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STATISTICAL CONVERGENCE IN 2–METRIC SPACES

FATIH NURAY

Abstract. In this paper, notions of statistical convergence, statistically Cauchy sequence, Nθ
and lacunary statistical convergence in 2-metric space will be introduced. Also some inclusion
relations between these concepts will investigated.

1. Introduction

Definition of statistical convergence of number sequences was given by Fast [5].
In [22] Schoenberg obtained some fundamental properties of statistical convergence
and also examined the concept as a summability method.

Let (X ,d) be a metric space. If for every ε > 0,

lim
n→∞

1
n
|{k � n : d(xk,x) � ε}| = 0,

then we say that (xn) is statistically convergent to x, here |K| denotes the cardinality
of the set K. For this case we write st − limxn = x . limxn = x implies st− limxn = x ,
therefore statistical convergence is a regular summability method.

f is said to be statistically continuous at x provided that whenever a sequence (xn)
is statistically convergent to x then the sequence ( f (xn)) is statistically convergent to
f (x) (see [4]).

In 1960’s, Gähler has introduced the very important concept of 2-metric by gen-
eralizing the concept of metric. The concept of 2-metric gives the basic properties of
the area function of a triangle determined by three vertices in Euclidean spaces. Gähler
has studied the various properties of 2-metric spaces in his papers [11, 12]. Gähler first
defined 2-metric space as follows:

DEFINITION 1. [11, 12] Let X �= /0 . d : X3 → R is said to be a 2-metric on X if
(M1) given distinct elements u,v ∈ X , there exists an element w ∈ X such that

d(u,v,w) �= 0
(M2) d(u,v,w) = 0 when at least two of ,v,w are equal,
(M3) d(u,v,w) = d(u,w,v) = d(v,w,u) for all u,v,w ∈ X , and
(M4) d(u,v,w) � d(u,v,z)+d(u,z,w)+ d(z,v,w) for all u,v,w,z ∈ X .
When d is a 2-metric on X, then the ordered pair (X, d) is called a 2-metric space.
Very typical example of 2-metric d(u,v,w) is the area of the triangle spanned by

u,v,w.
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EXAMPLE 1. Take X = [0,1] . Define d : X3 → R as

d(u,v,w) = min{|u− v|, |v−u|, |w−u|}
where u,v,w ∈ X . Now, (X ,d) is a 2-metric space.

DEFINITION 2. [11, 12] (X ,d) is said to be bounded if sup{d(u,v,w) : u,v,w ∈
X} < ∞ .

DEFINITION 3. [11, 12] A sequence (xn) in X is said to be a Cauchy sequence if
for all a ∈ X ,

lim
n,m→∞

d(xn,xm,a) = 0.

DEFINITION 4. [11, 12] A sequence (xn) in X is said to be convergent to an
element x ∈ X if for all a ∈ X ,

lim
n→∞

d(xn,x,a) = 0.

DEFINITION 5. [11, 12] A complete 2-metric space is one in which every Cauchy
sequence in X converges to an element of X .

A 2-metric space is not topologically equivalent to an ordinary metric. For exam-
ple, every metric space is first countable, but 2-metric spaces may not first countable[16].
In this case, there is no simple relationship between the results obtained in metric spaces
and the results obtained in 2-metric spaces. In a metric space a convergent sequence
is a Cauchy sequence but in a 2-metric space may not be a Cauchy sequence, but if
the 2-metric d is continuous on X , then each convergent sequence becomes a Cauchy
sequence[19]. Although a metric is continuous on X , the 2-metric may not be continu-
ous.

This concept has been considered by many authors (see [7], [14], [15], [17], [20],
[21], [23], [24]). The reader may refer to the textbooks/monographs [2] and [18] for
sequence spaces and related topics, and basic concepts of summability theory.

