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NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES

WITH IMPULSES AND NONLOCAL CONDITIONS

SANKET TIKARE ∗ AND CHRISTOPHER C. TISDELL

Abstract. The purpose of this paper is to introduce more general results on the existence of
solutions for nonlinear dynamic equations on time scales with impulses and nonlocal initial con-
ditions. We establish the existence of solutions by applying a fixed point result due to O’Regan,
while the uniqueness of solutions is obtained through the contraction mapping principle. Our re-
sults extend previous work in the literature and an example is discussed to illustrate the obtained
results.

1. Introduction

In [28], Hilger introduced the theory of time scales, which unifies the discrete
and continuous analysis, and the field also includes quantum calculus as a special case.
This theory enables the researchers to study both difference and differential equations
under one framework, called dynamic equations on time scales. Dynamic equations
on time scales are applicable to either discrete or continuous models, and to those so-
called hybrid models that combine discrete and continuous cases. We refer the reader
to [1, 11, 12, 13, 14, 16, 38, 39] and references therein for several studies in the context
of theory of time scales.

The theory of impulsive dynamic equations provide an excellent tool for the math-
ematical modelling of various real-world phenomena that involve abrupt changes at
certain moments during their evolution; for example, natural disasters, certain diseases,
industrial robotics, etc. In particular, work related to impulsive dynamic equations
can be observed, see [4, 9, 21, 24, 29, 30, 33]. In the last fifteen years, several re-
searchers and authors have focused their attention to the theory of impulsive dynamic
equations on time scales, covering a variety of different problems, for instance, see
[5, 15, 22, 23, 26, 27, 40]. This is mainly because of the rich theory of impulsive differ-
ential equations, for instance, see, [8, 10, 31, 36, 41] and the applicability of dynamic
equations on time scales in various branches of science and engineering, among oth-
ers, in control system [34], in population dynamics [42], and even in economics theory
[6, 7], to mention the few.

However, as per our knowledge, not much has been developed in the direction of
impulsive dynamic equations with nonlocal conditions. The mathematical modelling
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of certain phenomena found in physics, biology, control theory, and engineering leads
to the study of nonlocal problems. As a matter of fact, in various situations, equations
coupled with the nonlocal condition are found to be more advantageous than those with
the traditional local condition. Due to having a wide range of applications, the study
of nonlocal problems is treated as a very interesting and important field. This can be
witnessed by numerous significant works available in the literature, see [3, 17, 18, 19,
20, 22].

In [21], Chang and Li used Sadovskii’s fixed point theorem to establish the exis-
tence theorems for the impulsive dynamic equations of the type

uΔ(t)+ p(t)uσ(t) = f
(
t,u(t)

)
, a.e. t ∈ [0,T ]T, t �= tk, k = 1,2, . . . ,m;

u(t+k )−u(t−k ) = Ik
(
u(tk)

)
, k = 1,2, . . . ,m;

u(0) = Φ(u),

(1)

where u(t±k ) = limt→t±k
u(t) , f : T×R → R and Ik : R → R are continuous, and Φ :

C
(
[0,T ]T \ {t1, t2, . . . ,tm},R

) → R is a given function. The idea in [21] was to extend
the results of [9] to the nonlocal initial value problem (1) by dropping the boundedness
of impulse functions.

Quite recently, in [4], Ardjouni and Djouni have employed a modification of Kras-
noselskii’s fixed point theorem due to Burton and presented the existence result for
solutions to the nonlinear impulsive dynamic equations of the type

uΔ(t)+ p(t)λ
(
uσ (t)

)
= f

(
t,u(t)

)
, t ∈ (0,T ]T;

u(t+k )−u(t−k ) = Ik
(
tk,u(tk)

)
, k = 1,2, . . . ,m;

u(0) = 0,

(2)

where λ : R → R is a continuous function and f : T×R → R and Ik : T×R → R

satisfying a Lipschitz condition. Here we notice that equation (2) is totally nonlinear.
Therefore the solutions of dynamic problem (2) cannot be expressed in the explicit
form. Hence the method of variation of parameters is not applicable.

