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SOME IMPROPER INTEGRALS INVOLVING THE SQUARE

OF THE TAIL OF THE SINE AND COSINE FUNCTIONS

SEÁN M. STEWART

Abstract. A class of four improper integrals containing the square of the tail of the sine and
cosine functions in their integrand are found using Fourier transform methods. Relations between
the four improper integrals considered are given and an open problem concerning the general
form of certain improper integrals of this type is raised.

1. Introduction and the main results

Recently the author proposed the following problem involving an improper inte-
gral containing the tail of the sine function [5]

∫ ∞

0

1
x2n+3

(
sinx−

n

∑
k=0

(−1)kx2k+1

(2k+1)!

)
dx =

(−1)n+1

(2n+2)!
π
2

. (1)

A similar improper integral for the tail of the cosine function can also be proposed

∫ ∞

0

1
x2n+2

(
cosx−

n

∑
k=0

(−1)kx2k

(2k)!

)
dx =

(−1)n+1

(2n+1)!
π
2

. (2)

In both cases n is a non-negative integer. Improper integrals related to (1) and (2) have
appeared in the literature in the past [7, Problem 1914, p. 329], [6]. Inspired by these
two improper integrals this paper is the product of an attempt to extend (1) and (2)
to the case where the integrand is squared. The problem of evaluating a convergent
improper integral after the integrand of some known convergent improper integral is
squared is particularly challenging. Perhaps the most famous example of a similarly
related improper integral to those we are going to consider here where the square of
the integrand of a known improper integral is taken is the well-known Dirichlet integral
and its square first found by Lindman in 1851 [4]

∫ ∞

0

sinx
x

dx =
∫ ∞

0

(
sinx
x

)2

dx =
π
2

.

In this particular example, the integral and the integral with its integrand squared so
happen to be equal.
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To help aid in writing more compactly the improper integrals we wish to consider,
we introduce the following two sum functions

sinn(x) =
n

∑
k=0

(−1)kx2k+1

(2k+1)!
and cosn(x) =

n

∑
k=0

(−1)kx2k

(2k)!
. (3)

Here n is a non-negative integer. We refer to these sum functions as the sine sum
function and the cosine sum function respectively. Each is just the n th partial sum of the
Maclaurin series expansion corresponding to the sine and cosine functions respectively.

In this paper we evaluate four classes of improper integrals involving the square
of the tail of the sine and cosine functions. More precisely, using Fourier transform
methods we find closed-form expressions for the following improper integrals:

In =
∫ ∞

0

(
cosx− cosn(x)

x2n+1

)2

dx, (4)

Jn =
∫ ∞

0

(
cosx− cosn(x)

x2n+2

)2

dx, (5)

Λn =
∫ ∞

0

(
sinx− sinn(x)

x2n+2

)2

dx, (6)

and

Πn =
∫ ∞

0

(
sinx− sinn(x)

x2n+3

)2

dx. (7)

In all cases n is a non-negative integer.
The main results of this paper are contained in the following theorems.

THEOREM 1. Let n be a non-negative integer and let In be the improper integral
given in (4). Then

In =
π

2(4n+1)[(2n)!]2
.

THEOREM 2. Let n be a non-negative integer and let Λn be the improper integral
given in (6). Then

Λn =
π

2(4n+3)[(2n+1)!]2
.

Our last theorem gives the relationship between the square of the tail of the cosine
improper integrals to their sine counterparts.

THEOREM 3. Let n be a non-negative integer and let Jn and Πn be the improper
integrals given in (5) and (7) respectively. Then

Jn = Λn and Πn = In+1.
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2. Two lemmas and the proofs of the main results

We begin by recalling two special types of functions that will be needed. The first
is the signum function. It is defined by

sgn(x) =

⎧⎪⎨
⎪⎩
−1 x < 0,

0 x = 0,

1 x > 0.

The second is the indicator function χI(x) on the interval I . It is defined to be equal
to unity when x ∈ I and zero otherwise. As we will be making use of the Fourier
transform, for a function f ∈ L2(R) (a square-integrable function) the convention we
adopt is

f̂ (ω) = F{ f (x)} =
1√
2π

∫ ∞

−∞
f (x)e−iωx dx.

