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STATISTICAL CONVERGENCE IN 2-METRIC SPACES

FATIH NURAY

Abstract. In this paper, notions of statistical convergence, statistically Cauchy sequence, -4y
and lacunary statistical convergence in 2-metric space will be introduced. Also some inclusion
relations between these concepts will investigated.

1. Introduction

Definition of statistical convergence of number sequences was given by Fast [5].
In [22] Schoenberg obtained some fundamental properties of statistical convergence
and also examined the concept as a summability method.

Let (X,d) be a metric space. If for every € >0,

lim Lk < dx) > £} =0,
then we say that (x,) is statistically convergent to x, here |K| denotes the cardinality
of the set K. For this case we write st — limx,, = x. limx, = x implies st —limx, = x,
therefore statistical convergence is a regular summability method.

f is said to be statistically continuous at x provided that whenever a sequence (x;)
is statistically convergent to x then the sequence (f(x,)) is statistically convergent to
F(x) (see [4]).

In 1960’s, Géhler has introduced the very important concept of 2-metric by gen-
eralizing the concept of metric. The concept of 2-metric gives the basic properties of
the area function of a triangle determined by three vertices in Euclidean spaces. Gihler
has studied the various properties of 2-metric spaces in his papers [1 1, 12]. Gihler first
defined 2-metric space as follows:

DEFINITION 1. [11,12]Let X #0. d: X> — R is said to be a 2-metric on X if

(M1) given distinct elements u,v € X, there exists an element w € X such that
d(u,v,w) #0

(M2) d(u,v,w) =0 when at least two of ,v,w are equal,

(M3) d(u,v,w) =d(u,w,v) =d(v,w,u) forall u,v,w € X, and

(M4) d(u,v,w) < d(u,v,z) +d(u,z,w) +d(z,v,w) forall u,v,w,z € X.

When d is a 2-metric on X, then the ordered pair (X, d) is called a 2-metric space.

Very typical example of 2-metric d(u,v,w) is the area of the triangle spanned by
U, v, w.
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EXAMPLE 1. Take X = [0,1]. Define d: X> — R as
d(u,v,w) =min{|u—v|,|v—ul,|w—ul}

where u,v,w € X. Now, (X,d) is a 2-metric space.

DEFINITION 2. [11, 12] (X,d) is said to be bounded if sup{d(u,v,w) : u,v,w €
X} <oo.

DEFINITION 3. [11, 12] A sequence (x,) in X is said to be a Cauchy sequence if
forall a € X,
lim  d(x,,xm,a) =0.
n,m—oo
DEFINITION 4. [11, 12] A sequence (x,) in X is said to be convergent to an
element x € X if forall a € X,
lim d(x,,x,a) = 0.
n—oo
DEFINITION 5. [11, 12] A complete 2-metric space is one in which every Cauchy
sequence in X converges to an element of X .

A 2-metric space is not topologically equivalent to an ordinary metric. For exam-
ple, every metric space is first countable, but 2-metric spaces may not first countable[ 1 6].
In this case, there is no simple relationship between the results obtained in metric spaces
and the results obtained in 2-metric spaces. In a metric space a convergent sequence
is a Cauchy sequence but in a 2-metric space may not be a Cauchy sequence, but if
the 2-metric d is continuous on X, then each convergent sequence becomes a Cauchy
sequence[19]. Although a metric is continuous on X, the 2-metric may not be continu-
ous.

This concept has been considered by many authors (see [7], [14], [15], [17], [20],
[21], [23], [24]). The reader may refer to the textbooks/monographs [2] and [18] for
sequence spaces and related topics, and basic concepts of summability theory.

In Section 2, notions of statistical convergence and statistically Cauchy sequence
in 2-metric space will be introduced. In Section 3, notions of Ng and lacunary statistical
convergence in 2-metric spaces will be introduced. In Section 3 we will investigate
some inclusion relations between these concepts.

2. Cesaro and statistical convergence

In this section, we present the definitions of Cesaro and statistical convergence in
2-metric spaces and the relations between them.

