integral classes (cf., e.g., [12]).

In this paper, we introduce two new convolutions and show how they can be ap-
plied to obtain the solutions of integral equations or systems of integral equations asso-
ciated with them. Throughout this paper, we will operate with the Mellin transform as
well as its classical associated convolution. Those will interact with our new convolu-
tions and, altogether, will allow us to obtain the below results. In view of this, we start
by presenting some topics from the theory of Mellin integral transforms which will be
useful in our further analysis.

Let R+ := (0,∞) be the set of positive real numbers and let L1(R+) be the space
of all (Lebesgue) measurable complex-valued functions f : R+ → C with the finite
norm

‖ f‖L1(R+) :=
∫ ∞

0
| f (u)|du.

In this sense, for some a ∈ R , we denote by L1({a}× iR) the set of all functions
g : {a}× iR→ C with g(a+ i·) ∈ L1(R) .

In what follows, for s∈C , we always denote such complex numbers by s = a+ ib ,
with a,b ∈ R .

DEFINITION 1. If f : R+ → C is a function such that f (x)xs−1 ∈ L1(R+) , for
some s ∈ C , then the Mellin transform is defined by the following identity

(M f ) (s) = f ∗(s) =
∫ ∞

0
f (t)ts−1dt, s ∈ {a}× iR. (1)

The inverse Mellin integral transform for a function f ∗ ∈ L1({a}× iR) is defined as

f (t) =
(
M−1 f ∗(s)

)
(t) =

1
2π i

∫ a+i∞

a−i∞
f ∗(s)t−sds, t > 0,

where the integral is understood in the sense of Cauchy principal value.

If f (x)xa−1 ∈ L1(R+) , for some a ∈ R , then the Mellin transform exists for all
s ∈ C , and the integral (1) is absolutely convergent. Moreover, the Mellin transform f ∗
is a continuous function on the line {a}× iR (cf. [2]). In this sense, let us describe an
appropriate spaces framework for which the Mellin transform exists.

DEFINITION 2. Let us consider the weight function w(x) = xa−1 for some a∈R .
The weighted Lebesgue space L1(R+,w) is defined by

L1(R+,w) := { f : R+ → C : f (x)xa−1 ∈ L1(R+)} (2)

with the associated norm given by

‖ f‖L1(R+,w) := ‖ f (x)xa−1‖L1(R+) =
∫ ∞

0
| f (u)|ua−1du.
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For f : R+ → C , a ∈ R , h ∈ R+ , we define the Mellin translation operator by

(τc
h f )(x) = hc f (hx), x ∈ R+.

The Mellin translation operator τ ã
h : L1(R+,w) → L1(R+,w) , for a, ã ∈ R , h ∈ R+ is

an isomorphism with (τ ã
h )−1 = τ ã

1/h and

‖τ ã
h f‖L1(R+,w) = hã−a‖ f‖L1(R+,w), f ∈ L1(R+,w) (3)

(cf. [2]).
Let f ∗g be the classic Mellin convolution of two functions f ,g : R+ →C defined

by

( f ∗ g)(x) =
∫ ∞

0
f
( x

u

)
g(u)

du
u

, x ∈ R+

whenever the integral exists. There hold the following properties.

THEOREM 1. [2, Theorem 3]

(a) If f ,g ∈ L1(R+,w) , then the convolution f ∗ g exists (a.e.) on R+ , belongs to
L1(R+,w) and one has

‖ f ∗ g‖L1(R+,w) � ‖ f‖L1(R+,w)‖g‖L1(R+,w).

In addition, xa f (x) is uniformly continuous and bounded on R+ , then f ∗ g is
continuous on R+ .

(b) (Convolution Theorem) If f ,g ∈ L1(R+,w) , then

[M ( f ∗ g)](s) = (M f )(s)(M g)(s), s ∈ {a}× iR.

(c) The convolution product is associative and commutative. In particular,
(L1(R+,w),+,∗) is a Banach algebra.

(d) The Parseval equality∫ ∞

0
f
(x

t

)
g(t)

dt
t

=
1

2π i

∫ c+i∞

c−i∞
f ∗(s)g∗(s)x−sds

holds true.