In Section 2, notions of statistical convergence and statistically Cauchy sequence
in 2-metric space will be introduced. In Section 3, notions of Nθ and lacunary statistical
convergence in 2-metric spaces will be introduced. In Section 3 we will investigate
some inclusion relations between these concepts.

2. Cesàro and statistical convergence

In this section, we present the definitions of Cesàro and statistical convergence in
2-metric spaces and the relations between them.

DEFINITION 6. A sequence (xn) in X is said to be Cesàro convergent to an ele-
ment x ∈ X if for all a ∈ X ,

lim
n→∞

1
n

n

∑
k=1

d(xn,x,a) = 0.
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Let C be the set of Cesàro convergent sequences, that is,

C = {(xn) ⊆ X : lim
n→∞

1
n

n

∑
k=1

d(xn,x,a) = 0, for some x}.

DEFINITION 7. A sequence (xn) in X is said to be a statistically Cauchy sequence
if for all a ∈ X and for every ε > 0

lim
n→∞

1
n
|{k, � � n : d(xk,x�,a) � ε}| = 0

or equivalently

lim
n→∞

1
n
|{k, � � n : d(xk,x�,a) < ε}| = 1.

In this case, we write
st− lim

n,m→∞
d(xn,xm,a) = 0.

DEFINITION 8. A sequence (xn) in X is said to be statistically convergent to an
element x ∈ X if for all a ∈ X and for every ε > 0

lim
n→∞

1
n
|{k � n : d(xk,x,a) � ε}| = 0

or equivalently

lim
n→∞

1
n
|{k � n : d(xk,x,a) < ε}| = 1.

In this case, we write
st− lim

n,m→∞
d(xn,x,a) = 0.

Let S be the set of statistically convergent sequences, i.e.,

S = {(xn) ⊆ X : lim
n→∞

1
n
|{k � n : d(xk,x,a) � ε}| = 0, for some x}.

In a metric space a statistically convergent sequence is a statistically Cauchy sequence
but in a 2-metric space a statistically convergent sequence may not be a statistically
Cauchy sequence.

EXAMPLE 2. Let X = {0,1, 1
2 , 1

3 , 1
4 , . . .} . Define d : X3 → [0,∞) by

d(x,y,z) =

{
1, if x �= y �= z and { 1

n , 1
n+1} ⊂ {x,y,z} for n ∈ N

0, otherwise

Then (X ,d) is a complete 2-metric space. Let define the sequence (xn) by

xn =

{
1, n is square integer

1
n , otherwise

The sequence (xn) is statistically convergent to 0 but is not a statistically Cauchy se-
quence.
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THEOREM 1. Let (X ,d) be 2-metric space and d be statistically continuous on
X . If the sequence (xn) is statistically convergent then (xn) is statistically Cauchy.

Proof. If st− limxn = x , then by statistical continuity of d , we have

st− lim
n,m→∞

d(xn,xm,x) = st− lim
n→∞

d(xn,x,x). (1)

By using property (iv) of 2-metric, we can write

d(xn,xm,a) � d(xn,x,a)+d(x,xm,a)+d(xn,xm,x).

From this inequality and (2.1), we get that

st − lim
n,m→∞

d(xn,xm,a) = 0

for all a ∈ X , that is, (xn) is statistically Cauchy. �

THEOREM 2. Let (xn) be a sequence in 2-metric space (X ,d) . Then

1. if (xn) is Cesàro convergent to x then (xn) statistically convergent to x .

2. If (X ,d) is bounded and (xn) statistically convergent to x then (xn) Cesàro
convergent to x .

Proof. i) Let (xn) be Cesàro convergent to x . For ε > 0 and every a ∈ X , we get

1
n

n

∑
k=0

d(xk,x,a) =

⎛
⎜⎝1

n

n

∑
k=1

d(xk,x,a)�ε

d(xk,x,a)+
1
n

n

∑
k=1

d(xk,x,a)<ε

d(xk,x,a)

⎞
⎟⎠

� 1
n

n

∑
k=1

d(xk ,x,a)�ε

d(xk,x,a)

� 1
n
|{1 � k � n : d(xk,x,a) � ε}|ε.

