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ON THE CHARACTERIZATION OF POLYNOMIALS AND

RATIONAL FUNCTIONS USING DIVIDED DIFFERENCES

FRANÇOIS DUBEAU

Abstract. In this paper we present two conjectures about the characterization of functions by
conditions on their divided differences. To analyze the conjectures and prove some results, we
recall some facts about the Hermite interpolation problem including the computation of divided
differences for positive and negative powers of x .

1. Introduction

This paper is concerned by direct and inverse results in the field of interpolation
and approximation. The goal of this paper is to present conjectures about characteri-
zation of functions by a condition on its n-th order divided difference which is the co-
efficient of xn of its Hermite interpolating polynomial. Many authors already worked
on special cases of this conjecture. Let us remark that only classical analysis tools are
required to obtain the presented results.

The Hermite interpolation problem is to look for a polynomial pn(x) ∈ Pn , the
set of polynomials of degree at most n , which agrees with the function f (x) in the
following sense

p(l)
n (xi) = f (l)(xi) (l = 0, . . . ,αi)

for i = 0, . . . ,r . The αi ’s are r+1 non negative integers, and the xi ’s are r+1 distinct
points on the real line. Also

n = r+
r

∑
i=0

αi,

and
α = max{αi : i = 0, . . . ,r} .

It is enough here that the function f (x) be differentiable up to the order α . A survey
of this problem is presented in [18].

For this problem we have the following existence and uniqueness result which has
some different proofs.
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THEOREM 1. [7, 10, 11, 28] There exists a unique polynomial pn(x) ∈ Pn ,
called Hermite polynomial, which agrees with the function f (x) .

The Hermite polynomial can be expressed as pn(x) = ∑n
k=0 akxk. The coefficient

an of xn depends only on f (x) and the sequence of points x0 , x1 , . . . , xr with their
multiplicity α0 , . . . , αr . So we use the notation

an = f [x0, . . . ,x0︸ ︷︷ ︸
α0+1

, . . . ,xr, . . . ,xr︸ ︷︷ ︸
αr+1

],

and call this coefficient the n -th order divided difference [14, 22].
As an application of the definition of divided differences we get the next two the-

orems which are, for our problem, direct theorems. These results concern the power
functions xl , for positive integer l > 0 and for l = −1. We consider two associated
inverse theorems stated here as conjectures. Both results characterize power functions
by the n-th order divided differences.

THEOREM 2. [6, 18] For n � 1 we have

xl[x0, . . . ,x0︸ ︷︷ ︸
α0+1

, . . . ,xr, . . . ,xr︸ ︷︷ ︸
αr+1

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for l = 0, . . . ,n−1,

1 for l = n,

∑r
i=0(αi +1)xi for l = n+1.

CONJECTURE 3. Suppose that for f (x) there exists a function G(x) such that to
any distinct x0 , x1 , . . . , xr , we have

f [x0, . . . ,x0︸ ︷︷ ︸
α0+1

, . . . ,xr, . . . ,xr︸ ︷︷ ︸
αr+1

] = G

(
r

∑
i=0

(αi +1)xi

)
.

Then f (x) is a polynomial of degree at most n+1 .

THEOREM 4. [18] For f (x) = 1/x we have

1
x
[x0, . . . ,x0︸ ︷︷ ︸

α0+1

, . . . ,xr, . . . ,xr︸ ︷︷ ︸
αr+1

] =
(−1)n

∏r
i=0 xαi+1

i

.

CONJECTURE 5. Suppose that for f (x) there exists a function G(x) such that to
any distinct non zero real numbers x0 , x1 , . . . , xr , we have

f [x0, . . . ,x0︸ ︷︷ ︸
α0+1

, . . . ,xr, . . . ,xr︸ ︷︷ ︸
αr+1

] = G

(
r

∏
i=0

xαi+1
i

)
.

Then there exists a constant a such that h(x) = f (x)− a
x is a polynomial of degree at

most n.
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The restriction r > 0 comes from the fact that for r = 0, pn(x) is the Taylor
polynomial of f (x) . So we have

f (n)(x)
n!

= f [ x, . . . ,x︸ ︷︷ ︸
(n+1)−times

] =

⎧⎨
⎩

G((n+1)x) for Conjecture 3,

G
(
x1+n

)
for Conjecture 5,

which gives no restriction on f (x) .
For those two conjectures we have proofs for two special forms of the interpolating

polynomial, namely for the Lagrange interpolating polynomial (n = r and αi = 0 for all
i = 0, . . . ,n ), and for an almost Taylor expansion (r = 1, with α0 = n−1 and α1 = 0).
So for many other situations proofs are waiting to be discovered.

