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CERTAIN PROPERTIES OF SPIRALLIKE SAKAGUCHI TYPE
FUNCTIONS CONNECTED WITH ¢g-HYPERGEOMETRIC SERIES

SERAP BULUT*, B. SRUTHA KEERTHI AND BALAKRISHNAN SENTHIL

Abstract. We discuss the properties like coefficient estimation, subordination results and Fekete-
Szeg6 problem for certain subclass of spirallike Sakaguchi type functions associated with g—
hypergeometric series.

1. Introduction
Let 7 be the class of all functions of the form
f)=z+mP+a> + - (1)

which are holomorphic in the open unit disc U = {z: |z < 1} and denote . the
subclass of <7 consisting of functions that are univalent in U.

A function f € 7 is said to be in the class of a—spirallike functions of order f3
in U which we denote .7 Z(a., B) if

%{ei‘)‘sz;—g)}>ﬁcosa, zeU )

for 0 < 8 < I and some real o with —% <a < 7.

The class . Z(a,) was studied by Libera [1] and Keogh and Merkes [2].
Note that . % (a,0) is the class of spirallike functions introduced by Spacek [3],
S P(0,B) =S*(B) is the class of starlike functions of order § and .7 £2(0,0) = S*
is the class of starlike functions.

Let & be the class of analytic functions @ € 7 that satisfy the conditions @(0) =
0 and |o(z)| < 1, for |z] < 1.

For functions f,g € o7 given by (1) we define its Hadamard product by

(f%8)(2) = 24 asbrz® + azb3z> + - -, zeU. 3)
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Jackson [4] reintroduced and started a systematic study of the g—difference operator.
Namely, by him for g € (0,1), the Jackson’s g-derivative operator or g—difference
operator for a function f € o7 is defined by

flqz) = f(2)
D) =4 gz = 7°, 4)
7(0), z=0

which is now sometimes referred to as Euler—Jackson derivative or simply g—derivative.
For the power function A(z) = 7", observe that

Note that
lim D, (h(z)) = lim[n]," ' =n""' = 1 (2),
q—1 q—1
where //(z) is the ordinary derivative and [n], is the g—integer or basic number 7.
The g—shifted factorial is defined for a € C as a product of n factors by

@a) _{1, n=0
D=V -a)(1—ag)...(1—ag™™), neN:=={1,2,..}

For further properties and applications of g-calculus one can refer to [4, 5, 6, 7, 8, 9]
and to the reference cited therein.

The g-hypergeometric function is a power series in one complex variable z, which
coefficients depend on [ upper and m lower parameters and are built by products of g—
shifted factorials. Namely,

oo

I n(a2;q)n .. (ar;q)n n (2) em—l
ma,...;a7b7. m,C]7 1 40 o
v, ( 1 1HU1 ,;) (bh ) ] -(bm;q)n [( ) ]

2,....omand ¢ #0, [ >m+1, I,me Ny=NU{0},
= m+ 1, the g—hypergeometric series takes the form

Here b; #0,—-1,-2,...;j =1,
) and

while z € U. For g € (0,1

+1 . & (ar;q)n(az;q)n - (@ms13@)n ,
Aly. ey pi1, b1,y b q,2) = zZ,
Vi e B b 2) = 2 S e

which converges absolutely in the open unit disk U.
Now, for functions f € &/ and for reala,b parameters we introduce the linear
operator .#"1(q,z) : & + < in the form
1 1
T g, =2y (al,az, am+1;b1,b2,...,bm;q,z)

o (a1;39)n—1(a2;q)n— At 15q)n—
43 B)n-1(a2:q@)n-1- - (@mi1:@)n-1
n—2 q Q)n l(bl’ )n— ~~~(bm;Q)n—1

_Z+Z m+l
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e (@001 (2:0)0 1 - (@n139)
N v o o e ®
Throughout our study for f € o7, we write
Fuf(2) = FMtl(g.2) =z+ Z "0, q)and". (6)
From (4) and (6), we get
D Z,f(2)] = 1+ 2 ot (n,q) In]gan?"" &

where ¢1(n,q) is given by (5).
Making use of the generalized g-hypergeometric differential operator .7, f(z), we
introduce a new subclass of spirallike functions as follows.

DEFINITION 1. For 0<A <1,0<B<land -5 <a<Z,[f|<1,1#1,we
let 5% (o, B,A,t) be the subclass of </ consisting of functions f € </ of the form (1)
and satisfying the analytic condition:

R o (1 _I)Z}l_qu[yqf(Z)]
(Faf (&) = Py f(tx)]*

where D,[.%, f(z)] is given by (7).