Note that the Mellin integral transform can be obtained from the Fourier integral
transform by the exponential substitution and rotating the complex plane by a right
angle:

(M f )(s) =
∫ ∞

0
f (t)ts−1dt =

∫ ∞

−∞
f (e−x)e−xsdx =

∫ ∞

−∞
f (e−x)e−axe−ibxdx = (Fg)(b),

with g(x) = f (e−x)e−ax . In the same way, the inverse of the Mellin transform and
its classical associated convolution can be obtained by the same substitutions from the
inverse of the Fourier transform and its associated convolution.
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2. New convolutions

In this section, we propose two new convolutions associated with Mellin integral
transform. One of the most important properties of a convolution is to satisfy a fac-
torization property which is typically associated with one or more than one integral
operators (i.e., a Convolution Theorem). In most of the cases, such factorization prop-
erty is fundamental to solve consequent integral equations which can be characterized
by those convolutions. In this sense, we show that the introduced convolutions exhibit
certain factorization identities when considering the integral operator under study. The
Mellin convolution operator plays an essential role in the further discussion.

DEFINITION 3. For any f and g ∈ L1(R+,w) (w(x) = xa−1 ), we define the con-
volution operator ⊕ by

( f ⊕g)(x) :=
∫ ∞

0

∫ ∞

0
e
−2 x2

v2 f
( v

u

)
g(y)

dv
v

du
u

. (1)

THEOREM 2. Let f and g ∈ L1(R+,w) (w(x) = xa−1 ). Then the convolution
⊕ of functions f and g belongs to L1(R+,w) and satisfies the following weighted
factorization identity associated with Mellin integral transform

M ( f ⊕g)(s) = ψ(s)(M f )(s)(M g)(s), (2)

where ψ(s) = 2−
s
2−1Γ

(
s
2

)
, s ∈ C .

Proof. Let f ,g ∈ L1(R+,w) . Using the identity
∫ ∞
0 e−2t2 ts−1dt = 2−

s
2−1Γ

(
s
2

)
(for ℜe(s) > 0), we obtain

ψ(s)(M f )(s)(M g)(s) = 2−
s
2−1Γ

( s
2

)∫ ∞

0
f (t)ts−1dt

∫ ∞

0
g(u)us−1du

=
∫ ∞

0
e−2v2

vs−1dv
∫ ∞

0
f (t)ts−1dt

∫ ∞

0
g(u)us−1du

=
∫ ∞

0
e−2y2 ∗ ( f ∗ g)(y)ys−1dy

=
∫ ∞

0

(∫ ∞

0
e
−2 y2

z2

∫ ∞

0
f
( z

w

)
g(w)

dw
w

dz
z

)
ys−1dy

=
∫ ∞

0

(∫ ∞

0

∫ ∞

0
e
−2 y2

z2 f
( z

w

)
g(w)

dw
w

dz
z

)
ys−1dy

= [M ( f ⊕g)](s).

Let us now prove that f ⊕g∈ L1(R+,w) . For that purpose, using the change of variable
z = x

v and considering (3), we obtain that

‖( f ⊕g)(x)‖L1(R+,w) =
∫ ∞

0
|( f ⊕g)(x)|xa−1dx

�
∫ ∞

0
|g(y)|

∫ ∞

0

∣∣∣∣ f
(

v
y

)∣∣∣∣va
∫ ∞

0
e−2z2za−1dz

dv
v

dy
y
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=
∫ ∞

0
|g(y)|

∫ ∞

0

∣∣∣∣ f
(

v
y

)∣∣∣∣va dv
v

dy
y

∫ ∞

0
e−2z2za−1dz

=
∫ ∞

0
|g(y)|

∫ ∞

0

∣∣∣∣ f
(

v
y

)∣∣∣∣va dv
v

dy
y

∫ ∞

0
e−2z2za−1dz

=
∫ ∞

0
|g(y)|ya−1dy

∫ ∞

0
y−a

∣∣∣∣ f
(

v
y

)∣∣∣∣va−1dv
∫ ∞

0
e−2z2za−1dz

= ‖g‖L1(R+,w)‖τa
u−1 f‖L1(R+,w)

∫ ∞

0
e−2z2za−1dz

= ‖g‖L1(R+,w)‖ f‖L1(R+,w)‖p‖L1(R+,w)

where p(z)= e−2z2 , z∈R+ . Since p∈L1(R+,w) , we conclude that f ⊕g∈L1(R+,w) .
�

Let us proceed with an additional convolution and its respective factorization prop-
erty.

