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ON A SUBCLASS OF CLOSE–TO–CONVEX HARMONIC MAPPINGS

MANIVANNAN MATHI AND JUGAL KISHORE PRAJAPAT ∗

Abstract. For α >−1 and β > 0, let B0
H (α ,β) denote the class of sense preserving harmonic

mappings f = h+g in the open unit disk D satisfying |zh′′(z)+α(h′(z)−1)| � β −|zg′′(z)+
αg′(z)|. First, we establish that each function belonging to this class is close-to-convex in the
open unit disk if β ∈ (0,1 + α ] . Next, we obtain coefficient bounds, growth estimates and
convolution properties. We end the paper with applications and will construct harmonic univalent
polynomials belonging to this class.

1. Introduction

A complex valued mapping f = u+ iv defined in a domain Ω is a planar harmonic
mapping, if both u and v are real-valued harmonic functions in Ω . If the domain
Ω is simply connected and z0 ∈ Ω, then f admits a unique canonical representation
f = h+g, where both h and g are analytic in Ω and g(z0) = 0. The harmonic mapping
f is locally univalent in Ω if and only if its Jacobian Jf (z) = | fz(z)|2 −| fz(z)|2 is non-
zero in Ω (see [10]). It is sense preserving, if Jf (z) > 0 (z ∈ Ω), or equivalently, if
h′(z) �= 0 and the dilatation w = g′/h′ is analytic and satisfies |w| < 1 in Ω.

Let H denote the class of all harmonic mappings f = h+g in the open unit disk
D = {z ∈ C : |z| < 1} normalized by h(0) = g(0) = h′(0)−1 = 0. Each function f in
H can be expressed by f = h + g, where h and g are analytic functions in D, and
have power series representations

h(z) = z+
∞

∑
n=2

anz
n and g(z) =

∞

∑
n=1

bnz
n. (1)

Let SH be the subclass of H consisting of univalent and sense-preserving har-
monic mappings in D. Also, we denote by H 0 = { f ∈ H : fz(0) = 0} and S 0

H =
{ f ∈ SH : fz(0) = 0} . In 1984, Clunie and Sheil-Small [3] investigated the class SH

together with some of its geometric subclasses. For recent results in harmonic map-
pings, we refer to [2, 6, 8, 13, 19, 23] and the references therein.

In [7], Hernández and Martin introduced the concept of stable harmonic map-
pings. A sense preserving harmonic mapping f = h+ g is said to be stable harmonic
univalent (resp. stable harmonic convex, stable harmonic starlike, or stable harmonic
close-to-convex) in D , if all functions Fλ = h+ λg with |λ | = 1 are univalent (resp.
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convex, starlike, or close-to-convex) in D. They proved that for |λ | = 1, the functions
fλ = h + λg are univalent (resp. convex, starlike, or close-to-convex) for all such λ
(see [7]). We recall that, a function f ∈ H is said to be close-to-convex, if f (D) is
close-to-convex, i.e., the complement of f (D) can be written as disjoint union of non-
intersecting half lines. The following sufficient condition for the close-to-convexity of
harmonic mappings is due to Clunie and Sheil-Small [3].

LEMMA 1. If harmonic mapping f = h+g : D→C satisfies |g′(0)|< |h′(0)| and
the function Fλ = h+λg is close-to-convex for every |λ |= 1, then f is close-to-convex
function.

An analytic function ϕ is said to subordinate to the analytic function ψ and writ-
ten by ϕ(z) ≺ ψ(z) , if there exists a function w analytic in D with w(0) = 0, and
|w(z)| < 1 for all z ∈ D , such that ϕ(z) = ψ(w(z)) , z ∈ D . Furthermore, if ψ is
univalent in D , then we have the following equivalence:

ϕ(z) ≺ ψ(z) ⇐⇒ [ϕ(0) = ψ(0) and ϕ(D) ⊂ ψ(D)].

In this article, we shall use the following known result of subordination.

LEMMA 2. (see [17, Eq. 16]) Let P be an analytic function such that P(0)= 1.
Then for real α such that α > −1, we have

P(z)+ αzP ′(z) ≺ 1+ λ z⇒ P(z) ≺ 1+
λ

α +1
z, z ∈ D.

