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A POISSON LOGARITHMIC INTEGRAL FOR

INTEGER ORDER POWERS n = 0, 1, 2, AND 3

SEÁN M. STEWART

Abstract. We give analytic expressions for the Poisson type logarithmic integral

Lpn(a) =
∫ π

0
logn(1−2acos x+a2)dx,

for integer order powers n = 0,1,2 , and 3 . Here a is any real number. A generalisation of the
integral for the n = 2 case is also given.

1. Introduction

In 1815 Poisson [1] introduced and evaluated for the first time the integral

Lp1(a) =
∫ π

0
log(1−2acosx+a2)dx. (1)

Here a ∈ R . Several integrals are known as Poisson integrals. In this paper we shall
refer to the logarithmic integral appearing in (1) as Poisson’s log-cosine integral. When
evaluated one finds

Lp1(a) =

{
0, |a| � 1,

π log(a2), |a| > 1.
(2)

Poisson proved his result using what is essentially a Fourier cosine series expan-
sion for the logarithmic term [1, pp. 617–618]. It was subsequently proved by others
using the definition of a Riemann sum for the definite integral [2] [3, pp. 471–472],
using a functional equation [4], [5], [3, pp. 258–259], and using parametric differenti-
ation. Modern accounts for each of these approaches can be found in [6].

In this paper we will evaluate the Poisson log-cosine integral for the next two
higher order integer powers of the logarithm. More specifically, we shall obtain closed-
form expressions for the integral

Lpn(a) =
∫ π

0
logn(1−2acosx+a2)dx, (3)

for the cases n = 0,1,2, and 3. In passing we note only the result for the case n = 1
can be found in well-known table of integrals [7, Entry 4.224.15], [8, Entry 322.14].
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The approach to be used in all evaluations uses a Fourier cosine series expansion. An
evaluation for the generalisation of the n = 2 case in the form

Lp2(a,b) =
∫ π

0
log(1−2acosx+a2) log(1−2bcosx+b2)dx, (4)

will also be given using the same approach. Here a,b ∈ R .
We begin with three elementary observations for the function Lpn(a) . Firstly,

Lpn(0) = 0 for n ∈ N . Secondly, Lpn(−a) = Lpn(a) for n ∈ N0 where N0 = N∪{0} .
Thirdly, Lp0(a) = π . In this last result, when a = 0 we have taken 00 = 1. Next we
collect together some results that will be needed in the ensuing analysis.

LEMMA 1. (A Fourier cosine series expansion) For x ∈ (0,π)

log(1−2acosx+a2) =

⎧⎪⎪⎨
⎪⎪⎩
−2

∞

∑
n=1

an

n
cos(nx), |a| < 1,

log(a2)−2
∞

∑
n=1

a−n

n
cos(nx), |a| > 1.

Proof. For |a| < 1, from

log(1−2acosx+a2) = log(1−aeix)+ log(1−ae−ix),

and

log(1− z) = −
∞

∑
n=1

zn

n
, |z| < 1,

we see that

log(1−2acosx+a2) = −
∞

∑
n=1

an

n
einx −

∞

∑
n=1

an

n
e−inx = −2

∞

∑
n=1

an

n
cos(nx).

For |a| > 1, we write

log(1−2acosx+a2) = log(a2)+ log

(
1− 2

a
cosx+

1
a2

)
,

and proceeding as was done above we immediately find

log(1−2acosx+a2) = log(a2)−2
∞

∑
n=1

a−n

n
cos(nx). �

LEMMA 2. (A Cauchy product series expansion) For |x| < 1

log2(1− x) = 2
∞

∑
n=2

Hn−1

n
xn.

Here Hn is the nth harmonic number defined for n ∈ N by Hn = ∑n
k=1

1
k .
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Proof. From the well-known result for the generating function of the harmonic
numbers [7, Entry 1.513.6], namely

∞

∑
n=1

Hnx
n = − log(1− x)

1− x
, |x| < 1, (5)

Replacing x with t before integrating from 0 to x yields
∞

∑
n=1

Hnxn+1

n+1
= −

∫ x

0

log(1− t)
1− t

dt =
1
2

log2(1− x).