DEFINITION 6. A sequence (x,) in X is said to be Cesaro convergent to an ele-
ment x € X if forall a € X,

1
lim —

n—oo n

n
2 d(xy,x,a) =0.
k=1
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Let & be the set of Cesaro convergent sequences, that is,

€ ={(x,) CX: lim— Zd Xp,X,a) =0, for some x}.

n—o0 n

DEFINITION 7. A sequence (x,) in X is said to be a statistically Cauchy sequence
if for all @ € X and for every € > 0

1
lim —|[{k,{ <n: d(xg,xp,a) 2 €} =0

n—oo n
or equivalently
11m—|{k£ n: d(xg,xpa) <e}|=1.

n—oo N
In this case, we write
st — lim d(xp,x%m,a) =0.

n,m-—oo

DEFINITION 8. A sequence (x,) in X is said to be statistically convergent to an
element x € X if for all a € X and for every € >0

1
lim —[{k <n: d(x,x,a) 2 €} =0
n—oo N
or equivalently
lim —|{k< n: d(xg,x,a) <ep|=1.

n—oo N
In this case, we write
st — lim d(x,,x,a)=0.

n,m—oo
Let . be the set of statistically convergent sequences, i.e.,
1
S ={(x)CX: lim—-|{k<n: d(xg,x,a) =€} =0, forsomeux}.
n—oo N

In a metric space a statistically convergent sequence is a statistically Cauchy sequence
but in a 2-metric space a statistically convergent sequence may not be a statistically
Cauchy sequence.

EXAMPLE 2. Let X ={0,1,1,1,1,...}. Define d : X* — [0,) by

1, 1fx7éy7ézand{n,n+l} C {x,y,z} forneN
d(x,y,2) =
0, otherwise
Then (X,d) is a complete 2-metric space. Let define the sequence (x,) by
1, n is square integer
X, =
" %, otherwise

The sequence (x,) is statistically convergent to 0 but is not a statistically Cauchy se-
quence.
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THEOREM 1. Let (X,d) be 2-metric space and d be statistically continuous on
X. If the sequence (x,) is statistically convergent then (x,) is statistically Cauchy.

Proof. 1f st —limx, = x, then by statistical continuity of d, we have

st — lim d(xp,Xp,x) = st — lim d(x,x,x). (D)

By using property (iv) of 2-metric, we can write
d(xn7x1n7a) < d(xmx»a) +d(x»xm»a) +d(xn7xm7x)~
From this inequality and (2.1), we get that

st — lim d(xp,Xm,a) =0

n,m-—oo

forall a € X, that is, (x,) is statistically Cauchy. O

THEOREM 2. Let (x,) be a sequence in 2-metric space (X,d). Then
1. if (x,) is Cesaro convergent to x then (x,) statistically convergent to x.

2. If (X,d) is bounded and (x,) statistically convergent to x then (x,) Cesaro
convergent to x.

Proof. 1) Let (x,) be Cesaro convergentto x. For € > 0 and every a € X, we get

1 1 L 1
_Zd(xk7x,a): - Z d(x;“x,a)—i—; Z d(xg,x,a)

M=o oS P}
d(xg.x.a)>¢e d(xgx.a)<e

1 n

2 - Z d(xk7x7a)
n k=1

d(rpea)ze

1

> {1 <k<n:d(x,x,a) > elle

Hence, we have

1
lim —[{1 <k<n:d(xg,x,a) =€} =0
n—oo N
thatis, (x,) statistically convergentto x.
ii) Now suppose that (x;) is bounded and statistically convergentto x, since (X,d)
is bounded, say d(xg,x,a) < K for all k and every a € X. For € >0 and every a € X
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we get
1 & 1 n n
- Zd(xhxva) = - Z d(xk7x7a) + Z d(xk7x7a)
n k=1 n k=1 k=1
d(xg.x.a)>¢e d(xgx.a)<e
1 n n
<-|K 2 1+ Y dxx.a)
n k=1 k=1

d(xg,x,a)>€ d(xgxa)<e

1 LS
SK-|{l <k<n:d(xe,xa) =g} +- ) e
n Ly

Hence, we have

n—oo n

L

lim — 2 d(xg,x,a) =0,
k=1

thatis (x,) is Cesaro convergentto x. [J

3. 4p and lacunary statistical convergence

First, we recall the concept of lacunary sequences. A lacunary sequence [6] is an
increasing integer sequence 6 = (p,) such that po =0 and #, = p, — p,_| — oo as
r — oo. The intervals (p,_1,p,] determined by 6 = (p,) will be denoted by J,.

DEFINITION 9. Let 6 = (p,) be any lacunary sequence. A sequence (x,) in X is
said to be .4 -convergent to an element x € X if for all a € X and for every € > 0,

1
lim — Z d(xg,x,a) =0.

reelr ey,

The set of .4y -convergent sequences will be denoted A5 .