Motivated by the work of the above mentioned papers and [21], [4], in the present
paper, we investigate the existence of solutions to the following type of nonlinear dy-
namic equations on time scales with impulses and nonlocal initial condition

uΔ(t)+ p(t)λ
(
uσ (t)

)
= f

(
t,u(t)

)
, t ∈ I

κ , t �= tk, k = 1,2, . . . ,m;

u(t+k )−u(t−k ) = Ik
(
u(tk)

)
, k = 1,2, . . . ,m;

u(0) = Φ(u),

(3)

where I := [0,T ]∩T , T ∈ T with T > 0, T is a time scale containing at least finitely-
many right-dense points, p : T → R is regressive and rd-continuous, λ : R → R is
continuous, f : T×R → R is rd-continuous, and Φ : C

(
I \ {t1, t2, . . . ,tm},R

) → R is
a given function, possibly nonlinear. We assume that 0 = t0 < t1 < t2 < .. . < tm <
tm+1 = T are a priori known moments of impulse, {tk}m

k=1 ⊂ I , and tk is right-dense
for k = 1,2, . . . ,m . The terms u(t+k ) and u(t−k ) represents right and left limits of u
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at t = tk in the sense of time scales. For each k = 1,2, . . . ,m , Ik is a continuous real
valued function defined on R , which describes the discontinuity of u at tk .

The existence results presented in the current investigation concerning the impul-
sive dynamic problem with nonlocal initial conditions extend and generalize the earlier
existence results for the class of dynamic initial value problems. More precisely,

• For identity function λ and φ = 0, the results of this paper here reduce to those
of [29].

• For Φ = 0, the results included in this paper reduce to those of [4].

• For identity function λ and without impulsive conditions, the results presented
here are similar to those considered in [37].

• For identity function λ and constant function Φ , the results of [32] are included
here as a special case.

The impulsive dynamic system (3) will provide a basic model to study the dynam-
ics of hybrid continuous–discrete nonlocal phenomena, like a nonlocal neural network,
nonlocal pollution, nonlocal combustion, that are subject to abrupt changes. To ob-
tain the desired results, first, we reformulate the impulsive dynamic system (3) as an
equivalent delta integral system and then apply O’Regan’s fixed point theorem [35].
The obtained integral system is the sum of two mappings, one is completely continuous
and the other is nonlinear contraction. The novelty of the present paper is consider-
ing a new type of nonlinear impulsive dynamic problem (3), then presenting results
concerning the existence of at least one solution using fixed point theorem and finding
reasonable condition for the uniqueness of solutions.

The set up of the paper is as follows. In Section 2, we recall some notions of time
scales calculus and results from fixed point theory that are required to achieve the main
results. In Section 3, we present our main results concerning the existence of at least
one solution and the uniqueness of solutions of (3). Finally, in Section 4, we provide
simple examples illustrating the obtained results.

2. Preliminary

In this section, we recall several definitions and some results which help the reader
to follow the paper easily. The following basic knowledge of the theory of time scales
is taken from [12, 13].

A time scale is an arbitrary nonempty, closed subset of the real numbers R . It is
denoted by T . The forward jump operator σ : T → T , at the point t ∈ T is defined
by σ(t) := inf{s ∈ T : s > t} and, similarly, the backward jump operator ρ : T → T is
ρ(t) := sup{s ∈ T : s < t} . We make the convention that infφ = supT and supφ =
infT . The graininess function μ : T → [0,∞) is defined by μ(t) := σ(t)− t .

A point t ∈ T is said to be right-scattered if σ(t) > t ; while it is left-scattered if
ρ(t) < t . If t < supT and σ(t) = t , then we say t is right-dense; while t is left-dense
if t > infT and ρ(t) = t .
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If m is a possible left-scattered maximum, then we write T
κ := T \ {m} . Other-

wise T
κ := T .

DEFINITION 1. A function u : T → R is said to be delta differentiable at t ∈ T
κ

if there exists a number uΔ(t) ∈ R such that for given ε > 0 there is a neighbourhood
N of t with∣∣u(

σ(t)
)−u(s)−uΔ(t)

(
σ(t)− s

)∣∣ � ε
∣∣σ(t)− s

∣∣, for all s ∈ N.

The number uΔ(t) is known as the delta derivative of u at t . For brevity, we write
uσ := u ◦σ .

DEFINITION 2. A function u : T → R is said to be rd-continuous if it is contin-
uous at every right-dense points in T and its left sided limits exist at left-dense points
in T . The notation for the set of all rd-continuous functions with domain T and taking
values in R is Crd(T,R) .