The desired result then follows on reindexing the sum n �→ n−1. �

LEMMA 3. (A harmonic number generating function) For |x| < 1
∞

∑
n=1

Hn

n2 xn = Li3(x)−Li3(1− x)+Li2(1− x) log(1− x)+
1
2

log(x) log2(1− x)+ ζ (3).

Here ζ is the Riemann zeta function defined by ζ (s) = ∑∞
k=1

1
ks , s > 1 , while Li2 and

Li3 denote the dilogarithm and trilogarithm functions respectively with the polyloga-

rithm function Lis of order s defined by Lis(z) = ∑∞
k=1

zk
ks , for s > 1 and |z| � 1 .

Proof. Dividing both sides of the generating function of the harmonic numbers
given by (5) by x , replacing x with t before integrating from 0 to x gives

∞

∑
n=1

Hn

n
xn = −

∫ x

0

log(1− t)
t(1− t)

dt = −
∫ x

0

log(1− t)
t

dt−
∫ x

0

log(1− t)
1− t

dt

= Li2(x)+
1
2

log2(1− x),

(6)

where in the last line the integral definition of −∫ x
0

log(1−t)
t dt for the dilogarithm func-

tion has been used. Dividing both sides of the equality in (6) by x , replacing x with t
before integrating from 0 to x gives

∞

∑
n=1

Hn

n2 xn =
∫ x

0

Li2(t)
t

dt +
1
2

∫ x

0

log2(1− t)
t

dt. (7)

Recognising
∫ x
0

Lis(t)
t dt = Lis+1(x) takes care of the first of the integrals appearing in

(7) while integrating the second by parts leads to
∞

∑
n=1

Hn

n2 xn = Li3(x)+
1
2

log(x) log2(1− x)+
∫ x

0

log(t)
1− t

log(1− t)dt. (8)

Observing that d
dx Li2(1− x) = log(x)

1−x , integrating the remaining integral in (8) by parts
yields

∞

∑
n=1

Hn

n2 xn = Li3(x)+
1
2

log(x) log2(1− x)+Li2(1− x) log(1− x)+
∫ x

0

Li2(1− t)
1− t

dt

= Li3(x)−Li3(1− x)+Li2(1− x) log(1− x)+
1
2

log(x) log2(1− x)+ ζ (3),
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as desired. Here, for the lower limit of integration we have used Li3(1) = ζ (3) . �

2. The well-known linear case

We present an evaluation for the result given in (2) as it demonstrates the method
we intend to use for the squared, n = 2 generalised, and cubed cases.

From Lemma 1, when |a| < 1 replacing the logarithmic term in the integral for
Lp1(a) with its corresponding Fourier cosine series expansion, one has

Lp1(a) = −2
∫ π

0

∞

∑
n=1

an

n
cos(nx)dx.

As
∞

∑
n=1

∣∣∣∣an

n
cos(nx)

∣∣∣∣ �
∞

∑
n=1

|a|n
n

= − log(1−|a|) < ∞, (9)

Fubini’s theorem applies so the order of integration with the summation may be inter-
changed allowing the integration to be performed termwise. Doing so yields

Lp1(a) = −2
∞

∑
n=1

an

n

∫ π

0
cos(nx)dx = 0,

where the elementary result of
∫ π
0 cos(nx)dx = 0, n ∈ N , has been used.

In a similar manner, when |a| > 1, as
∞

∑
n=1

∣∣∣∣a−n

n
cos(nx)

∣∣∣∣ �
∞

∑
n=1

|a|−n

n
= − log(1−|a|−1) < ∞, (10)

it is again clear Fubini’s theorem applies justifying term-by-term integration. Thus

Lp1(a) =
∫ π

0

[
log(a2)−2

∞

∑
n=1

a−n

n
cos(nx)

]
dx

= π log(a2)−2
∞

∑
n=1

a−n

n

∫ π

0
cos(nx)dx = π log(a2),

as required to show.