}>[3cosa, zeU,

EXAMPLE 1. For r =0, we let 77 (a,,A,0) =% (o, B, 1) be the subclass
of &/ consisting of functions f € & of the form (1) and satisfying the analytic condi-

tion: 2
17
m{eia%}>ﬂcosa, ze U,
q

where D,[.%, f(z)] is given by (7).

EXAMPLE 2. For A =0 and r =0, we let 5% (o, 3,0,0) = 7% ,(a, ) be the
subclass of &7 consisting of functions f € & of the form (1) and satisfying the analytic

condition: D7 f(2)
R ia*ql 7 q) 2
{e Z, af (2)
where D,[.%, f(z)] is given by (7).

} > Bcosa, zeU, @)

EXAMPLE 3. For A =1, welet 5 (a,B,1,t) =2 ,(o,,t) be the subclass of
</ consisting of functions f € 7 of the form (1) and satisfying the analytic condition:

R{e'“Dy[F,f(2)]} > Beosa, z€e U, 9)

where D,[.%, f(z)] is given by (7).
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EXAMPLE 4. For A =1 and o =0, we let J7(0,8,1,1) = . %,(B,t) be the
subclass of &7 consisting of functions f € &/ of the form (1) and satisfying the analytic
condition:

R{Dy[F,f(2)]} > B, zel,
where D,[.%, f(z)] is given by (7).
The motivation of the current work is to examine the coefficient estimates and sub-
ordination properties for the class of functions (o, 3,4,1). Related consequences

of the earned results are also presented.
Throughout this paper, unless otherwise stated, we assume that

1| <1, t#1.

T T
0<7L<17 O<ﬁ<l, —§<(X<§,

2. Coefficient estimates

In this section we obtain sufficient conditions for a function f € &/ belonging to
the class J7;(a,B,4,1).

THEOREM 1. Let f € o/ and let & be a real number with 0 < o < 1. If

[(1—1)gf' lD[ Z4f(2)]
[Zqf(2) = Fof (t2)]'

l|<1-o0, ze U, (10)

then f € (o, B,A,t), provided that |a| < cos™ (i:—")

Proof. From (10), it follows that
[(1=1)g]' 4Dy [F4f(2)] _
[Fqf(2) — tgqf(tz)}liA
where w(z) € #. We have

io [(1 _I)Z}lilD [ﬁ f(Z)] _ io io
= (1-0)R{e“W(z)} +cosa > —(1 — &)[e®w(z)| +cos o
—(l—0)4coso = Pcosa,

provided || < cos™! (1 ﬁ> Thus the proof is completed. [

COROLLARY 1. Let f € o and assume ¢ =1— (1 —3)cosc. If

[(1=0)7'*Dy[Fyf(2)]
[yqf(z - <¢t]]c(tz)]l_)L

)
then f € (o, B, A t).

<(1-B)cosa, zeU, (11
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Now, we present another sufficient condition for f € &7 to be in J7;(ct, 3,2 ,1).

THEOREM 2. A function f € o of the form (1) belongsto (o, B,A,t) when

=3

> g — (1= A)un)sec o+ (1= B)(1 = A)uny oy (n,q) lanl <1 =B, (12)

_n
where u, = 11_’t .

Proof. In view of above Corollary 1, we have

[(1=0)2 A {1+ 35 it (n, q)an([n] gz}
[(1—r P {1432, ol (0, )z}
L3, @ (n,q)an[n] 2! ‘

—1< (1=
’1+<1—A>z o gt | S 1T P)eosr
Yo ([aly — (1= A)u) @ (n, )
l_zn Z(PI?ZH( n,q )(1_ )un|an‘

—1<(1—=B)cosx

< (1—=p)cosa,

n=2

> ((lg— (1= 2)un) g (n,q) an| < (1 —ﬁ)cosa{l - i on ! (n,q)(1 - %)unlan} :
which means
> (Il — (1= A)un)sec o+ (1= B)(1—A)ua} gt (n,q)lan] < 1B

Thus the proof is completed. [

COROLLARY 2. A function f € & of the form (1) isin &P 4(at,B, 1) if

oo

D A(nlg =1+ A)seca+ (1= B)(1—2A)} @h ™ (n,q) lan| < 1—B.

n=2

COROLLARY 3. The function f € o of the form (1) is in the class & P4(o., B),
if

> {([nlg—)seco+(1—B)} o) "n,q) an] <1-B.

n=2

COROLLARY 4. The function f € </ of the form (1) isin ./ 2 ,(a, B,t) if,

oo

. [nlgseco @y (n.q) an| < 1-B.
n=2
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COROLLARY 5. The function f € o/ of the form (1) belongsto P 4(B,t) if,

> g ont! (n,q) |an| < 1-B.
n=2
For the sake of brevity throughout this paper we will use the shorthand
dn(o, B, A) = ([n]g— (1= A)un)secor+ (1 —B)(1 —A)u, (13)

Our next result gives the coefficient estimates for functions in the class 7 (o, 3,A,1).