DEFINITION 3. A function f : T×R → R is said to be rd-continuous on T×R

if f (·,x) is rd-continuous on T for each fixed x ∈ R and f (t, ·) is continuous on R for
each fixed t ∈ T . The notation for the set of all rd-continuous functions with domain
T×R and taking values in R is Crd(T×R,R) .

DEFINITION 4. A function p : T → R is said to be regressive if 1+ μ(t)p(t) �= 0
for all t ∈ T

κ . The notation for the set of all regressive functions with domain T and
taking values in R is R(T,R) .

Converse to the delta derivative, we can define the delta integral as follows.

DEFINITION 5. Let u ∈ Crd(T,R) . If UΔ(t) = u(t) for each t ∈ T
κ , then the

delta integral of u is defined by
∫ t

a
u(s)Δs = U(t)−U(a), where a ∈ T.

REMARK 1. If u is delta differentiable at t ∈ T
κ , then u is rd-continuous at t ∈

T
κ .

DEFINITION 6. For p ∈ R(T,R) , the exponential function ep(·,t0) on the time
scale T is defined as the unique solution of the initial value dynamic problem

uΔ(t) = p(t)u, u(t0) = 1, t,t0 ∈ T.

For p,q ∈ R(T,R) , we define the following.

p⊕q := p+q+ μ pq, 
p :=
−p

1+ μ p
, p
q := p⊕ (
q).

In this paper, we denote E0 := sup
t∈I

∣∣e
p(t,0)
∣∣ and E := sup

s,t∈I

∣∣e
p(t,s)
∣∣ .
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THEOREM 1. For p,q ∈ R(T,R)∩Crd(T,R) . The following hold.

(i) e0(t,s) ≡ 1 and ep(t,t) ≡ 1 ;

(ii) ep(σ(t),s) =
(
1+ μ(t)p(t)

)
ep(t,s);

(iii) 1/ep(t,s) = e
p(t,s);

(iv) ep(t,s) = 1/ep(s,t);

(v) ep(t,s)ep(s,r) = ep(t,r);

(vi) ep(t,s)eq(t,s) = ep⊕q(t,s);

(vii) ep(t,s)/eq(t,s) = ep
q(t,s) .

Let C
(
I,R

)
be the space of all continuous functions with domain I and taking

values in R . We write J0 = [0,t1] and for each k = 1,2, . . . ,m , Jk = (tk, tk+1] .
Define

PC =
{
u : I → R : u ∈ C (Jk,R), and u(t+k ), u(t−k ) exist

with u(t−k ) = u(tk),k = 1,2, . . . ,m
}

and
PC 1 =

{
u : I → R : u ∈ C 1

rd(Jk,R),k = 1,2, . . . ,m
}
,

where C 1
rd(Jk,R) is the space of all rd-continuously delta differentiable functions with

domain Jk and taking values in R .
The set PC is a Banach space coupled with the norm ‖u‖PC := max

1�k�m

{‖u‖k
}

,

where ‖u‖k = sup
t∈Jk

∣∣u(t)
∣∣ .

DEFINITION 7. A function u ∈ PC 1 is said to be a solution of the impulsive
dynamic problem (3), if u satisfies the dynamic equation uΔ(t) + p(t)λ

(
uσ (t)

)
=

f
(
t,u(t)

)
everywhere on I

κ \{tk} , k = 1,2, . . . ,m , and the conditions u(t+k )−u(t−k ) =
Ik

(
u(tk)

)
, k = 1,2, . . . ,m ; u(0) = Φ(u), .

DEFINITION 8. [25] Let X , Y be two Banach spaces. A mapping F : X → Y is
said to be completely continuous if the image of each bounded set B of X , F(B) , is
relatively compact in Y .

DEFINITION 9. [35] Let X be a Banach space and F : X → X . Then F is said
to be nonlinear contraction map if there exists a continuous nondecreasing function
Ω : [0,∞) → [0,∞) satisfying Ω(z) < z for z > 0 such that

∥∥F(x)−F(y)
∥∥

X � Ω
(‖x− y‖X

)

for all x,y ∈ X .



130 S. TIKARE AND C. C. TISDELL

The time scales version of the Arzela–Ascoli theorem stated as follows.