3. The squared case and a generalisation

We first show how, when the logarithmic term in Poisson’s log-cosine integral is
squared, it can be evaluated in terms of the dilogarithm function. This result is given in
the following theorem.

THEOREM 1. For a ∈ R

Lp2(a) =

⎧⎪⎨
⎪⎩

2π Li2(a2), |a| � 1,

π log2(a2)+2π Li2

(
1
a2

)
, |a| > 1.
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Proof. For the case |a| < 1, writing the squared logarithmic term in the integrand
for Lp2(a) as the product between two linear logarithmic terms before replacing each
of these terms with their respective Fourier cosine series expansions, one has

Lp2(a) = 4
∫ π

0

∞

∑
m=1

am

m
cos(mx)

∞

∑
k=1

ak

k
cos(kx)dx, |a| < 1.

Due to (9), Fubini’s theorem applies so the order of integration with the summations
may be interchanged allowing the integration to be performed termwise. Doing so
yields

Lp2(a) = 4
∞

∑
m=1

am

m

∞

∑
k=1

ak

k

∫ π

0
cos(mx)cos(kx)dx

= 4
∞

∑
m=1

am

m

∞

∑
k=1

ak

k
· π
2

δmk

= 2π
∞

∑
n=1

a2n

n2 = 2π Li2(a2).

Here the elementary result of
∫ π
0 cos(mx)cos(kx)dx = π

2 δmk where δmk is the Kro-
necker delta has been used.

For the case |a| > 1, we can write

Lp2(a) =
∫ π

0
log2

[
a2

(
1− 2

a
cosx+

1
a2

)]
dx

= π log2(a2)+2log(a2)
∫ π

0
log

(
1− 2

a
cosx+

1
a2

)
dx

+
∫ π

0
log2

(
1− 2

a
cosx+

1
a2

)
dx

= π log2(a2)+2log(a2)Lp1

(
1
a

)
+Lp2

(
1
a

)
.

As the results for Lp1(1/a) and Lp2(1/a) follow from the results for Lp1(a) and
Lp2(a) for the case |a| < 1, a �= 0, with a replaced with 1/a , the result for the case
|a| > 1 is immediate.

Turning to the end-points a = ±1, at the upper end-point, on setting a = 1 the
integral reduces to

Lp2(1) =
∫ π

0
log2(2−2cosx)dx.

From the identity 1− cosx = 2sin2 x
2 we can rewrite the integral as

Lp2(1) =
∫ π

0
log2

(
4sin2 x

2

)
dx = 4

∫ π

0
log2

(
2sin

x
2

)
dx. (11)
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Integrals of the type appearing in (11) have been well studied in the literature [9, 10, 11]
so we need only quote the final result. It is

∫ π

0
log2

(
2sin

x
2

)
dx =

π3

12
. (12)

Thus Lp2(1) = π3/3. Noting that Li2(1) = ∑∞
n=1

1
n2 = ζ (2) = π2/6, as Lp2(1) =

Lp2(−1) the two particular cases of a = ±1 at either end-point can be combined into
the case for |a| < 1 and completes the proof. �

REMARK 1. The result given in Theorem 1 is not new, an evaluation for
∫ π

−π
log2(1+2acosx+a2)dx = 2Lp2(−a),

having been given in [12]. There the result was obtained more succinctly by applying
Parseval’s relation after the Fourier cosine series expansion for the logarithmic term had
been found. The application of Parseval’s relation, while well suited for the squared
case, cannot be used once we move to the generalisation we are above to give for the
squared case, nor for the higher order cubic case, and is the reason why we have chosen
to follow the method we have.