Hence, we have

lim
n→∞

1
n
|{1 � k � n : d(xk,x,a) � ε}| = 0

that is, (xn) statistically convergent to x .
ii) Now suppose that (xn) is bounded and statistically convergent to x , since (X ,d)

is bounded, say d(xk,x,a) � K for all k and every a ∈ X . For ε > 0 and every a ∈ X
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we get

1
n

n

∑
k=1

d(xk,x,a) =
1
n

⎛
⎜⎝ n

∑
k=1

d(xk,x,a)�ε

d(xk,x,a)+
n

∑
k=1

d(xk,x,a)<ε

d(xk,x,a)

⎞
⎟⎠

� 1
n

⎛
⎜⎝K

n

∑
k=1

d(xk,x,a)�ε

1+
n

∑
k=1

d(xk,x,a)<ε

d(xk,x,a)

⎞
⎟⎠

� K
1
n
|{1 � k � n : d(xk,x,a) � εk}|+ 1

n

n

∑
k=1

ε.

Hence, we have

lim
n→∞

1
n

n

∑
k=1

d(xk,x,a) = 0,

that is (xn) is Cesàro convergent to x . �

3. Nθ and lacunary statistical convergence

First, we recall the concept of lacunary sequences. A lacunary sequence [6] is an
increasing integer sequence θ = (pr) such that p0 = 0 and tr = pr − pr−1 → ∞ as
r → ∞. The intervals (pr−1, pr] determined by θ = (pr) will be denoted by Jr

DEFINITION 9. Let θ = (pr) be any lacunary sequence. A sequence (xn) in X is
said to be Nθ -convergent to an element x ∈ X if for all a ∈ X and for every ε > 0,

lim
r→∞

1
tr

∑
k∈Jr

d(xk,x,a) = 0.

The set of Nθ -convergent sequences will be denoted Nθ .

DEFINITION 10. Let θ = (pr) be any lacunary sequence. A sequence (xn) in X
is said to be lacunary statistically convergent to an element x ∈ X if for all a ∈ X and
for every ε > 0,

lim
r→∞

1
tr
|{k ∈ Jr : d(xk,x,a) � ε}| = 0

or equivalently

lim
r→∞

1
tr
|{k ∈ Jr : d(xk,x,a) < ε}| = 1.

Let Sθ be the set of lacunary statistically convergent sequences, that is,

Sθ = {(xn) ⊆ X : lim
r→∞

1
tr
|{k ∈ Jr : d(xk,x,a) � ε}| = 0, for some x}.

The proof of the following theorem similar to that of Theorem 1, so we state it
without proof.
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THEOREM 3. Let (xn) be a sequence in 2-metric space (X ,d) and θ = (pr) be
any lacunary sequence. Then, the following statements hold:

1. if (xn) is Nθ -convergent to x then (xn) Sθ -convergent to x .

2. If (X ,d) is bounded and (xn) Sθ -convergent to x then (xn) Nθ - convergent to
x .

By using the similar techniques to that in Lemmas 2.1 and 2.2 of [6], we can prove
following theorems. These theorems state the relationships between Cesàro conver-
gence and Nθ -convergence and between statistically convergence and lacunary statis-
tically convergence in 2-metric space.

THEOREM 4. Let θ = (pr) be any lacunary sequence and (X ,d) be a 2-metric
space. Then the following statements hold:

1. C ⊆ Nθ if and only if liminfr
pr

pr−1
> 1 .

2. Nθ ⊆ C if and only if limsupr
pr

pr−1
< ∞ .

3. C = Nθ if and only if

1 < liminf
r

pr

pr−1
� limsup

r

pr

pr−1
< ∞.

Proof. We only prove (1). The others can be proved by the similar way used in
proving Lemmas 2.1 and 2.2 of [6].