DEFINITION 4. For any f and g ∈ L1(R+,w) (w(x) = xa−1 ), we define the con-
volution operator � by

( f �g)(x) :=
∫ ∞

0

∫ ∞

0
e−2 x

u f
(u

v

)
g(u)

dv
v

du
u

. (3)

THEOREM 3. Let f and g ∈ L1(R+,w) (w(x) = xa−1 ). Then the convolution �
of functions f and g belong to L1(R+,w) and satisfies the following weighted factor-
ization identity associated with Mellin integral transform

[M ( f �g)](s) = ϕ(s)(M f )(s)(M g)(s), (4)

where ϕ(s) = 2−sΓ(s) .

Proof. Let f ,g ∈ L1(R+,w) . Using the identity
∫ ∞
0 e−2t ts−1dt = 2−sΓ(s) (for

ℜe(s) > 0) and changing variables z = x
v , we obtain

ϕ(s)(M f )(s)(M g)(s) = 2−sΓ(s)
∫ ∞

0
f (t)ts−1dt

∫ ∞

0
g(y)ys−1dy

=
∫ ∞

0
e−2vvs−1dv

∫ ∞

0
f (t)ts−1dt

∫ ∞

0
g(y)ys−1dy

=
∫ ∞

0
e−2x ∗ ( f ∗ g)(x)xs−1dx

=
∫ ∞

0

[∫ ∞

0
e−2 z

u

∫ ∞

0
f
(u

v

)
g(v)

dv
v

du
u

]
zs−1dz

=
∫ ∞

0

[∫ ∞

0

∫ ∞

0
e−2 z

u f
(u

v

)
g(v)

dv
v

du
u

]
zs−1dz

= [M ( f �g)](s).
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Let us now prove that f �g∈ L1(R+,w) . For that purpose, using the change of variable
z = x

u and considering (3), we obtain that

‖( f �g)(x)‖L1(R+,w) =
∫ ∞

0
|( f �g)(x)|xa−1dx

�
∫ ∞

0
|g(v)|

∫ ∞

0

∣∣∣ f (u
v

)∣∣∣ua
∫ ∞

0
e−2zza−1dz

dv
v

du
u

=
∫ ∞

0
|g(v)|

∫ ∞

0

∣∣∣ f (u
v

)∣∣∣ua du
u

dv
v

∫ ∞

0
e−2zza−1dz

=
∫ ∞

0
|g(v)|

∫ ∞

0

∣∣∣ f (u
v

)∣∣∣ua−1du
dv
v

∫ ∞

0
e−2zza−1dz

=
∫ ∞

0
|g(v)|va−1dv

∫ ∞

0
v−a
∣∣∣ f (u

v

)∣∣∣ua−1du
∫ ∞

0
e−2zzc−1dz

= ‖g‖L1(R+,w)‖τa
v−1 f‖L1(R+,w)

∫ ∞

0
e−2zza−1dz

= ‖g‖L1(R+,w)‖ f‖L1(R+,w)‖q‖L1(R+,w)

where q(z) = e−2z , z∈R+ . Since q∈ L1(R+,w) , we conclude that f �g∈ L1(R+,w) .
�

3. Convolution integral equations

In this section we will apply our new convolutions to solve integral equations in
which those convolutions can be somehow considered. In view of this, let us consider
the following integral equation in L1(R+,w) :

λ ϕ(x)+
∫ ∞

0

∫ ∞

0
e
− 2x2

v2 ϕ
( v

u

)
g(u)

dv
v

du
u

= h(x),

λ ∈ C , x ∈ R+ , g,h ∈ L1(R+,w) and ϕ ∈ L1(R+,w) is to be determined.
We will use the notation

A(s) := λ + ψ(s)(M g)(s), (1)

where ψ(s) = 2−
s
2−1Γ

(
s
2

)
, s ∈ {a}× iR .

PROPOSITION 1.

(a) If λ �= 0 , then A(s) �= 0 for every s ∈ {a}× iR outside a finite interval.

(b) Assume that λ �= 0 and A(s) �= 0 for every s ∈ {a}× iR . Then M h ∈ L1({a}×
iR) if and only if M h

A ∈ L1({a}× iR) .