THEOREM 2. [2] A subset D of C
(
I,R

)
is relatively compact if and only if it is

bounded and equicontinuous.

For the existence of at least one solution of the impulsive dynamic problem (3),
we shall rely on the following extension of Krasnoselskii’ fixed point theorem due to
O’Regan.

THEOREM 3. [35] Let B be an open set in a closed, convex subset C of a Banach
space X . Assume 0∈B, F(B) bounded and F : B→C is given by F := F1 +F2 , where
F1 : B → X is continuous and completely continuous and F2 : B → X is nonlinear
contraction. Then either,

(A1) F has a fixed point in B; or

(A2) there is a point x ∈ ∂B and ξ ∈ (0,1) with x = ξF(x) .

3. Main results

We shall prove our existence result as an application of Theorem 3. For this, first
we define F , F1 , F2 as follows.

Let Br :=
{
u ∈ PC 1 : ‖u‖PC � r

}
. The mapping F : Br → PC is given by

[Fu](t) := [F1u](t)+ [F2u](t), t ∈ I;

where Fi : Br → PC ( i = 1,2) are given by

[F1u](t) := e
p(t,0)Φ(u)+
∫ t

0
e
p(t,s) f

(
s,u(s)

)
Δs (4)

and

[F2u](t) :=
∫ t

0
e
p(t,s)p(s)Λ

(
u(s)

)
Δs+ ∑

0<tk<t

e
p(t,tk)Ik
(
u(tk)

)
, (5)

where Λ
(
u(s)

)
:= uσ (s)−λ

(
uσ (s)

)
. Then, we set the following notations:

β := E Λ∗ P+ η + r sup
t∈T

m

∑
k=1

∣∣e
p(t,tk)
∣∣dk < ∞

and

γ := E α P+ sup
t∈T

m

∑
k=1

∣∣e
p(t,tk)
∣∣dk < 1,

where dk is some positive constant;

Λ∗ := max
{∣∣Λ(−r)

∣∣, ∣∣Λ(r)
∣∣};
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P :=
∫ T

0

∣∣p(s)
∣∣Δs < ∞;

η := sup
t∈T

m

∑
k=1

∣∣e
p(t,tk)
∣∣∣∣Ik(0)

∣∣ < ∞;

α :=
∣∣1− inf

t∈(−r,r)
λ ′(t)

∣∣.
Next, we make the list of hypotheses that are needed to prove our main results.

(H1) The function f : I×R → R is rd-continuous.
(H2) There exist a continuous nondecreasing function ψ : [0,∞) → [0,∞) and a

function φ ∈ C
(
I,R+)

such that∣∣ f (t,y)∣∣ � φ(t)ψ(|y|)
for every t ∈ I and y ∈ R .

(H3) There exists a nondecreasing function Ψ : R
+ → R

+ such that∣∣Φ(y)
∣∣ � Ψ

(|y|)
for every y ∈ C

(
I\ {tk}m

k=1;R
)
.

(H4) There exist positive constants dk such that∣∣Ik
(
x(tk)

)−Ik
(
y(tk)

)∣∣ � dk‖x− y‖PC , k = 1,2, . . . ,m;

for every x,y ∈ PC .
(H5) For every positive r ,

r

β +E0Ψ(r)+Eψ(r)
∫ T
0 φ(s)Δs

> 1.

(H6) There exists a positive constant L1 such that∣∣ f (t,x)− f (t,y)
∣∣ � L1|x− y|

for all t ∈ I and for all x,y ∈ R .
(H7) There exists a positive constant L2 such that∣∣Φ(x)−Φ(y)

∣∣ � L2|x− y|
for all x,y ∈ R .

Below, we present an auxiliary lemma which reformulate our impulsive dynamic
problem (3) as equivalent delta integral equation. The proof of this lemma parallels that
of [4, Lemma 3.1] and hence omitted.

LEMMA 1. The function u∈PC 1 is a solution of the impulsive dynamic problem
(3) if and only if u ∈ PC satisfy

u(t) = e
p(t,0)Φ(u)+
∫ t

0
e
p(t,s) f

(
s,u(s)

)
Δs

+
∫ t

0
e
p(t,s)p(s)Λ

(
u(s)

)
Δs+ ∑

0<tk<t

e
p(t,tk)Ik
(
u(tk)

) (6)

for all t ∈ I .
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Now we are in a position to present our main results. The first one is based on
Theorem 3.