Here i is the imaginary unit. In our analysis we will also be making use of Plancherel’s
theorem. It states that if g ∈ L2(R) , then

∫ ∞

−∞
|g(x)|2 dx =

∫ ∞

−∞
|ĝ(ω)|2 dω . (8)

We now present a lemma that establishes for what indices of x in the denominator
improper integrals of the form (4) through to (7) converge.

LEMMA 1. For a ∈ R and n a non-negative integer, convergence in the improper
integrals is as follows:

(a)
∫ ∞

0

(cosx− cosn(x))2

xa dx where 4n+1 < a < 4n+5 , and

(b)
∫ ∞

0

(sinx− sinn(x))2

xa dx where 4n+3 < a < 4n+7 .

Proof. For the improper integral in (a) write it as

∫ ∞

0

(cosx− cosn(x))2

xa dx =
∫ 1

0

(cosx− cosn(x))2

xa dx+
∫ ∞

1

(cosx− cosn(x))2

xa dx.

The first of these improper integrals converges for a < 4n + 5 since the integrand is
O(x4n+4−a) as x → 0+ . For the second improper integral it converges for a > 4n+ 1
since the integrand is O(x4n−a) as x → ∞ . On combining the two results, for the
improper integral in (a) it converges for all 4n+1 < a < 4n+5.

Similarly, for the integral in (b) write it as

∫ ∞

0

(sinx− sinn(x))2

xa dx =
∫ 1

0

(sinx− sinn(x))2

xa dx+
∫ ∞

1

(sinx− sinn(x))2

xa dx.
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The first of these improper integrals converges for a < 4n + 7 since the integrand is
O(x4n+6−a) as x → 0+ . For the second improper integral it converges for a > 4n+ 3
since the integrand is O(x4n+2−a) as x → ∞ . On combining the two results, for the
improper integral in (b) it converges for all 4n + 3 < a < 4n + 7 and completes the
proof. �

From this Lemma it is immediate the improper integrals In , Jn , Λn , and Πn con-
verge for all non-negative n .

Before we prove the main results of this paper we need a lemma concerning two
related binomial identities.

LEMMA 2. If n is a non-negative integer and x ∈ R , then the following binomial
identities hold:

(a)
n

∑
k=0

(
2n
2k

)
x2k =

1
2

[
(x+1)2n +(x−1)2n] , and

(b)
n

∑
k=0

(
2n
2k

)
x2k

2k+1
=

(x+1)2n+1 +(x−1)2n+1

2x(2n+1)
.

Proof. Applying the binomial theorem we have

(x+1)2n +(x−1)2n =
2n

∑
k=0

(
2n
k

)
xk +

2n

∑
k=0

(
2n
k

)
(−1)kxk

= 2
2n

∑
k=0

k∈even

(
2n
k

)
xk = 2

n

∑
k=0

(
2n
2k

)
x2k,

after a shift in the index of k �→ 2k is made, from which the result in (a) follows. For
the result in (b), starting with the result in (a), replacing x with t before integrating
with respect to t from 0 to x immediately gives the result. �

We are now in a position to prove Theorem 1.

Proof. We commence by first finding the Fourier transform for the function

gn(x) =
cosx− cosn(x)

x2n+1 ,

where n is a non-negative integer. As gn(x) ∈ L2(R) , from the linearity property of the
Fourier transform we are able to write

ĝn(ω) = F{gn(x)} = F
{ cosx

x2n+1

}
−

n

∑
k=0

(−1)k

(2n)!
F

{
1

x2n−2k+1

}
. (9)

Consider the first of the Fourier transforms appearing to the right of the equality
in (9). It can be found by applying the modulation property for the Fourier transform
[3, p. A-14], namely

F{ f (x)cosx} =
f̂ (ω +1)+ f̂ (ω −1)

2
. (10)
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Here we will set fn(x) = 1/x2n+1 . Since 1
xm where m is a positive integer is not locally

integrable its integral is to be interpreted as a Cauchy principal value (pv) integral which
when differentiated with respect to x gives a Hadamard finite part (fp) integral. A
homogeneous distribution can then be defined by the distributional derivative [1, pp.
241, 246]

1
xm := fp

1
xm =

(−1)m−1

(m−1)!
dm

dxm log |x| = (−1)m−1

(m−1)!
dm−1

dxm−1 pv
1
x
. (11)