If liminfr
pr

pr−1
> 1 there exists α > 0 such that 1+ α � pr

pr−1
for all r � 1. Sup-

pose that (xn) ∈ C , hence we can write

1
tr

∑
k∈Jr

d(xk,x,a) =
1
tr

pr

∑
k=1

d(xk,x,a)− 1
tr

pr−1

∑
k=1

d(xk,x,a)

=
pr

tr

( 1
pr

pr

∑
k=1

d(xk,x,a)
)
− pr−1

tr

( 1
pr−1

pr−1

∑
k=1

d(xk,x,a)
)

Since tr = pr − pr−1 , we have

pr

tr
� 1+ α

α
and

pr−1

tr
� 1

α
.

Therefore right side of above equality tends to zero as r → ∞ , it follows that x ∈ Nθ .
Suppose that liminfr

pr
pr−1

= 1. We can select a subsequence (pri) of lacunary

sequence θ = (pr) such that

pri

pri−1
< 1+

1
i

and
pri−1

pri−1

> i where ri � ri−1 +2.
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Now consider the 2-metric d in Example 1.1, and define (xk) by

xk =
{

1, k ∈ Jri , for some i = 1,2, . . .
0, otherwise

Then for any x ∈ X and for all a ∈ X ,

1
tri

∑
k∈Jri

d(xk,x,a) = |1− x| for i = 1,2,3, . . . .

1
tr

∑
k∈Jr

d(xk,x,a) = |x| for r �= ri.

It follows that (xk) /∈ Nθ . But (xk) is Cesàro convergent, since if m is any sufficiently
large integer we can find the unique i for which pri−1 < m � pri+1−1 and write

1
m

m

∑
k=1

d(xk,x,a) �
pri−1 + tri

pri−1
� 2

i

as m → ∞ it follows that (xk) ∈ C . �

THEOREM 5. Let θ = (pr) be any lacunary sequence and (X ,d) be a 2-metric
space. Then the following statements hold:

1. S ⊆ Sθ if and only if liminfr
pr

pr−1
> 1 .

2. Sθ ⊆ S if and only if limsupr
pr

pr−1
< ∞ .

3. S = Sθ if and only if

1 < liminf
r

pr

pr−1
� limsup

r

pr

pr−1
< ∞.

THEOREM 6. Let θ = (pr) be any lacunary sequence and (X ,d) be a 2-metric
space. If (xn) ∈ S ⊆ Sθ , then Sθ − lim(xn) = S − lim(xn) .

Proof. Assume that S − lim(xn) = x and Sθ − lim(xn) = y and x �= y . Then
d(x,y,a) �= 0. From (M3) and (M4) we can write

d(x,y.a) � d(xk,x,y)+d(xk,x,a)+d(xk,y,a) (2)

for all xk,x,y,a ∈ X . For all a∈ X , taking ε < 1
3d(x,y,a) from inequality (3.1), we get

lim
n→∞

1
n
|{k � n : d(xk,y,a) � ε}| = 1.
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Consider the i th term of the statistical limit expression
limn→∞

1
n |{k � n : d(xk,y,a) � ε}| :

1
ki
|{k ∈

i⋃
r=1

Jr : d(xk,y,a) � ε}|

=
1
ki

i

∑
r=1

|{k ∈ Jr : d(xk,y,a) � ε}|

=
1

∑i
r=1 tr

i

∑
r=1

tr
1
tr
|{k ∈ Jr : d(xk,y,a) � ε}| → 0.

(3)

Since θ = (pr) is a lacunary sequence (3.2) is a regular weighted mean transformation
of the sequence converging to zero, so that itself converges to zero as i→ ∞ . Also since
this is a subsequence of

{1
n
|{k � n : d(xk,y,a) � ε}|

}
n
,

we infer that

lim
n→∞

1
n
|{k � n : d(xk,y,a) � ε}| �= 1,

and this contradiction shows that we can not take x �= y . �
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