Proof. (a) Let us first observe that (M f )(s) =
∫ ∞
0 xa−1eib log(x) f (x)dx . By the

Riemann-Lebesgue Lemma, for any a which lies in the strip of analyticity of Mellin
transform of f (x) ,

lim
|b|→∞

(M f )(a+ ib) = 0,
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i.e., the Mellin transform is of f (x) vanishes at infinity in the strip of its analyticity (cf.
[2, Theorem 2]). Consequently, lim|b|→∞ A(s) = λ . Since λ �= 0, the result follows
from the analyticity of A(s) along the vertical line ℜe(s) = a .

(b) Assume that M h ∈ L1({a}× iR) . By the analyticity of A and lim|b|→∞ A(a+
ib) = λ �= 0, there is R > 0 such that inf|b|>R |A(s)| > ε1 , for any ε1 > 0. Since A is
analytic in {a}× iR and does not vanish in the compact set S(0,R)= {a+ ib∈C : |b|<
R} , there exists ε2 such that inf|b|�R |A(s)| > ε2 . We then have sups∈{a}×iR( 1

A(s) ) �
max{1/ε1,1/ε2}< ∞ . It follows that the function 1

|A(s)| is bounded on {a}× iR . Since

M h ∈ L1({a}× iR) , we have that M h
A ∈ L1({a}× iR) .

Conversely, from the assumption M h
A ∈ L1({a}× iR) and the function 1/A(s) is

analytic on {a}× iR , we can deduce that M h ∈ L1({a}× iR) and the proposition is
proved. �

THEOREM 4. Assume that A(s) �= 0 for every s ∈ {a}× iR and one of the follow-
ing conditions holds:

(i) M h
A ∈ L1({a}× iR);

(ii) λ �= 0 and M h ∈ L1({a}× iR) .

Then, equation (1) has a solution in L1(R+,w) if and only if M−1
(

M h
A

) ∈ L1(R+,w) .
Moreover, if the last condition holds, then the solution is given by

ϕ = M−1
(

M h
A

)
∈ L1(R+,w).

Proof. Let us first assume that (i) is fulfilled. Suppose that equation (1) has a
solution ϕ ∈ L1(R+,w) . Applying M to both sides of equation (1) and using the
factorization property (2), we obtain

A(s)(M ϕ)(s) = (M h)(s),

where M ϕ is the unknown function. Since A(s) �= 0 for s ∈ {a}× iR , it follows

(M ϕ)(s) = (M h)(s)
A(s) . As M h

A ∈ L1({a}× iR) , we apply the inverse of Mellin transform
to obtain

ϕ = M−1
(

M h
A

)
.

Suppose now that ϕ = M−1
(

M h
A

)
is the solution of equation (1). It implies that

ϕ ∈ L1(R+,w) . Applying the Mellin transform, we have M ϕ = M h
A , and thus, we

have
A(s)(M ϕ)(s) = (M h)(s).

Using factorization identity (2), we obtain

M

(
λ ϕ(s)+

∫ ∞

0

∫ ∞

0
e
− 2x2

v2 ϕ
( v

u

)
g(u)

dv
v

)
= (M h)(x).
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By the uniqueness of M , ϕ fulfills equation (1) for s ∈ {a}× iR .
Assume now that (ii) is fulfilled. In this case, the proof follows from Proposi-

tion 1. �

4. Systems of integral equations

In this section we will be considering systems of integral equations generated by
the previously introduced convolutions. Namely, let us consider the following system
of integral equations {

f (x)+ λ1(h⊕g)(x) = p(x)
g(x)+ λ2(k� f )(x) = q(x),

(1)

or equivalently, ⎧⎨
⎩ f (x)+ λ1

∫ ∞
0

∫ ∞
0 e

−2 x2

v2 h
(

v
u

)
g(u) dv

v
du
u = p(x)

g(x)+ λ2
∫ ∞
0

∫ ∞
0 e−2 x

v k
(

v
u

)
f (u) dv

v
du
u = q(x),

where, λ1,λ2 ∈ C , h,k, p,q ∈ L1(R+,w) , f and g ∈ L1(R+,w) are the unknown func-
tions.

Let us fix the notation

B(s) := 1−λ1λ2ϕ(s)ψ(s)M (k ∗ h)(s), (2)

where ψ(s) = 2−sΓ(s) and ϕ(s) = 2−
s
2−1Γ

(
s
2

)
.