If one now restricts the domain of the Fourier transform to the space

X = {ϕ ∈ S (R) : ϕ(0) = 0},

where ϕ is any test functionwithin the Schwartz space S (R) (the space of functions of
C ∞ class that, along with all their derivatives, rapidly decay) then the Fourier transform
of (11) is well defined as the Fourier transform of a tempered distribution [1, pp. 300–
304]. Indeed one has [3, p. A-6]

F

{
1
xm

}
= F

{
pv

1
xm

}
= −i

√
π
2

(−iω)m−1

(m−1)!
sgn(ω). (12)

On setting m = 2n+1 we have

F

{
1

x2n+1

}
= −i

√
π
2

(−iω)2n

(2n)!
sgn(ω).

Combining this result with the modulation property given in (10) gives

F
{ cosx

x2n+1

}
= − i

2

√
π
2

(−1)n

(2n)!
[
(ω +1)2n sgn(ω +1)+ (ω −1)2n sgn(ω −1)

]
. (13)

Next consider the second of the Fourier transforms appearing to the right of the
equality in (9). From (12), on setting m = 2n−2k+1 � 1, as n � k � 0, we see that

F

{
1

x2n−2k+1

}
= −i

√
π
2

(−1)n−kω2n−2k

(2n−2k)!
sgn(ω). (14)

Thus

n

∑
k=0

(−1)k

(2k)!
F

{
1

x2n−2k+1

}
= −i

√
π
2

(−1)nω2n

(2n)!
sgn(ω)

n

∑
k=0

(
2n
2k

)
1

ω2k .

Setting x = 1/ω in the first of the binomial identities given in Lemma 2 leads to

n

∑
k=0

(−1)k

(2k)!
F

{
1

x2n−2k+1

}
= − i

2

√
π
2

(−1)n

(2n)!
[
(ω +1)2n +(ω −1)2n]sgn(ω). (15)
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Combining the results found in (13) and (15) into (9) one has

ĝn(ω) = − i
2

√
π
2

(−1)n

(2n)!
[
(ω +1)2n (sgn(ω +1)− sgn(ω))

+(ω −1)2n (sgn(ω −1)− sgn(ω))
]
,

giving

|ĝn(ω)|2 =
π

2[(2n)!]2
(1−|ω |)4nχ[−1,1](ω).

We are now in a position to apply Plancherel’s theorem to the function gn(x) . Doing so
yields

∫ ∞

−∞

(
cosx− cosn(x)

x2n+1

)2

dx =
π

2[(2n)!]2

∫ 1

−1
(1−|ω |)4n dω =

π
(4n+1)[(2n)!]2

.

As the integrand of the integral appearing to the left of the equality is even between
symmetric limits, the desired result for In then follows. �

The proof of Theorem 2 proceeds in an almost identical manner as to Theorem 1.

Proof. We commence by first finding the Fourier transform for the function

gn(x) =
sinx− sinn(x)

x2n+2 ,

where n is a non-negative integer. As gn(x) ∈ L2(R) , from the linearity property of the
Fourier transform we are able to write

ĝn(ω) = F{gn(x)} = F

{
sinx
x2n+2

}
−

n

∑
k=0

(−1)k

(2n+1)!
F

{
1

x2n−2k+1

}
. (16)

Consider the first of the Fourier transforms appearing to the right of the equality
in (16). It can be found by applying the modulation property for the Fourier transform
[3, p. A-14], namely

F{ f (x)sinx} =
f̂ (ω −1)− f̂ (ω +1)

2i
. (17)

Here we will set fn(x) = 1/x2n+2 . Setting m = 2n+2 in (12), on combining this result
with (17) we find

F

{
sinx
x2n+2

}
=

i
2

√
π
2

(−1)n

(2n+1)!
[
(ω −1)2n+1 sgn(ω −1)− (ω +1)2n+1 sgn(ω +1)

]
.

(18)
The second of the Fourier transforms appearing to the right of the equality in (16) has
previously been found in Theorem 1. It is just (14). Thus

n

∑
k=0

(−1)k

(2k+1)!
F

{
1

x2n−2k+1

}
= −i

√
π
2

(−1)nω2n

(2n)!
sgn(ω)

n

∑
k=0

(
2n
2k

)
1

(2k+1)ω2k .
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Setting x = 1/ω in the second of the binomial identities given in Lemma 2 leads to

n

∑
k=0

(−1)k

(2k+1)!
F

{
1

x2n−2k+1

}
=− i

2

√
π
2

(−1)n

(2n+1)!
[
(ω +1)2n+1− (ω −1)2n+1]sgn(ω).