THEOREM 4. Assume that the hypotheses (H1)–(H5) are satisfied. In addition,
suppose that λ is differentiable, increasing function on (−r,r) such that 0 � inf

t∈(−r,r)
λ ′(t)

� 1 . Then the impulsive dynamic problem (3) has at least one solution.

Proof. We shall give the proof in several steps.

Step 1. The map F1 : Br → PC is continuous and completely continuous.
Let {un} be a sequence of elements of Br converges to u in Br . Then we see that

∣∣[F1un](t)− [F1u](t)
∣∣

=
∣∣∣∣e
p(t,0)

[
Φ(un)−Φ(u)

]
+

∫ t

0
e
p(t,s)

[
f (s,un(s))− f (s,u(s))

]
Δs

∣∣∣∣
�

∣∣e
p(t,0)
∣∣∣∣Φ(un)−Φ(u)

∣∣+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣ f (s,un(s))− f (s,u(s))

∣∣Δs.

Using the hypothesis (H2), we can write

∥∥F1(un)−F1(u)
∥∥

PC
� E0

∣∣Φ(un)−Φ(u)
∣∣+E

∫ t

0
φ(s)

∣∣ψ(|un|)−ψ(|u|)∣∣Δs

which yields, by continuities of ψ and Φ that

∥∥F1(un)−F1(u)
∥∥

PC
→ 0 as n → ∞.

Thus, F1 is uniformly continuous on Br and hence is continuous on Br .
Now, we show that F1 is completely continuous. For this, by Theorem 2, it is

enough to show that F1(Br) is bounded and equicontinuous.
For any u ∈ Br and t ∈ I , we have

∣∣[F1u](t)
∣∣ �

∣∣e
p(t,0)
∣∣∣∣Φ(u)

∣∣+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣ f (s,u(s)

)∣∣Δs.

Using the hypotheses (H2) and (H3), we obtain

‖F1(u)‖PC � E0 Ψ
(|u|)+E

∫ t

0
φ(s)ψ

(|u|)Δs

� E0 Ψ
(
r
)
+E ψ(r)

∫ t

0
φ(s)Δs := K.

Thus, ‖F1(u)‖PC � K for all u ∈ Br . Hence F1(Br) is bounded.



IMPULSIVE DYNAMIC EQUATIONS WITH NONLOCAL CONDITIONS 133

Next, we show that F1(Br) is equicontinuous. To this end, let t1,t2 ∈ I with t1 � t2
and u ∈ Br . Then we compute that
∣∣[F1u](t2)− [F1u](t1)

∣∣
=

∣∣∣∣e
p(t2,0)Φ(u)− e
p(t1,0)Φ(u)+
∫ t2

0
e
p(t2,s) f

(
s,u(s)

)
Δs

−
∫ t1

0
e
p(t1,s) f

(
s,u(s)

)
Δs

∣∣∣∣
�

∣∣e
p(t2,0)− e
p(t1,0)
∣∣∣∣Φ(u)

∣∣
+

∣∣∣∣
∫ t2

0
e
p(t2,s) f

(
s,u(s)

)
Δs−

∫ t1

0
e
p(t1,s) f

(
s,u(s)

)
Δs

∣∣∣∣
=

∣∣e
p(t2,0)− e
p(t1,0)
∣∣∣∣Φ(u)

∣∣
+

∣∣∣∣e
p(t2,0)
∫ t1

0
ep(s,0) f

(
s,u(s)

)
Δs+ e
p(t2,0)

∫ t2

t1
ep(s,0) f

(
s,u(s)

)
Δs

− e
p(t1,0)
∫ t1

0
ep(s,0) f

(
s,u(s)

)
Δs

∣∣∣∣
�

∣∣e
p(t2,0)− e
p(t1,0)
∣∣∣∣Φ(u)

∣∣+ ∣∣e
p(t2,0)− e
p(t1,0)
∣∣∫ t1

0

∣∣ep(s,0)
∣∣∣∣ f (s,u(s)

)∣∣Δs

+
∣∣e
p(t2,0)

∣∣∫ t2

t1

∣∣ep(s,0)
∣∣∣∣ f (s,u(s)

)∣∣Δs.