A generalisation in the form of (4) that reduces to the squared case can also be
given. We present this result in the next theorem.

THEOREM 2. For a,b ∈ R

Lp2(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π Li2(ab), |ab|� 1 with |a| � 1, |b| � 1,

π log(a2) log(b2)+2π Li2

(
1
ab

)
, |ab|> 1 with |a| > 1, |b| > 1,

2π Li2
(a

b

)
, |a| < 1 < |b|,

2π Li2

(
b
a

)
, |b| < 1 < |a|.

Proof. We break the proof up into a number of different cases.

Case 1: |ab| < 1 with |a|, |b| < 1
Replacing the two logarithmic terms with their respective Fourier cosine series

expansions given in Lemma 1 one has

Lp2(a,b) = 4
∫ π

0

∞

∑
m=1

am

m
cos(mx)

∞

∑
k=1

bk

k
cos(kx)dx.

The result then follows in a manner analogous to the proof given for the |a|< 1 case in
Theorem 1.
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Case 2: |ab| > 1 with |a|, |b| > 1
On replacing the two logarithmic terms with their respective Fourier cosine series

expansions one obtains

Lp2(a,b) = log(a2) log(b2)
∫ π

0
dx− log(a2)

∫ π

0

∞

∑
k=1

a−k

k
cos(kx)dx

− log(b2)
∫ π

0

∞

∑
m=1

b−m

m
cos(mx)dx

+4
∫ π

0

∞

∑
m=1

a−m

m
cos(mx)

∞

∑
k=1

b−k

k
cos(kx)dx.

Due to (10), Fubini’s theorem applies so the order of integration with the summations
may be interchanged allowing the integration to be performed termwise. Doing so
yields the required result in a manner analogous to the proof given for the |a| > 1 case
in Theorem 1.

Cases 3 and 4: |a| < 1 < |b| and |b| < 1 < |a|
As the procedure is similar to that already presented, the results are immediate.

Case 5: a = b = ±1
It is elementary to show Lp2(a,b) = Lp2(−a,−b) . Setting a = b = ±1 the inte-

gral reduces to

Lp2(±1,±1) =
∫ π

0
log2(2−2cosx)dx = 4

∫ π

0
log2

(
2sin

x
2

)
dx =

π3

3
,

where the value for the integral given in (12) has been used.

Case 6: a = ±1,b = ∓1
On setting a = ±1 and b = ∓1 the integral reduces to

Lp2(±1,∓1) =
∫ π

0
log(2+2cosx) log(2−2cosx)dx

= 4
∫ π

0
log

(
2cos

x
2

)
log

(
2sin

x
2

)
dx.

Integrals of the type appearing on the second line have been well studied in the past
[10, 13], so we need only quote the final result. It is

∫ π

0
log

(
2cos

x
2

)
log

(
2sin

x
2

)
dx = −π3

24
.

Thus Lp2(±1,∓1)=−π3/6. Noting that Li2(1)= ∑∞
n=1

1
n2 = ζ (2)= π2/6 and Li2(−1)

= ∑∞
n=1

(−1)n

n2 = − 1
2 ∑∞

n=1
1
n2 = − 1

2ζ (2) = −π2/12, the particular cases found in Cases
5 and 6 can be combined into Case 1 and completes the proof. �
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4. The cubed case

For the case when n = 3 in Lpn(a) the result is given in the next theorem,

THEOREM 3. For a ∈ R

Lp3(a)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12π
[
Li3(1−a2)−Li2(1−a2) log(1−a2)

− 1
2 log(a2) log2(1−a2)− ζ (3)

]
, |a| � 1,

π log3(a2)+12π
[

1
2 log(a2)Li2

(
1
a2

)
+Li3

(
1− 1

a2

)
−Li2

(
1− 1

a2

)
log

(
1− 1

a2

)
− 1

2 log
(

1
a2

)
log2

(
1− 1

a2

)
− ζ (3)

]
, |a| > 1.