(19)
Combining the results found in (18) and (19) into (16) one has

ĝn(ω) =
i
2

√
π
2

(−1)n

(2n+1)!
[
(ω −1)2n+1 (sgn(ω −1)− sgn(ω))

−(ω +1)2n+1 (sgn(ω +1)− sgn(ω))
]
,

giving

|ĝn(ω)|2 =
π

2[(2n+1)!]2
(1−|ω |)4n+2χ[−1,1](ω).

We are now in a position to apply Plancherel’s theorem to the function gn(x) . Doing so
yields

∫ ∞

−∞

(
sinx− sinn(x)

x2n+2

)2

dx=
π

2[(2n+1)!]2

∫ 1

−1
(1−|ω |)4n+2 dω =

π
(4n+3)[(2n+1)!]2

.

As the integrand of the integral appearing to the left of the equality is even between
symmetric limits, the desired result for Λn then follows. �

Finally, as the proof for Theorem 3 follows in a manner similar to the proofs given
in Theorems 1 and 2, they will not be given here.

3. An open problem

From Lemma 1 there is one other positive integer value in the index for x ap-
pearing in the denominator for which the improper integrals given in (a) and (b) of the
lemma converge. They are

∫ ∞

0

(cosx− cosn(x))2

x4n+3 dx, (20)

and ∫ ∞

0

(sinx− sinn(x))2

x4n+5 dx. (21)

The method of Fourier transforms cannot be applied to either of these improper integrals
in order to find their general forms as Fourier transforms for

F

{
1

x2n+ 3
2

}
and F

{
1

x2n+ 5
2

}
,

are required but are not known. The evaluation of improper integrals (20) and (21) can
at least be made for low orders in n . One way to achieve this is by using a result from
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the theory of Laplace transforms. Under suitable conditions on the regularity of the
functions f and g as x → 0+ and their rate of decay as x → ∞ one has

∫ ∞

0
f (x)g(x)dx =

∫ ∞

0
L { f (x)}L −1{g(x)}ds. (22)

Here L and L −1 denote the Laplace transform and the inverse Laplace transform
respectively. As a technique for the evaluation of improper integrals it is quite old (see,
for example, [2, pp. 209–212]) though appears to be not widely known.

Applying the result of (22) to the improper integral given by (20) when n = 0, one
has

∫ ∞

0

(cosx−1)2

x3 dx =
∫ ∞

0
L
{
(cosx−1)2}L −1

{
1
x3

}
ds

=
∫ ∞

0

3s
(s2 +1)(s2 +4)

ds

=
∫ ∞

0

[
s

s2 +1
− s

s2 +4

]
ds

=
1
2

[
log

(
s2 +1
s2 +4

)]∞

0
= log(2).

In a similar manner it can be shown that

n = 1 :
∫ ∞

0

(
cosx−1+ x2

2!

)2

x7 dx =
2
45

log(2)− 11
720

,

n = 2 :
∫ ∞

0

(
cosx−1+ x2

2! − x4

4!

)2

x11 dx =
2

14175
log(2)− 1321

21772800
.

Based on these low order results for n we conjure that

∫ ∞

0

(cosx− cosn(x))2

x4n+3 dx = an log(2)−bn,

where an = 24n+1/(4n+2)! and bn is a non-negative rational number.
Likewise, for lower orders in n for the improper integral (21) it can be shown that

n = 0 :
∫ ∞

0

(sinx− x)2

x5 dx =
1
3

log(2)− 1
12

,

n = 1 :
∫ ∞

0

(
sinx− x+ x3

3!

)2

x9 dx =
1

315
log(2)− 19

15120
,

n = 2 :
∫ ∞

0

(
sinx− x+ x3

3! − x5

5!

)2

x13 dx =
2

467775
log(2)− 6983

3592512000
.
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Based on these low order results for n we conjure that

∫ ∞

0

(sinx− sinn(x))2

x4n+5 dx = αn log(2)−βn,

where αn = 24n+3/(4n+ 4)! and βn is a positive rational number. The problem of
determining general expressions for bn and βn remain open.
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