Let us observe that these conjectures are associated to arithmetic mean for poly-
nomial and geometric mean for rational function. We could ask if there exists similar
conjectures for functions associated to other means.

2. Lagrange interpolation

For the Lagrange interpolation problem we have r = n and αi = 0 for i = 0, . . . ,n .
Several authors worked on Conjecture 3, see [1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 16, 17, 19,
20, 21, 22, 23, 24, 25, 26], much few worked on Conjecture 5, see [27]. Both results
are based on functional equations.

2.1. Lagrange interpolating polynomial

The Lagrange interpolating polynomial is

pn(x) =
n

∑
i=0

f (xi)�i(x) where �i(x) =
n

∏
k=0
k �=i

x− xk

xi − xk
.

So the coefficient of xn is

f [x0, . . . ,xn] =
n

∑
i=0

f (xi)
∏n

k=0
k �=i

(xi − xk)
.

It will be useful to assume that f (xk) = 0 for k = 0, . . . ,n , except for two different
indices i and j , because we could subtract to f (x) the Lagrange interpolating polyno-
mial of degree n− 2 such that pn−2(xk) = f (xk) for k = 0, . . . ,n , except for i and j .
This condition on f (x) does not change the coefficient of xn of pn(x) because

f [x0, . . . ,xn] = ( f − pn−2) [x0, . . . ,xn] .

Then we can write

f [x0, . . . ,xn] =
f (xi)

∏n
k=0
k �=i

(xi − xk)
+

f (x j)
∏n

k=0
k �= j

(x j − xk)
.
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Let f (x) = �i j(x)∏n
k=0
k �=i, j

(x− xk) , so

f [x0, . . . ,xn] =
�i j(xi)
xi − x j

− �i j(x j)
xi − x j

. (1)

2.2. Characterization of a polynomial

The proof of Conjecture 3 for this case is based on the following functional equa-
tion lemma.

LEMMA 6. [3] Suppose two functions v(x) and w(x) are such that

v(x)− v(y) = (x− y)w(x+ y) . (2)

Then v(x) = ax2 +bx+ c and w(x) = ax+b.

Proof. Replace y by −y in (2) to obtain

v(x)− v(−y) = (x+ y)w(x− y). (3)

Subtract (2) from (3) to get

v(y)− v(−y) = (x+ y)w(x− y)− (x− y)w(x+ y). (4)

Replacing x by −y in (2), we have

v(y)− v(−y) = 2yw(0). (5)

Since 2y = (x+ y)− (x− y) , (4) and (5) lead to

((x+ y)− (x− y))w(0) = 2yw(0)
= v(y)− v(−y)
= (x+ y)w(x− y)− (x− y)w(x+ y),

or
(x+ y) [w(x− y)+w(0)] = (x− y) [w(x+ y)+w(0)].

Set ξ = x+ y and ζ = x− y , then

w(ξ )+w(0)
ξ

=
w(ζ )+w(0)

ζ
,

which means that the ratio w(x)+w(0)
x is a constant, say a . With w(0) = −b , we get

w(x) = ax+b.

Finally, set y = 0 in (2), we get

v(x)− v(0) = xw(x) = ax2 +bx

and the result follows with c = v(0) . �
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THEOREM 7. Suppose that for f (x) there exists a function G(x) such that to any
distinct x0 , x1 , . . . , xn , we have

f [x0, . . . ,xn] = G

(
n

∑
i=0

xi

)
.

Then f (x) is a polynomial of degree at most n+1 .

Proof. We can write

G

⎛
⎜⎝[xi + x j]+

n

∑
k=0
k �=i, j

xk

⎞
⎟⎠= g(xi + x j) .

Let xi = x and x j = y in (1), then we have

�i j(x)− �i j(y) = (x− y)g(x+ y) .

So we can conclude from Lemma 6 and (1) that f (x) is a polynomial of degree n +
1. �

2.3. Characterization of a rational function

As for polynomial, the proof of this case of Conjecture 5 is based on the next
functional equation lemma.