At a = η where η = {−1,0,1} the results need to be understood as a limit (one-sided
where needed) where a → η .

Proof. For the case |a| < 1, by writing the cubed logarithmic term appearing in
the integrand for Lp3(a) as the product between three linear logarithmic terms before
replacing each of these linear logarithmic terms with their respective Fourier cosine
series expansions, one has

Lp3(a) = −8
∫ π

0

∞

∑
n1=1

an1

n1
cos(n1x)

∞

∑
n2=1

an2

n2
cos(n2x)

∞

∑
n3=1

an3

n3
cos(n3x)dx, |a| < 1.

Due to (9), Fubini’s theorem applies so the order of integration with the summations
may be interchanged allowing the integration to be performed termwise. Doing so
yields

Lp3(a) = −8
∞

∑
n1=1

an1

n1

∞

∑
n2=1

an2

n2

∞

∑
n3=1

an3

n3

∫ π

0
cos(n1x) cos(n2x) cos(n3x)dx. (13)

Now ∫ π

0
cos(n1x) cos(n2x) cos(n3x)dx =

π
4

δ2·max{ni}=n1+n2+n3
.

Here i = 1,2,3 while δ2·max{ni}=n1+n2+n3
is a place holder for 1 when 2 ·max{ni} =

n1 +n2 +n3 is satisfied and zero otherwise. Thus (13) reduces to

Lp3(a) = −2π
∞

∑
n1=1

∞

∑
n2=1

∞

∑
n3=1

an1+n2+n3

n1n2n3
δ2·max{ni}=n1+n2+n3

= −6π
∞

∑
n=1

∞

∑
k=1

a2n+2k

nk(n+ k)
.

(14)

The factor of three gained in the second line is the result of the triple summation over
{n1,n2,n3} not depending on order. As the set of numbers {n1,n2,n3} can be permuted
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in three ways, this leads to three ways a non-zero term can arise when 2 ·max{ni} =
n1 +n2 +n3 is satisfied. The double summation that results can be found by converting
it first to a triple integral. Observing that

1
n

=
∫ 1

0
xn−1 dx,

1
k

=
∫ 1

0
yk−1 dy, and

1
n+ k

=
∫ 1

0
zn+k−1 dz,

the double summation in the second line of (14) can be rewritten as

Lp3(a) = −6π
∫ 1

0

∫ 1

0

∫ 1

0

1
xyz

∞

∑
n=1

(xza2)n
∞

∑
k=1

(yza2)k dxdydz

= −6πa4
∫ 1

0

∫ 1

0

∫ 1

0

z
(1− xza2)(1− yza2)

dxdydz,

where in the last line we have summed the resulting geometric series. Note the change
made in the order between the integral signs and the summations is justified by Tonelli’s
theorem since all terms involved are positive. The two inner iterated integrals for x and
y are elementary. After performing each of these, one obtains

Lp3(a) = −6π
∫ 1

0

log2(1− za2)
z

dz.

Making use of the result given in Lemma 2, after replacing x with za2 we have

Lp3(a) = −12π
∞

∑
n=2

Hn−1

n
a2n

∫ 1

0
zn−1 dz = −12π

∞

∑
n=2

Hn−1

n2 a2n, (15)

with the interchange made between the integration and summation being justified by
Tonelli’s theorem as all terms involved are positive. Now consider the two sums

∞

∑
n=1

a2n

n3 and
∞

∑
n=1

Hn

n2 a2n.