For two analytic functions ψ1 and ψ2 in D, given by ψ1(z) = ∑∞
n=0 anzn and

ψ2(z)= ∑∞
n=0 bnzn, the convolution (or Hardamard product) is defined by (ψ1 ∗ψ2) (z)=

∑∞
n=0 anbnzn, z∈D. Analogously, for harmonic functions f1 = h1+g1 and f2 = h2+g2

in H , the convolution of f1 and f2 is defined as f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2. Clunie
and Sheil-Small [3] proved that, if f is harmonic convex function, and φ is an an-
alytic convex function, then f ∗ (

φ + αφ
)

is harmonic close-to-convex function for
all α such that |α| < 1. Clearly the space H is closed under the convolution, i.e.
H ∗H ⊂ H . We refer [4, 9, 11, 14] for more information concerning convolution of
harmonic mappings and in the case of analytic functions, we refer for examples [16, 24]
and the references therein.

Let A denote the class of analytic functions in D normalized by f (0) = f ′(0)−
1 = 0 and S denote the subclass of A containing univalent functions. Let S ∗ and
K denote the classes starlike and convex functions in D , respectively. A function
f ∈ A is close-to-convex in D, if there exists a convex analytic function φ in D, not
necessarily normalized, such that ℜ( f ′(z)/φ ′(z)) > 0 in D . Ponnusamy and Singh [21]
have studied a subclass B(α,β ) of close-to-convex functions f ∈A which satisfy the
condition

|z f ′′(z)+ α( f ′(z)−1)|< β , z ∈ D,
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where α > −1 and β > 0. Also, they proved that functions in the class B(α,β ) are
convex in D, if α > −1 and

0 < β �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−α
2+ α

for −1 < α �
√

5−2,

1+ α√
5

for
√

5−2 � α � 1,

1+ α
α
√

5
for 1 � α � 2√

5−1
,

1+ α
2+ α

for
2√

5−1
� α � 2,

1+ α
2α

for α � 2,

(2)

(see [21, Corollary 4]); and stralike in D, if α > −1 and

0 < β �

⎧⎪⎪⎨
⎪⎪⎩

2(1+ α)
2+ α2/(1−α) for −1 < α �= 1 < ∞,

4e2

1+ e2 for α = 1,

(3)

(see [21, Theorem 1.14]). Further, we deduce the conditions for the univalency of
functions in the class B(α,β ) by taking p(z) = f ′(z)− 1, k = 1/α (α > −1) and
J = β/|α| in [17, Eq. 16]. This provides, if f ∈A and |z f ′′(z)+α( f ′(z)−1)|< β (z∈
D), then | f ′(z)−1| < β/(1+α) (z ∈ D). Therefore, the functions in the B(α,β ) are
close-to-convex (hence univalent) in D , if α > −1 and β ∈ (0,1+ α].

Now we define harmonic analogue of the class B(α,β ) . For α > −1 and β > 0,
let B0

H (α,β ) be a subclass of H 0 which is defined by

B0
H (α,β )

=
{

f = h+g∈ H 0 : |zh′′(z)+ α(h′(z)−1)| � β −|zg′′(z)+ αg′(z)|, z ∈ D
}

.

Note that, for α = 0, the class B0
H (α,β ) reduces to the class B0

H (β ), which
was studied recently by Ghosh and Vasudevaro [5]. Further B0

H (α,β ) reduces to
B(α,β ) , if the co-analytic part of f in B0

H (α,β ) is zero.
In this article, we prove that the functions in B0

H (α,β ) are close-to-convex in D.
Also, we prove that functions in B0

H (α,β ) are stable harmonic univalent, stable har-
monic convex and stable harmonic starlike in D for different values of its parameters.
Further, the coefficient estimates, growth results, area theorem, boundary behaviour,
convolution and convex combination properties of the class B0

H (α,β ) of harmonic
mapping are obtained. Finally, we consider the harmonic mappings which involve hy-
pergeometric functions and obtain conditions on its parameters such that it belongs to
the class B0

H (α,β ) .
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2. Main results

The first result provides a one-to-one correspondence between the classes B0
H (α,β )

and B(α,β ).

THEOREM 1. For α >−1 and β > 0 , the harmonic mapping f = h+g∈B0
H (α,β )

if and only if Fλ = h+ λg∈ B(α,β ) for all λ (|λ | = 1|).