THEOREM 3. If f € 75 (o,B,A,t), then

1-B

lan| < — , n=234.... (14)
dn(0t, B, 2) o™ (n,q)
The result if sharp for the functions f,(z) given by
1—
fn(Z)Zz+ P 4 n=23,4,....

du(0, B, )@ (n,q)

Proof. If f € 75 (a,B,A,t), then we have for each n > 2

=

du(0t, B, A) gy (1, ) an| < Z (o, B.A) gy (n.q) lan| < 1P

So the estimate (14). Since

l_ﬁ n

do(c B A)on ()

satisfies the conditions of Theorem 2, f,,(z) € 7 (a, B,A,t) and the equality is attained
for this function. [

Ja(z) =2+ n=2734,...

REMARK 1. We observe that Corollary 3 yields the result of Silverman [10] for
the special values of o and f3.

3. Subordination results

In order to obtain subordination results for the class (o, 3,A,7), we need the
following definitions and the lemma due to Wilf [11].

DEFINITION 2. Let g,h € o7 . The function g is said to be subordinate to the func-
tion &, denoted by g < h, if there exists a function @ € # such that g(z) = h(w(z)),
forall z€ U.
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DEFINITION 3. Let ¥ be the subclasses of % consisting of convex function,
defined analytically the equivalences

[ETC — 9?{1+ij:,//((;))}>0.

DEFINITION 4. [11] A sequence {c,};_, of complex numbers is said to be a
subordinating factor sequence if, whenever

g(z) =z+ Y, bt
n=2

is regular, univalent and convex in U, we have

Y bucat <g(z), zel. (15)
n=1

LEMMA 1. [11] The sequence {c,};_, is a subordinating factor sequence iff

9%{1+22cnz"}>0, zeU. (16)

n=1
THEOREM 4. Let f € (o, B,A,t) and g € €, then

dy(a. B, M) (2,9)
2{1 = B+da(e, B, A) g (2,9)}

(f+8)(z) < 8(2), 17)

where
dy(o, B, A) ={[2]g— (1 —=A)uz}seco+ (1 —B)(1 —A)us (18)

and

1—B+da(o, B, )" (2,9)
R{f(2)} >~ TR zeU. (19)

dy(aBA)opt (2.9)
2{1-B+dy (. B. 1) ol (2.9)}

The constant factor n (17) cannot be replaced by a larger

number.

Proof. Let f € (o, B,A,t) satisfy the coefficient inequality (12) and suppose

that g(z) =z+ Y buz" € €. Then by Definition 4, the subordination (17) of our theo-
n=2
rem will hold true if the sequence

(detbgeg }“’
21- BB )on 20} S,
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is a subordinating factor sequence, with a; = 1. By Lemma 1, it is evident to prove

(0B (2,q) .
{1+222ﬂ—ﬂ+dﬂaﬁl)m“(qﬂ%z}>0

In view of (12), where |z| = r < 1, we obtain

blep o e &,
%{1+{1_B+d2(aﬁx) m+l( 7Q)}n=l "Z}
dr(a. B, A ) ot (2,9) <
TRt e o) |2
d(0 . ) (2,q)  Xrada(en B A) et (2,q)lanlr
1Bt B A)gn T (2.9) 1-Btda(aBA)en T (2.q)
_ 1 _ﬁ+d2(avﬁ7x’) ;’1111+1(27CI)
1_ﬁ+d2(avﬁvx’)(p$+l(27Q)

Hence, equation (17) holds. Now, the inequality (19) follows from (17) by taking

> 0.

g = IL =z+ 2 7' € €. Therefore, we get
-z n=2

dy(o, B, A)gpt (2,9)
2{1 - B+da(o. B, A) g (2,9)}
(o, B, M) ont' (2,9)
R >R
1P tdn(o Aol 2q)) {f(@} > R{e()}
(o, B, 1) (2,9)
2{1—B+dy(a. B, M) n " (2,9)}
which implies (19). The sharpness of the multiplying factor in (17) can be established
by considering a function
1-8 2