Recognising the first of the sums is ∑∞
n=1

a2n

n3 = Li3(a2) while the second is given by
Lemma 3, as both sums converge we can write

12π
∞

∑
n=1

a2n

n3 −12π
∞

∑
n=1

Hn

n2 a2n = −12π
∞

∑
n=1

(
Hn − 1

n

)
a2n

n2 = −12π
∞

∑
n=1

Hn−1

n2 a2n,

where the recurrence relation for the harmonic numbers, namely Hn = Hn−1 + 1
n , has

been used. One can therefore write (15) as

Lp3(a) = 12π
∞

∑
n=1

a2n

n3 −12π
∞

∑
n=1

Hn

n2 a2n,

and the result for |a| < 1 then follows, since as was noted above the first of the sums is

∑∞
n=1

a2n

n3 = Li3(a2) while the second is given by Lemma 3. Notice the result is seen to
contain the a = 0 case as a limiting value since

lim
a→0

(
Li2(1−a2) log(1−a2)+

1
2

log(a2) log2(1−a2)
)

= 0,
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a result that can be established using a single application of l’Hôptial’s rule, and on
noting that Li3(1) = ∑∞

n=1
1
n3 = ζ (3) .

For the case |a| > 1 we can write

Lp3(a) =
∫ π

0
log3

[
a2

(
1− 2

a
cosx+

1
a2

)]
dx

= π log3(a2)+3log2(a)
∫ π

0
log

(
1− 2

a
cosx+

1
a2

)
dx

+3log(a2)
∫ π

0
log2

(
1− 2

a
cosx+

1
a2

)
dx+

∫ π

0
log3

(
1− 2

a
cosx+

1
a2

)
dx

= π log3(a2)+3log2(a2)Lp1

(
1
a

)
+3log(a2)Lp2

(
1
a

)
+Lp3

(
1
a

)
.

Observing the results for Lp1(1/a) , Lp2(1/a) , and Lp3(1/a) correspond respectively
to the previously found results for Lp1(a) , Lp2(a) , and Lp3(a) for the case |a| < 1,
a �= 0, with a replaced with 1/a , the result for the case |a| > 1 then follows.

Turning to the end-points at a = ±1, at the upper end-point, on setting a = 1 the
integral for Lp3(a) reduces to

Lp3(1) =
∫ π

0
log3(2−2cosx)dx = 8

∫ π

0
log3

(
2sin

x
2

)
dx.

Here we have made use of the identity 1−cosx = 2sin2 x
2 . Once again, integrals of the

type appearing to the right have been well studied in the literature [9, 10, 11], so we
need only quote the final result. It is

∫ π

0
log3

(
2sin

x
2

)
dx = −3π

2
ζ (3).

Thus Lp3(1) = −12πζ (3) . Noting that

lim
a→1−

(
Li2(1−a2) log(1−a2)+

1
2

log(a2) log2(1−a2)
)

= 0,

a result that can be established using a single application of l’Hôptial’s rule, and as
Lp3(1) = Lp3(−1) , the two particular cases of a = ±1 at either end-point can be com-
bined into the case for |a| < 1 and completes the proof. �

5. Two special values for Lp3(a)

From the following known closed-form values for the dilogarithm [14, Eq. (1.16)
and Eq. (1.20)]

Li2

(
1
2

)
=

π2

12
− 1

2
log2(2) and Li2

(
1

ϕ2

)
=

π2

15
− log2(ϕ),
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and the trilogarithm [14, Eq. (6.12) and Eq. (6.13)]

Li3

(
1
2

)
=

7
8

ζ (3)+
1
6

log3(2)− π2

12
log(2),

and

Li3

(
1

ϕ2

)
=

4
5

ζ (3)+
2
3

log3(ϕ)− 2π2

15
log(ϕ),

two special values for Lp3(a) can be found. Here ϕ = (1+
√

5)/2 denotes the golden
ratio. For the first of the special values, setting a = 1/

√
2 gives

Lp3

(
1√
2

)
=

∫ π

0
log3

(
3
2
−
√

2cosx

)
dx = 2π log3(2)− 3

2
πζ (3).

For the second, setting a = 1/
√ϕ gives

Lp3

(
1√ϕ

)
=

∫ π

0
log3

(
ϕ − 2√ϕ

cosx

)
dx = 8π log3(ϕ)− 12π

5
ζ (3).
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