PROPOSITION 2. Assume that B(s) �= 0 for any s∈ {a}+ iR . Then M h∈ L1(s∈
{a}+ iR) if and only if M h

B ∈ L1({a}+ iR) , for any h ∈ L1(R+,w) .

Proof. Let λ1,λ2 ∈ C and h,k ∈ L1(R+,w) . We first observe that

B(s) = 1−M (�∗ (k⊕h))(s),

where �(x) = e−2x ∈ L1(R+,w) . It follows that �∗ (k⊕h)∈ L1(R+,w) .
Suppose that B(s) �= 0 for any s ∈ {a}+ iR and assume that M h∈ L1({a}+ iR) .

By the Riemann-Lebesgue lemma for Mellin transform (cf. [2, Theorem 2]), for any a
which lies in the strip of analicity of Mellin transform of �∗ (k⊕h) ,

lim
|b|→∞

M (�∗ (k⊕h))(a+ ib)= 0.

Consequently,
lim
|b|→∞

B(a+ ib) = 1.

Thus, since B is analytic, there is an R > 0 such that

inf
|B|>R

|B(s)| > δ1, δ1 > 0.
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Since B is continuous in {a}+ iR and does not vanishes in the compact set S(0,R) =
{a+ ib∈ C : |b| � R} , there exists δ2 > 0 such that

inf
|B|�R

|B(s)| � δ2.

Then, we have that

sup
s∈{a}×iR

(
1

B(s)

)
� max

{
1
δ1

,
1
δ2

}
< ∞.

It follows that 1
B(s) is bounded in {a}+ iR . Since M h ∈ L1({a}+ iR) , we have that

M h
B ∈ L1({a}+ iR) .

Reciprocally, assume that M h
B ∈ L1({a}+ iR) and the function 1

B(s) is bounded in

{a}+ iR . We can deduce that M h ∈ L1({a}+ iR) and the proposition is proved. �

THEOREM 5. Suppose that the following conditions are verified:

(i) 1−λ1λ2ϕ(s)ψ(s)M (k ∗ h)(s) �= 0 ,

(ii) M (p−λ1(h⊕q))(s) ∈ L1({a}× iR) ,

(iii) M (q−λ2(k� p))(s) ∈ L1({a}× iR) ,

where ψ(s) = 2−
s
2−1Γ

(
s
2

)
and ϕ(s) = 2−sΓ(s) for s ∈ {a}× iR .

Then, the system (1) has the solution given in the form

f (x) = M−1
(

M (p−λ1(h⊕q))(s)
1−λ1λ2ϕ(s)ψ(s)M (k ∗ h)(s)

)
(x),

g(x) = M−1
(

M (q−λ2(k� p))(s)
1−λ1λ2ψ(s)ϕ(s)M (k ∗ h)(s)

)
(x), x ∈ R+.

Proof. Let p,q ∈ L1(R+,w) . Thus, f (x)+ λ1(h⊕g)(x) ∈ L1(R+,w) and g(x)+
λ2(k� f )(x) ∈ L1(R+,w) . Thus, we can apply the Mellin transform to both sides of
the two equations and use the factorization properties (2) and (4). We obtain{

(M f )(s)+ λ1ψ(s)(M h)(s)(M g)(s) = (M p)(s)
(M g)(s)+ λ2ϕ(s)(M k)(s)(M f )(s) = (M q)(s)

, (3)

where ψ(s) = 2−sΓ(s) and ϕ(s) = 2−
s
2−1Γ

(
s
2

)
.

We have that the determinant

D =
∣∣∣∣ 1 λ1ψ(s)(M h)(s)
λ2ϕ(s)(M k)(s) 1

∣∣∣∣= 1−λ1λ2ϕ(s)ψ(s)(M k)(s)(M h)(s) �= 0,
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for all s ∈ {a}× iR . Thus, we conclude that there exists a unique solution of the linear
system (3). Moreover, we have that

(M f )(s) =
(M p)(s)−λ1ψ(s)(M h)(s)(M q)(s)
1−λ1λ2ψ(s)ϕ(s)(M k)(s)(M h)(s)

=
M (p−λ1(h⊕q))(s)

1−λ1λ2ϕ(s)ψ(s)M (k ∗ h)(s)

and

(M g)(s) =
(M q)(s)−λ2ϕ(s)(M k)(s)(M p)(s)
1−λ1λ2ψ(s)ϕ(s)(M k)(s)(M h)(s)

=
M (q−λ2(k� p))(s)