DEFINITION 10. Let 6 = (p,) be any lacunary sequence. A sequence (x,) in X
is said to be lacunary statistically convergent to an element x € X if for all a € X and
for every € >0,

1
lim t—\{k €Jy: d(xg,x,a) 2 €} =0

r—o0

or equivalently

1
lim t—\{k €Jy: d(xg,x,a) <e}|=1.
Let .% be the set of lacunary statistically convergent sequences, that is,

1
Fo={(x)CX: lim t—|{k6],: d(xg,x,a) > €}| =0, forsome x}.

r—o0

The proof of the following theorem similar to that of Theorem 1, so we state it
without proof.
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THEOREM 3. Let (x,) be a sequence in 2-metric space (X,d) and 6 = (p,) be
any lacunary sequence. Then, the following statements hold:

1. if (x) is A -convergent to x then (x,) . -convergent to x.

2. If (X,d) is bounded and (x,) p-convergent to x then (x,) N - convergent to
X.

By using the similar techniques to that in Lemmas 2.1 and 2.2 of [6], we can prove
following theorems. These theorems state the relationships between Cesaro conver-
gence and g -convergence and between statistically convergence and lacunary statis-
tically convergence in 2-metric space.

THEOREM 4. Let 0 = (p,) be any lacunary sequence and (X,d) be a 2-metric
space. Then the following statements hold:

1. € C A if and only if liminf, ppil > 1.

2. Ny €€ if and only if limsup, p”fl < oo,

3. € =Ny if and only if

1 < liminf 22 < limsup -~
T Pr-1 r Pr-1

< oo,

Proof. We only prove (1). The others can be proved by the similar way used in
proving Lemmas 2.1 and 2.2 of [6].
If liminf, p * > 1 there exists o > 0 such that 1+ o <

pose that (x,) € % hence we can write

I—dek,xa dek,xa——dek,xa)

" kely
1 Pr pr—l 1 Pr—
dnva)) = F (0= T dlsera)
< 2 xkxa P 2 xkxa

Pri=1 Pr—1 1=

Since t, = p, — p,—1, we have

1 _
Pr +Ocandm<

— < — <
4 a :

Q=

Therefore right side of above equality tends to zero as r — oo, it follows that x € 45 .
Suppose that liminf, p”il = 1. We can select a subsequence (p,,) of lacunary
sequence 6 = (p,) such that

1
P <1+— and 252l S i where ri =z riop+2.
Pri—1 Pri_y
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Now consider the 2-metric d in Example 1.1, and define (x;) by

= l,keJ,, forsomei=1,2,...
=0, otherwise

Then for any x € X and forall a € X,

1
— 2 d(xg,x,a) =|1—x| fori=1,2,3,....

Ti kel

1
— Y d(xp,x,a) = |x|  forr#r;.
r kel

It follows that (x;) ¢ Ag. But (x;) is Cesaro convergent, since if m is any sufficiently
large integer we can find the unique i for which p,, | <m < p,,,, 1 and write

ot 2
d(Xk7x,6l) < Pri-y 4 < -
1 Pri—1 l

M=

1
my

as m — oo it follows that (x;) € €. O

THEOREM 5. Let 0 = (p,) be any lacunary sequence and (X,d) be a 2-metric
space. Then the following statements hold:

1. % C % if and only if liminf, pfil > 1.

2. S C.7 if and only if limsup, Pi)jl < oo,

3. =Sy ifand only if

1 < liminf pr

r

Pr < Jimsup < oo,

Pr—1 r Pr—1

THEOREM 6. Let 0 = (p,) be any lacunary sequence and (X,d) be a 2-metric
space. If (x,) € .7 C Sy, then Sy —lim(x,) = .7 —lim(xy).

Proof. Assume that . — lim(x,) = x and .%y —lim(x,) =y and x # y. Then
d(x,y,a) #0. From (M3) and (M4) we can write

d(x,y.a) < d(x,x,y) +d(x, x,a) +d (. y,a) 2

for all xi,x,y,a € X. Forall a € X, taking € < %d(x,y,a) from inequality (3.1), we get

1
lim —|{k <n: d(x,ya)>e}|=1.

n—eo N
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Consider the ith term of the statistical limit expression
limy o 1 {k <n: d(xi,y,a) > €}

1 i
EHkE U7 dix,ya) > €}

r=1

=%E|{k61r: d(xi,y,a) > €}| 3)

Lr=1

1 &1
= — Ztrt—\{keJr:d(xk,y,a)>8}|—>0.

i
r=1lrr=1 I

Since 6 = (p,) is a lacunary sequence (3.2) is a regular weighted mean transformation
of the sequence converging to zero, so that itself converges to zero as i — oo. Also since
this is a subsequence of

{%Hkg n: d(x,ya) > 8}‘}

we infer that .
lim —|[{k <n: d(x;,y,a) > e} #1,

n—eo N

and this contradiction shows that we can not take x #y. [
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