Proof. We follow the method of proof of [22], for example, let f = h + g ∈
B0

H (α,β ). Then for all λ (|λ | = 1|), we have

∣∣zF ′′
λ (z)+ α

(
F ′

λ (z)−1
)∣∣ =

∣∣z(h+ λg)′′(z)+ α((h+ λg)′(z)−1)
∣∣

�
∣∣zh′′(z)+ α(h′(z)−1)

∣∣+ ∣∣zg′′(z)+ αg′(z)
∣∣

� β ,

and hence Fλ ∈ B(α,β ). Conversely, for all λ (|λ | = 1) , let Fλ = h+λg ∈ B(α,β ) .
Then

∣∣zF ′′
λ (z)+ α

(
F ′

λ (z)−1
)∣∣ =

∣∣zh′′(z)+ α(h′(z)−1)+ λ (zg′′(z)+ αg′(z))
∣∣

< β , z ∈ D.

For an appropriate choice of λ , we obtain from the last inequality

∣∣zh′′(z)+ α(h′(z)−1)
∣∣+ ∣∣zg′′(z)+ αg′(z)

∣∣ < β , z ∈ D,

and hence f ∈ B0
H (α,β ). �

REMARK 1. We observe that functions in B0
H (α,β ) are stable harmonic close-

to-convex if α > −1 and β ∈ (0,1+ α] , stable harmonic convex in D if α > −1 and
β satisfies the conditions (2), stable harmonic starlike in D if α > −1 and β satisfies
the conditions (3). Further, the following result shows that functions in B0

H (α,β ) .

THEOREM 2. For α >−1 and β ∈ (0,1+α], the harmonic mappings in B0
H (α,β )

are close-to-convex in D.

Proof. If f ∈ B0
H (α,β ) , then by Theorem 1, we have Fλ = h+ λg ∈ B(α,β )

for all λ (|λ |= 1). Hence, Fλ are close-to-convex in D for α >−1 and β ∈ (0,1+α].
Now using Lemma 1, we conclude that functions in B0

H (α,β ) are close-to-convex in
D. �

THEOREM 3. Let α > −1 and β ∈ (0,1+ α]. If f = h+g∈ B0
H (α,β ), then

|z|− β
2(1+ α)

|z|2 � | f (z)| � |z|+ β
2(1+ α)

|z|2, z ∈ D.
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Both the inequalities are sharp for the functions

f1(z) = z+
β

2(1+ α)
z2 and f2(z) = z+

β
2(1+ α)

z2,

and their rotations.

Proof. If f ∈B0
H (α,β ) , then Fλ = h+λg∈B(α,β ) for all λ (|λ |= 1). Hence

zF ′′
λ (z)+ αF ′

λ (z) ≺ α + β z, z ∈ D.

Using Lemma 2, we obtain

F ′
λ (z) ≺ 1+

β
1+ α

z, z ∈ D.

Therefore

1− β
1+ α

|z| � ∣∣F ′
λ (z)

∣∣ =
∣∣h′(z)+ λg′(z)

∣∣ � 1+
β

1+ α
|z|.

Since λ (|λ | = 1) is arbitrary, it follows that

|h′(z)|+ |g′(z)| � 1+
β

1+ α
|z|

and

|h′(z)|− |g′(z)| � 1− β
1+ α

|z|.
If Γ is the radial segment from 0 to z, then

| f (z)| =
∣∣∣∣
∫

Γ

∂ f
∂ξ

dξ +
∂ f

∂ξ
dξ

∣∣∣∣ �
∫

Γ

(|h′(ξ )|+ |g′(ξ )|) |dξ |

�
∫ |z|

0

(
1+

β
1+ α

t

)
dt = |z|+ β

2(1+ α)
|z|2,

and

| f (z)| =
∣∣∣∣
∫

Γ

∂ f
∂ξ

dξ +
∂ f

∂ξ
dξ

∣∣∣∣ �
∫

Γ

(|h′(ξ )|− |g′(ξ )|) |dξ |

�
∫ |z|

0

(
1− β

1+ α
t

)
dt = |z|− β

2(1+ α)
|z|2,

which completes the proof of the theorem. �
The following theorem provides sharp coefficient bounds for functions in B0

H (α,β ).

THEOREM 4. Let f = h+g∈ B0
H (α,β ) be given by (1), then for n � 2,

|an| � β
n(n+ α −1)

and |bn| � β
n(n+ α −1)

.