1−λ1λ2ψ(s)ϕ(s)M (k ∗ h)(s)
,

each one belonging to L1({a}× iR) from conditions (ii) and (iii) and Proposition 2.
Therefore, we can apply the inverse of the Mellin transform and obtain

f (x) = M−1
(

M (p−λ1(h⊕q))(s)
1−λ1λ2ϕ(s)ψ(s)M (k ∗ h)(s)

)
(x),

g(x) = M−1
(

M (q−λ2(k� p))(s)
1−λ1λ2ψ(s)ϕ(s)M (k ∗ h)(s)

)
(x), x ∈ R+,

and f and g ∈ L1(R+,w) . �

5. Examples

In this section we will exemplify the above achievements with specific examples.

5.1. Example 1

Let us consider the integral equation

3i f (x)+
∫ ∞

0

∫ ∞

0
e
−2 x2

v2 f
( v

u

)
g(u)

dv
v

du
u

= h(x) (1)

where h(x) = e−
x2
4 , g(x) = 2e−2x2 ∈ L1(R+,w) and f (x) is the unknown function. We

have that h,g ∈ L1(R+) .
We have that

A(s) = 3i+2−s−1Γ2
( s

2

)
�= 0

for all s ∈ {1}+ iR (cf. fig 5.1).

Moreover, λ = 3i �= 0 and (M h)(s) = 1
2

(
1
4

)− 1
2 s Γ
(

1
2 s
) ∈ L1({1}+ iR) . In fact,

∫ ∞

0

∣∣∣∣∣12
(

1
4

)− 1
2 (1+ix)

Γ
(

1
2
(1+ ix)

)∣∣∣∣∣dx < 3.
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Figure 1: The graph of A(s) for s ∈ {1}+ iR .

Thus, applying the inverse of Mellin transform, we obtain the solution

f (x) = M−1

⎛
⎝ 1

2

( 1
4

)− 1
2 s Γ
( 1

2s
)

3i+2−s−1Γ2
(

s
2

)
⎞
⎠ .

5.2. Example 2

Let us now consider the system of integral equations (1) with λ1 = λ2 = 1, h(x) =
e−x , k(x) = e−x2

, p(x) = 2e−x4
and q(x) = 0, i.e.,

⎧⎨
⎩ f (x)+

∫ ∞
0

∫ ∞
0 e

−2 x2

v2
− v2

u2 g(u) dv
v

du
u = 2e−x4

g(x)+
∫ ∞
0

∫ ∞
0 e−2 x

v− v
u f (u) dv

v
du
u = 0

,

where f and g are the unknown functions.

We first observe that B(s) = 1−ϕ(s)ψ(s)M (k∗h)(s) = 1−2−
3
2 s−2Γ2

(
s
2

)
Γ2(s) �=

0 for s ∈ {2}+ iR (cf. fig 2).
Moreover, we have that

M (p−λ1(h⊕q))(s) =
1
2

Γ
( s

4

)
M (q−λ2(k� p))(s) = −2−s−2Γ(s)Γ

( s
2

)
Γ
( s

4

)
.
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Figure 2: The graph of 1−2−
3
2 s−2Γ2

( s
2

)
Γ2(s) �= 0 for s ∈ {2}+ iR .

Since ∫ ∞

0

∣∣∣∣12Γ
(

2+ ix
4

)∣∣∣∣dx < 3

and ∫ ∞

0

∣∣∣∣−2−2−ix−2Γ(s)Γ
(

2+ ix
2

)
Γ
(

2+ ix
4

)∣∣∣∣dx < 0,2,

we conclude that
1
2

Γ
(

2+ ix
4

)
∈ L1({2}+ iR)

and

−2−2−ix−2Γ(s)Γ
(

2+ ix
2

)
Γ
(

2+ ix
4

)
∈ L1({2}+ iR).

Thus, conditions (i)–(iii) of Theorem 5 are satisfied. Therefore, we can conclude that

f (x) = M−1

(
1
2 Γ
(

s
4

)
1−2−

3
2 s−2Γ2

(
s
2

)
Γ2(s)

)
(x),

g(x) = M−1

(
−2−s−2Γ(s)Γ

(
s
2

)
Γ
(

s
4

)
1−2−

3
2 s−2Γ2

(
s
2

)
Γ2(s)

)
(x), x ∈ R+.
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