Similarly for t1 � t2 we obtain the same inequality.
Since e
p(t,0) is continuous on I , the right hand side tends to zero as t1− t2 → 0.

Thus, we obtain that F1(Br) is equicontinuous. Therefore we can conclude that F1 is
completely continuous on Br .

Step 2. F(Br) is bounded.
For any u ∈ Br and for each t ∈ I , we see that

∣∣[F2u](t)
∣∣ �

∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣∣∣Λ(
u(s)

)∣∣Δs+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
u(tk)

)∣∣

� E Λ∗
∫ t

0

∣∣p(s)
∣∣Δs+ ∑

0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
u(tk)

)∣∣
� E Λ∗P+ ∑

0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
0
)∣∣+ ∑

0<tk<t

∣∣e
p(t,tk)
∣∣dk‖u‖PC

� E Λ∗P+ η + r ∑
0<tk<t

∣∣e
p(t,tk)
∣∣dk.

Thus, in view of the hypothesis (H4),
∥∥F2(u)

∥∥
PC

� β . Hence F2(Br) is bounded.
Also, from Step 1., F1(Br) is bounded. Combining these two facts, we obtain F(Br) is
bounded.
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Step 3. F2 : Br → PC is nonlinear contraction.
First, we claim that for all u,v ∈ Br ,

∣∣Λ(
u(s)

)−Λ
(
v(s)

)∣∣ � α‖u− v‖PC

for some α ∈ (0,1] . Let u,v ∈ Br with uσ �= vσ . Then

∣∣Λ(
u(s)

)−Λ
(
v(s)

)∣∣ =
∣∣uσ (s)− vσ (s)

∣∣
∣∣∣∣1−

(
λ

(
uσ (s)

)−λ
(
vσ (s)

)
uσ (s)− vσ (s)

)∣∣∣∣
=

∣∣uσ (s)− vσ (s)
∣∣∣∣1−λ ′(t)

∣∣ for some t ∈ (−r,r)

�
∣∣1− inf

t∈(−r,r)
λ ′(t)

∣∣∣∣uσ (s)− vσ (s)
∣∣

= α
∣∣uσ (s)− vσ (s)

∣∣.
Hence for all u,v ∈ Br ,

∣∣Λ(
u(s)

)−Λ
(
v(s)

)∣∣ � α‖u− v‖PC .

Now for u,v ∈ Br and for each t ∈ I , we find that

∣∣[F2u](t)− [F2v](t)
∣∣ �

∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣∣∣Λ(
u(s)

)−Λ
(
v(s)

)∣∣Δs

+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
u(tk)

)−Ik
(
v(tk)

)∣∣

and using hypothesis (H4), we write

∣∣[F2u](t)− [F2v](t)
∣∣ �

∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣α∣∣u(s)− v(s)
∣∣Δs

+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣dk‖u− v‖PC

�
(

E α
∫ t

0

∣∣p(s)
∣∣Δs+ ∑

0<tk<t

∣∣e
p(t,tk)
∣∣dk

)
‖u− v‖PC

� γ‖u− v‖PC .

Thus,
∥∥F2(u)− F2(v)

∥∥
PC

� γ‖u− v‖PC . That is,
∥∥F2(u)− F2(v)

∥∥
PC

� Ω
(‖u−

v‖PC

)
, where Ω(w) = γ w , 0 < γ < 1. Hence F2 is nonlinear contraction.

Step 4. (A2) of Theorem 3 does not occur.
To this end, we perform the argument by contradiction. Suppose that (A2) of

Theorem 3. Then there is w ∈ ∂Br and ξ ∈ (0,1) such that w = ξF(w) . That is, for
each t ∈ I ,

w(t) = ξ [F1w](t)+ ξ [F2w](t).
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We compute that∣∣w(t)
∣∣ �

∣∣[Fw](t)
∣∣

=
∣∣∣∣e
p(t,0)Φ(w)+

∫ t

0
e
p(t,s) f

(
s,w(s)

)
Δs+

∫ t

0
e
p(t,s)p(s)Λ

(
w(s)

)
Δs

+ ∑
0<tk<t

e
p(t,tk)Ik
(
w(tk)

)∣∣∣∣
�

∣∣e
p(t,0)
∣∣∣∣Φ(w)

∣∣+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣ f (s,w(s)

)∣∣Δs

+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣∣∣Λ(
w(s)

)∣∣Δs+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
w(tk)

)∣∣.
Using the hypotheses (H2) and (H3), we obtain

∣∣w(t)
∣∣ � E0Ψ

(|w|)+Eψ
(|w|)

∫ t

0
φ(s)Δs+EΛ∗

∫ t

0

∣∣p(s)
∣∣Δs

+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
w(tk)

)∣∣

� E0Ψ(r)+Eψ(r)
∫ t

0
φ(s)Δs+EΛ∗P+ ∑

0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
w(tk)

)∣∣

� E0Ψ(r)+Eψ(r)
∫ t

0
φ(s)Δs+EΛ∗P

+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
w(tk)−Ik

(
0)

)∣∣+ ∑
0<tk<t

∣∣e
p(t,tk)
∣∣∣∣Ik

(
0
)∣∣.

Now, the hypothesis (H4) yields

∣∣w(t)
∣∣ � E0Ψ(r)+Eψ(r)

∫ t

0
φ(s)Δs+EΛ∗P+ η + ∑

0<tk<t

∣∣e
p(t,tk)
∣∣dk‖w‖PC

= E0Ψ(r)+Eψ(r)
∫ t

0
φ(s)Δs+EΛ∗P+ η + r ∑

0<tk<t

∣∣e
p(t, tk)
∣∣dk

� E0Ψ(r)+Eψ(r)
∫ t

0
φ(s)Δs+ β .

Since w ∈ ∂Br , we obtain

r � E0Ψ(r)+Eψ(r)
∫ t

0
φ(s)Δs+ β .

However, it contradicts the hypothesis (H5). Hence, (A2) of Theorem 3 does not oc-
cur and therefore the map F has at least one fixed point in Br . This completes the
proof. �

REMARK 2. The conditions in the hypotheses (H2) and (H3) are global conditions
on f and Φ . The Theorem 4 also holds even if the hypotheses (H2) and (H3) are
replaced by the following local conditions.
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(H2–L) There exist a continuous nondecreasing function ψ : [0,∞) → [0,∞) and
a function φ ∈ C (T ,R+) such that

∣∣ f (t,y)∣∣ � φ(t)ψ(|y|)

for every t ∈ I and for every y ∈ Br .
(H3–L) There exists a nondecreasing function Ψ : R

+ → R
+ such that

∣∣Φ(y)
∣∣ � Ψ

(|y|)

for every y ∈ C
(
I\ {tk}m

k=1,Br
)
.

Next we shall make a new hypothesis and give a corollary of Theorem 4.
(H2 ′ ) (Sublinear growth) There exist a function φ ∈ C

(
I,R+)

and a constant
k ∈ (0,1] such that ∣∣ f (t,y)∣∣ � φ(t) |y|k

for every t ∈ I and y ∈ Br .

COROLLARY 1. Assume that the hypotheses (H1), (H2 ′ ), (H3)–(H5) are satis-
fied. Suppose that λ is differentiable, increasing function on (−r,r) such that 0 �

inf
t∈(−r,r)

λ ′(t) � 1 . Then the impulsive dynamic problem (3) has at least one solution.

Next, we show the uniqueness of solutions of impulsive dynamic problem (3) by
using the contraction mapping principle.

THEOREM 5. Assume that the hypotheses (H4), (H6), and (H7) are satisfied. Fur-
ther, assume that λ is differentiable, increasing function on R such that 0 � inf

t∈R

λ ′(t)�
1 . Then the impulsive dynamic problem (3) has a unique solution in PC provided that(
E0L2 +EL1T + γ

)
< 1 .

Proof. We first note that if u ∈ PC , then F(u) ∈PC . Now, for u,v ∈ PC and
for each t ∈ I , from the definition of F , we can write

∣∣[Fu](t)− [Fv](t)
∣∣

�
∣∣e
p(t,0)

∣∣∣∣Φ(u)−Φ(v)
∣∣+

∫ t

0

∣∣e
p(t,s)
∣∣∣∣ f (s,u(s))− f (s,v(s))

∣∣Δs

+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣∣∣Λ(
u(s)

)−Λ
(
v(s)

)∣∣Δs

+ ∑
0<tk<t

∣∣e
p(t,s)
∣∣∣∣Ik

(
u(tk)