Both the inequalities are sharp.
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Proof. The proof follows from the method of [12, Proof of theorem 2], but for the
sake of completeness we include it here. Let f = h+g ∈ B0

H (α,β ) be given by (1),
then |zh′′(z)+ α(h′(z)−1)|< β . Now using Cauchy’s theorem, we have

n(n+ α −1)an =
1

2π i

∫
|z|=r

zh′′(z)+ α(h′(z)−1)
zn dz, |z| = r < 1,

and hence the bound for |an| follows. Also, using the trivial bound |an|+ |bn| �
β

n(n+ α −1)
(n � 2) , the bounds for |bn| follows. The sharpness of result can be

shown by taking

f1(z) = z+
β

n(n+ α −1)
zn and f2(z) = z+

β
n(n+ α −1)

zn.

This completes the proof of the theorem. �
The following result gives a sufficient condition for functions belonging to the

class B0
H (α,β ).

THEOREM 5. Let α > −1 and β > 0. If f = h+g∈ H 0 be given by (1) and

∞

∑
n=2

n(n+ α −1)(|an|+ |bn|) � β , (4)

then f ∈ B0
H (α,β ).

Proof. Let f = h+g∈ H 0. Then from (1) and (4), we obtain

∣∣zh′′(z)+ α
(
h′(z)−1

)∣∣ =

∣∣∣∣∣
∞

∑
n=2

n(n−1)anz
n−1 + α

∞

∑
n=2

nanz
n−1

∣∣∣∣∣
�

∞

∑
n=2

n(n+ α −1)|an||z|n−1

� β −
∞

∑
n=2

n(n+ α −1)|bn|

� β −
∣∣∣∣∣

∞

∑
n=2

n(n+ α −1)bnz
n−1

∣∣∣∣∣
= β − ∣∣zg′′(z)+ αg′(z)

∣∣ ,
and hence f ∈ B0

H (α,β ). �
In view of Remark 1 and Theorem 5, we obtain following interesting corollaries.

COROLLARY 1. Let α > −1 and β ∈ (0,1+ α]. If f = h+g ∈ H 0 is given by
(1) and satisfies the inequality (4), then f is stable harmonic close-to-convex in D.
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COROLLARY 2. Let α > −1 and β satisfy the condition (2). If f = h+g ∈ H 0

is given by (1) and satisfies the inequality (4), then f is stable harmonic convex in D.

COROLLARY 3. Let α > −1 and β satisfy the condition (3). If f = h+g ∈ H 0

is given by (1) and satisfies the inequality (4), then f is stable harmonic starlike in D.

EXAMPLE 1. Consider the function

θα ,β (z) = z+
β

4(1+ α)
(z2 − z2) (α > −1, β > 0, z ∈ D). (5)

Then we have
∞

∑
n=2

n(n+ α −1)(|an|+ |bn|) = β .

Hence θα ,β ∈ B0
H (α,β ). Also, θα ,β is stable harmonic close-to-convex in D if α >

−1,β ∈ (0,1+α] , stable harmonic convex in D if α >−1 and β satisfy the condition
(2), stable harmonic starlike if α > −1 and β satisfy the condition (3).

The following results shows that the boundary of f (D) is a rectifiable Jordan curve
for each f ∈ B0

H (α,β ).

THEOREM 6. For real α and β such that α > −1 and β ∈ (0,1 + α], each
function in B0

H (α,β ) maps the D onto a domain which is bounded by a rectifiable
Jordan curve.

Proof. Each function f = h+g ∈ B0
H (α,β ) is uniformly continuous in D, and

hence can be extended continuously onto |z| = 1. To see this, let z1 and z2 be two
distinct points in D, and [z1,z2] be the line segment joining z1 to z2. We have from (4)

| f (z1)− f (z2)| =
∣∣∣∣
∫

[z1,z2]

∂ f
∂ξ

dξ +
∂ f

∂ξ
dξ

∣∣∣∣
�

∫ |z1|

|z2|

(
1+

β
1+ α

t

)
dt

= (|z1|− |z2|)
(

1+
β

2(1+ α)
(|z1|+ |z2|)

)

� 2(|z1|− |z2|) � 2|z1− z2|.

Now, let the curve C be defined by w = f (eiθ ), 0 � θ � 2π . If 0 = θ0 < θ1 < · · ·θn =
2π is a partition of [0,2π ], then

n

∑
k=1

∣∣∣ f (eiθk )− f (eiθk−1)
∣∣∣ � 2

n

∑
k=1

∣∣∣eiθk − eiθk−1

∣∣∣ < 4π ,

which shows that C is a rectifiable curve. It remains to show that f is univalent on
∂D = {z ∈ C : |z| = 1} . In view of Theorem 1, functions Fλ = h+ λg belongs to the
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class B(α,β ) for all |λ |= 1. In particular each Fλ is univalent in ∂D by [15, Theorem
3].