LEMMA 8. [3] Suppose the two functions v(x) and w(x) are defined for x �= 0 .
Suppose we have

v(x)− v(y) = (x− y)w(xy) . (6)

Then w(x) = − a
x +b and v(x) = a

x +bx+ c.

Proof. Changing y by 1/y in (6), we get

v(x)− v(1/y) = (x−1/y)w(x/y). (7)

Subtract (6) from (7) to get

v(y)− v(1/y) = (x−1/y)w((x/y)− (x− y)w(xy). (8)

Using 1/y instead of x in (6), we get

v(y)− v(1/y) = (y−1/y)w(1). (9)

Since y−1/y = (y− x)+ (x−1/y) , (8) and (9) lead to

((y− x)+ (x−1/y))w(1) = (y−1/y)w(1)
= v(y)− v(1/y)
= (x−1/y)w(x/y)− (x− y)w(xy)) ,
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so
(x−1/y) [w(x/y)−w(1)] = (x− y) [w(xy)−w(1)] .

Set ξ = xy and ζ = y/x , then

ξ
[w(ξ )−w(1)]

ξ −1
= ζ

[w(ζ )−w(1)]
ζ −1

,

which means that x [w(x)−w(1)]
x−1 is constant, say a . So, we get

w(x) =
a
x
(x−1)+w(1) = −a

x
+b.

where b = a+w(1) . Finally, set y = 1 in (6) to get

v(x)− v(1) = (x−1)w(x) = (x−1)
[
−a

x
+b
]

=
a
x

+bx− (a+b),

and
v(x) =

a
x

+bx+ c,

where c = v(1)− (a+b) , and the result follows. �

THEOREM 9. Suppose that for f (x) there exists a function G(x) such that to any
distinct nonzero x0 , x1 , . . . , xn , we have

f [x0, . . . ,xn] = G

(
n

∏
i=0

xi

)
.

Then there exists a constant a such that f (x)− a
x is a polynomial of degree at most n.

Proof. We can write

G

⎛
⎜⎝[xix j]

n

∏
k=0
k �=i, j

xk

⎞
⎟⎠= g(xix j) .

Let xi = x and x j = y in (1), then we have

�i j(x)− �i j(y) = (x− y)g(xy) .

So we can conclude from the Lemma 8 and (1) that there exists a constant a such that
h(x) = f (x)− a

x is a polynomial of degree at most n . �

3. Almost Taylor’s expansion

For r = 1, α0 = n−1 and α1 = 0, Hermite interpolating polynomial looks like a
Taylor’s expansion of f (x) . Conjecture 3 was solved in [26], but we present a different
proof here. The result we present about Conjecture 5 is a new one.
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3.1. Taylor’s expansion and interpolating polynomial

In this case the Hermite interpolating polynomial is

pn(x) =
n−1

∑
j=0

f ( j)(x0)
j!

(x− x0) j + f [x0, . . . ,x0︸ ︷︷ ︸
n−times

,x1](x− x0)n,

so we obtain the following form of the Taylor’s expansion

f (x1) = pn(x1) =
n−1

∑
j=0

f ( j)(x0)
j!

(x1 − x0) j + f [x0, . . . ,x0︸ ︷︷ ︸
n−times

,x1](x1 − x0)n. (10)

3.2. Characterization of a polynomial

We establish the Conjecture 3 for which we present a modified version of the proof
given in [26].

THEOREM 10. Suppose that for f (x) there exists a function G(x) such that to
any two distinct x0 and x1 we have

f [x0, . . . ,x0︸ ︷︷ ︸
n−times

,x1] = G(nx0 + x1) . (11)

Then f (x) is a polynomial of degree at most n+1 .

Proof. From (10) and the condition (11), we have

f (x1) =
n−1

∑
j=0

f ( j)(x0)
j!

(x1 − x0) j +G(nx0 + x1)(x1 − x0)n (12)

Set
nx0 + x1 = (n+1)x,

or
(x1 − x0) = (n+1)(x− x0).

After a substitution, we have

f (x0 +(n+1)(x− x0)) =
n−1

∑
j=0

f ( j)(x0)
j!

(n+1)l(x−x0) j +G((n+1)x)(n+1)n(x−x0)n.