F(z :z— z
& e e 2a)
Clearly F € s, (a,3,A,t). By (17), we infer that
dy(o, B, M) ot (2,9)
2{1—B+do(ct, B, 1) 00" (2,9)}
and it follows that,

f(z) <g(2)

R} >~

1
=——=, z€U

d2((x ﬁ A‘) m+l(2 q) F(Z)}:l
' 2

mmh{%v-+waﬁmm“@m}

dy(0.B.2) 05" (2.9)

This shows that the constant (@B Ao 2]

cannot be replaced by any larger
one. [J

In view of Examples 2 and 3, we state the following corollaries for the Theorem 4.
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COROLLARY 6. If fe S P ,(o,B) and g € €, then

lgseco+(1—B)lop'(2.9)
2{1 =B+ [gseca+(1-B)lon*(2,9)}

(fx8)(z) < g(2) (20)

where
—B+lgseca+(1-B)lent'(2,9)

[gseco+(1-B)lon™(2,9)

[gseca+ (1—B)opt!(2,q)

2{1—B+[gseca+(1-PB)lon""(2,9)}
place by a larger one.

R{f(2)} >

zeU.

The constant factor

n (20) cannot be re-

COROLLARY 7. If f € S P 4(a,B,t) and g € €, then

(1+g)seca @ 1(2,9)
2{1-B+(1+¢)seca (p;'ff“(zyf])}

(f+8)(z) < g(2) (1)

where
1—B+(1+g)seca gp*'(2,q)
(1+q)seca @i (2,q)

zeU.

R} > -

(1+q)seca @1(2,q)
2{1—B+(1+q)seca o' (2,9)}

The constant factor n (21) cannot be replaced

by a larger one.

4. The Fekete-Szeg6 problem

The Fekete-Szego consists form deriving sharp upper bounds for the functional
las — ;,La%\ for various subclasses of <7 (see [12, 13]). In order to obtain sharp upper
bounds for ,ua%| for the class 7 (ct,,A,t) the following lemma is required
(see, eg. [14, p. 108]).

LEMMA 2. Let the function @ € % be given by

)= 0,7, zeU. (22)

Then |0y <1, || < 1— || and

}a}z—swf} < max{1,|s|} (23)

Sfor any complex number s. The function ®(z) =z and ©(z) = 2

rotations show that both inequalities (22) and (23) are sharp.

or one of their
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For the constants o, 8, with 0 <8 <1 and || < § denote

1+e e —2Bcosaz
-z

Pap(2) = , z€eU. 24)

The function p g(z) maps the open unit disk onto the half-plane

Hyp={z€C:R{%z} > Beosa}.

If pop(z) =1+ Y paz", then it is easy to check that

n=1
Pn=2¢"%(1—B)cosa (25)

for all n > 1. First we obtain sharp upper bounds for the Fekete-Szego functional
|as — ua3| with y real parameter.

THEOREM 5. Let f € J5(a,,A,t) be given by (1) and let . be a real number.
Then

’03 —ua%| <
2(1-B)eosa | 201=B)(1-Mwyn(5)  2u(1-B)ys (M) (3.9) ;
W3( ) m+1(3 11) |: [WZ(}L)]Z [ ( )] [(an»l( )]2 + 1:| l.f.”“ < 6
% fo<u<é
2(1—B)cosar | 2u(1-Blya(M)em*'(3.q) 201-B)(1-Vuzyn(%) _ :
(Ao (3.9) [ w2 (M)Plem ™ (2.9)2 (w2 (1)]? 1] ifu >0
(26)
where . . )
gy = (Rl ba (1 Aug [0 2.0 o
1+q+q —(l—l) 3] ont ( )
(I—B)[1+q+q2—(1—l) 3] %’ﬁ“(&q) ’
1—g"
=g =l rarg g (29)
Vu(A) =[gn— (1 —ANuy], forn=2,3 (30)

and @"1(2,q), @1 (3,q) are defined by (5) with n=2 and n =3, respectively. All
estimates are sharp.

Proof. Suppose that f € (o, 3,A,1) is given by (1). Then, from the definition
of the class % (e, B,A,1), there exists ® € B, (z) = ®1z+ @z* + 032> + -+ such
that

[(1—n)]'™ AD a[F4] (2)]
[Zaf (2) = Fof (12)]' 4

=pop(®(3)=1+piz+p+---, z€U. (3D
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From (25) we have _
p1=p2=2e"%(1—P)cosa.