)−Ik
(
v(tk)

)∣∣.
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From the hypothesis (H4), (H6), and (H7), we obtain∣∣[Fu](t)− [Fv](t)
∣∣

� E0L2‖u− v‖PC +
∫ t

0

∣∣e
p(t,s)
∣∣L1‖u− v‖PC Δs

+
∫ t

0

∣∣e
p(t,s)
∣∣∣∣p(s)

∣∣α‖u− v‖PC Δs+ ∑
0<tk<t

∣∣e
p(t,s)
∣∣dk‖u− v‖PC

�
(

E0L2 +L1

∫ t

0

∣∣e
p(t,s)
∣∣Δs+Eα

∫ t

0

∣∣p(s)
∣∣Δs+ ∑

0<tk<t

∣∣e
p(t,s)
∣∣dk

)
‖u− v‖PC

�
(

E0L2 +L1ET +EαP+ ∑
0<tk<t

∣∣e
p(t,s)
∣∣dk

)
‖u− v‖PC

�
(
E0L2 +L1ET + γ

)‖u− v‖PC .

Hence ∣∣[Fx](t)− [Fy](t)
∣∣ �

(
E0L2 +L1ET + γ

)‖u− v‖PC .

As E0L2 +L1ET + γ < 1, the mapping F is a contraction map from PC into itself.
Hence by contraction mapping principle, F has a unique fixed point in PC . This
completes the proof. �

4. Example

We conclude the paper with the discussion of an example.

EXAMPLE 1. Let T = [0,1]∪ [2,3] . Consider the following impulsive dynamic
problem on I = [0,3]T

uΔ(t)+uσ(t) = f
(
t,u(t)

)
, t ∈ [0,3]T, t �= 1/2,

u
(
(1/2)+

)−u
(
(1/2)−

)
=

∣∣u(
1/2

)∣∣
2+

∣∣u(
1/2

)∣∣ ,
u(0) = Φ(u).

(7)

Here p = 1, λ is the identity function, and I1
(
u(t)

)
=

∣∣u(t)
∣∣

2+
∣∣u(t)

∣∣ . Using the above

data, we find that ∣∣I1
(
u(1/2)

)−I1
(
v(1/2)

)∣∣ � 1
2

∣∣u− v
∣∣.

Further, γ = sup
t∈I

∣∣e
1(t,1/2)
∣∣1
2

< 1, β = rγ < ∞ , α = 0, η = sup
t∈I

∣∣e
1(t,1/2)
∣∣I1(0)=

0, and P = 3.
(a) The first example is concerned with the illustration of Theorem 4. Take

f
(
t,u

)
=

1
2

(
1√
1+ t

)(
t +

∣∣u∣∣) (8)
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and

Φ(u) =
|u|

1+ |u| . (9)

We note here that
∣∣ f (t,u)

∣∣ � φ(t)ψ
(|u|) , where φ(t) =

(
1√
1+ t

)
and ψ

(|u|) =(
3 +

∣∣u∣∣) . Also,
∣∣Φ(u)

∣∣ � Ψ
(|u|) , where Ψ

(|u|) = |u| . Thus, all the conditions of
Theorem 4 with f (t,u) given by (8) and Φ(u) given by (9) are satisfied. Therefore,
from Theorem 4, we conclude that the impulsive dynamic problem (7) with f and Φ
as defined in (8) and (9) has at least one solution.

(b) This example is concerned with the illustration of Theorem 5. We take

f (t,u) =
1
21

(
u2 +5

)1/2 + t (10)

and

Φ(u) =

∣∣u∣∣
30

(
1+

∣∣u∣∣) . (11)

Use of the mean value theorem yields that
∣∣ f (t,u)− f (t,v)

∣∣ � 1
21 |u− v| . Hence (H6)

holds with L1 = 1
21 .

Also,
∣∣Φ(u)−Φ(v)

∣∣ � 1
30 |u−v| . Hence (H7) holds with L2 = 1

30 . Further we ob-
serve that E0 = 1, E = 1

e and hence E0L2 +EL1T + γ < 1. Thus, all the hypotheses of
Theorem 5 holds. Therefore from Theorem 5, we conclude that the impulsive dynamic
problem (7) with f and Φ as defined in (10) and (11) has unique solution.
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