From this expression, we can conclude that G(x) is differentiable, and hence contin-
uous, up to order n− 1. From the same expression we also obtain that f (n−1)(x) is
differentiable, so f (n)(x) exists everywhere.
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Now reconsider (12) and set x1 = x0u to get

f (x0u) =
n−1

∑
j=0

f ( j)(x0)
j!

x j
0(u−1) j +G(x0(n+u))xn

0(u−1)n

Now differentiate this expression with respect to u to obtain

f ′ (x0u) =
n−2

∑
j=0

f ( j+1)(x0)
j!

x j
0(u−1) j

+G′ (x0(n+u))xn
0(u−1)n +G(x0(n+u))nxn−1

0 (u−1)n−1,

and then with respect to x0

f ′ (x0u) =
n−2

∑
j=0

f ( j+1)(x0)
j!

x j
0(u−1) j +

f (n)(x0)
(n−1)!

xn−1
0

(u−1)n−1

u

+G′ (x0(n+u))(n+u)xn
0
(u−1)n

u
+G(x0(n+u))nxn−1

0
(u−1)n

u
.

Now subtracting, we have

f (n)(x0)
n!

= G(x0(n+u))−G′ (x0(n+u))(u−1)x0.

Now set x = x0(n+u) to get

f (n)(x0)
n!

= G(x)− (x− (n+1)x0)G′ (x)

=
[
G(x)− xG′ (x)

]
+ x0(n+1)G′ ((n+1)x) .

In this last expression f (n)(x0) is linear with respect to x0 . The two coefficients of this
expression must be constant, so we can write⎧⎨

⎩
G(x)− xG′ (x) = c,

(n+1)G′ (x) = d.

Using the second equation in the first one leads to

G(x) = c+
d

n+1
x.

Then G(x) is a polynomial of degre at most 1, and consequently f (x) is a polynomial
of degree at most n+1. �
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3.3. Characterization of a rational function

We can adapt the preceding proof to obtain a proof of the Conjecture 5.

THEOREM 11. Suppose that for f (x) there exists a function G(x) such that to
any two non zero distinct x0 and x1 we have

f [x0, . . . ,x0︸ ︷︷ ︸
n−times

,x1] = G(xn
0x1) . (13)

Then there exists a constant a such that h(x) = f (x)− a
x is a polynomial of degree at

most n.

Proof. From (10) and the condition (13), we have

f (x1) =
n−1

∑
j=0

f ( j)(x0)
j!

(x1− x0) j +G(xn
0x1)(x1 − x0)n. (14)

Set
xn
0x1 = xn+1,

to obtain

x1 = x0

(
x
x0

)n+1

.

Replacing x1 by this expression in (14) allow us to conclude that G(x) is differentiable,
and hence continuous, up to order n−1. Moreover f (n−1(x) is differentiable, so f (n(x)
exists.

Reconsidering (14) and set x1 = x0u . After a substitution, we have

f (x0u) =
n−1

∑
j=0

f ( j)(x0)
j!

x j
0(u−1) j +G

(
xn+1
0 u

)
xn
0(u−1)n.

Let us compute the first derivative of f (x0u) with respect to u to obtain

f ′(x0u) =
n−2

∑
j=0

f ( j+1)(x0)
j!

x j
0(u−1) j

+G′ (xn+1
0 u

)
x2n
0 (u−1)n +G

(
xn+1
0 u

)
nxn−1

0 (u−1)n−1,

and with respect to x0 to obtain

f ′(x0u) =
n−2

∑
j=0

f ( j+1)(x0)
j!

x j
0(u−1) j +

f n(x0)
(n−1)!

xn−1
0

(u−1)n−1

u

+G′ (xn+1
0 u

)
(n+1)x2n

0
(u−1)n

uθ +G
(
xn+1
0 u

)
nxn−1

0
(u−1)n

u
.
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From those two expressions we get

f n(x0)
n!

= G
(
xn+1
0 u

)−G′ (xn+1
0 u

)
xn+1
0 u(u−1).

Let us introduce ξ = xn+1
0 u to replace u , which is u = ξ

xn+1
0

. We obtain

f n(x0)
n!

=
[
G(ξ )+ ξG′(ξ )

]−G′(ξ )

(
ξ 2

xn+1
0

)
.

So f n(x0) as a function of x0 leads to the system⎧⎨
⎩

G(ξ )+ ξG′(ξ ) = c,

G′(ξ )ξ 2 = d,

for two constant c and d . Using the second equation in the first, we get

G(ξ ) = c− d
ξ

.

Then f n(x0)
n! = c− d

xn+1
0

. So there exists a constant a such that h(x) = f (x)− a
x is a

polynomial of degree at most n . �
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