Now LHS of (31) is given by

Lo (2,9 {1+~ (1 - Auzbarz
ot B, +q+¢*— (1-A)uslay ,
~lop ' 2.0 - M [14+g - B [T

1+ 90 (2,0) {2 — (1 - Aua)anz
(P;Zl1+l(3 q)[Q3— (1 —l)ug}a3 2+“.
o P = A [a2 = (1= Byw] 3 [ F

1+ on(2,9)ya(2)arz
ot (3,9)ya(A)as ,
{ (o 1(2,9) (1= A)uzy (%)ag 2 (32)
where g, and v, (1) are given by (29) and (30) respectively.

Equating the coefficient of z and z> on both sides of (31) and taking (32) in ac-

count, we obtain
P10;

va(M)omt(2,q)

o (- (3) )
S e G TP T e P @

and thus we obtain

a) =

and

2¢7%(1—B)cosa
= 33
ar ) (2.q) o (33)

@y = 2 MU= Peosa {a)ﬁ- (1+ 2R e ey (%>p%> aﬂ] (34)

vs(M)entl(3,q) [v2(A)]? !

Now

jas — paj|
2(1—PB)cosa
S rew]
2¢7%(1—B)cosa AN, . ont'(3,9) 2
e (e (5) 0 MY () iy, >>"“’1}
2(1—B)cosa

)t (3,9)

[(1—[o1]?) + |1+ Me “cosar| o]
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where
(v (5)0-me @ ELED) Gy
Now
las — pdd| < W[I—F(U—FMK"“COS(X—l)a)1|2]
<%[1+<\/1+M[2+Mcosa}cosa—1)mlﬂ
= me, (x.y) € 0,17, (36)

where F(x,y) =1+ ( 1+ M2+ Mx]x— l)yz, x=coso, y=|w.

Simple calculation shows that the function F(x,y) does not have a local maximum
at any interior point of the open rectangle (0,1)?. Thus, the maximum must be attained
at the boundary point. Since F(x,0) =1, F(0,y) =1 and F(1,1) = |1+ M|, it follows
that the maximal value of F(x,y) may be F(0,0)=1 or F(1,1)=|1+M]|. So,

2(1—B)cosa
|a3 - [,La%| S m+1
w3 (L) (3,9)

Case 1: If u < &;, where 0; is given by (27), then M > 0 implies |1+ M| > 1
Now from (37) we get

2(1—B)cosa
w(A)ent! (3,9)

Ly 20t (3) i - puserc.a
[va ()P [vo () Ploi ™ (2.0)

max{1,|l+M|}. (37)

|a3 —#a%| <

which is the first part of the inequality (26).

Case 2: If 01 < U < &, where &, is given by (28), then |1 + M| < 1, thus from
(37), we obtain
2(1—B)coso
3

w(A)ent(3,9)
which is the second part of the inequality (26).

Case 3: If u > &,, where &, is given by (28), then M < —2 and it follows from

|a3 —Ha%} <

(37)

L 2(1—B)coso
s 1 < e G

2u(1-Blys()ont! (3.q)  2(1-B)(1 - Mwyn(3)

2 ()P [on ™ (2,9) [y2(2)P?
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which is the third part of the inequality (26). [

2 or one of

In view of Lemma 2, the results are sharp for ®(z) =z and ©(z) =z
their rotations.
Next, we consider the Fekete-Szeg6 problem for the class 77 (o, B,A,1) with p

complex parameter.

THEOREM 6. Let f € Hg(at,B,A,t) be given by (1) and let u be a complex

number. Then,
2(1—PB)cosa

v e Y

|a3 - #a%’ <
where

~ 2¢7(1—B)cosa M_ A A
S TR (“‘/’3(“[(!,’%(2’(1)}2 W2<2>(1 1) 2> 1. (39)

The result is sharp.

Proof. Assume that f € (o, ,A,1). Making use of (31) and (32) we obtain

laz — pa3| <

2(1 —p)cosa 2¢ (1 —B)cosa 2
v ()i (3, 00) _{ [vo(1)2 (“Vz(-)(l—l)uz

2
' (3.4) ) - 1}(02 < M‘

— T — (oz—Sa)2|7
[on 1 (2,q))? w(A)ont (3, ) !

+uys(1)

where S is given by (39). U

The inequality (38) follows by appying Lemma 2.

REMARK 2. By specializing the parameter A =0 and A = 1, one can state the
above discussed results for function f in the subclasses defined in Example 2 and 3,
respectively.
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