Now suppose that z1,z2 are two distinct points on ∂D = {z : |z| = 1} such that
f (z1) = f (z2). Then

h(z1)−h(z2) = g(z2)−g(z1). (6)

If h(z1) = h(z2), then g(z1) = g(z2) and so z1 = z2 by the univalence of F1 . Now as-
sume that h(z1) �= h(z2), and let θ = arg{h(z1)−h(z2)} ∈ [0,2π). Then e−iθ (h(z1)−
h(z2)) is a positive real number, now multiplying (6) by e−iθ and taking the conjugate
on both sides, we have

h(z1)−h(z2) = e2iθ (g(z2)−g(z1)) ,

which implies that Fλ (z1) = Fλ (z2) with λ = e2iθ . Thus z1 = z2, which shows that f
is univalent in ∂D. This completes the proof of Theorem 6. �

Now, we will show that the class B0
H (α,β ) is closed under convex combina-

tions. Also, we show that for φ ∈K and f ∈B0
H (α,β ), the function f ∗(

φ + β φ
) ∈

B0
H (α,β ) for all |β | = 1. To show that the class B0

H (α,β ) is closed under convex
combinations, we shall need following Lemma:

LEMMA 3. (see [25]) Let p be an analytic function in D, with p(0) = 1 and
ℜ(p(z)) > 1/2 in D. Then for any analytic function f in D, the function p ∗ f takes
values in the convex hull of the image of D under f .

THEOREM 7. The class B0
H (α,β ) is closed under convex combination.

Proof. Let fk = hk +gk ∈B0
H (α,β ) for k = 1,2, · · ·n, and ∑n

k=1 tk = 1 (0 � tk �
1). The convex combination of the fk ’s can be written as

f (z) =
n

∑
k=1

tk fk(z) = h(z)+g(z),

where h(z) = ∑n
k=1 tkhk(z) and g(z) = ∑n

k=1 tkgk(z). A computation shows that

∣∣zh′′(z)+ α(h′(z)−1)
∣∣ =

∣∣∣∣∣
n

∑
k=1

tk(zh′′k (z)+ α(h′k(z)−1))

∣∣∣∣∣
�

n

∑
k=1

tk
∣∣zh′′k (z)+ α(h′k(z)−1)

∣∣

=
n

∑
n=1

tk
(
β −|zg′′k(z)+ αg′k(z)|

)

� β −
∣∣∣∣∣z

n

∑
k=1

tkg
′′
k (z)+ α

n

∑
k=1

tkg
′
k(z)

∣∣∣∣∣
= β −|zg′′(z)+ αg′(z)|,

and so f ∈ B0
H (α,β ). �
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THEOREM 8. Let f ∈ B0
H (α,β ) and φ ∈ K . Then f ∗ (

φ + λ φ
) ∈ B0

H (α,β )
for all λ (|λ | = 1).

Proof. Let f = h+g be in B0
H (α,β ). Then

f ∗ (
φ + λ φ

)
= h ∗φ + λ(g ∗φ).

It sufficient to show that Fλ = h ∗φ + λ (g ∗φ) ∈ B(α,β ) for all λ (|λ | = 1). A com-
putation shows that

zF ′′
ε (z)+ α

(
F ′

ε(z)−1
)
=

(
z(h+ λg)′′ (z)+ α

(
(h+ λg)′ −1

))∗ φ(z)
z

. (7)

Since f = h+g∈ B0
H (α,β ), the function h+ λg ∈ B(α,β ), and so

∣∣∣zh′′(z)+ α
(
h′(z)−1

)
+ λ(zg′′(z)+ αg′(z))

∣∣∣ � β , z ∈ D.

Since φ ∈ K , implies that ℜ
(

φ(z)
z

)
>

1
2

in D. Now applying Lemma 3, we obtain

that ∣∣zF ′′
λ (z)+ α(F ′

λ (z)−1)
∣∣ � β , z ∈ D.

Hence Fλ ∈ B(α,β ) for all λ (|λ | = 1) , equivalently f ∗ (
φ + λ φ

) ∈ B0
H (α,β ) for

all λ (|λ | = 1) . �

3. Applications

In this section, we consider harmonic mappings which involve the Gaussian hyper-
geometric function and obtain conditions so that such harmonic mappings belongs to
the class B0

H (α,β ) . The Gaussian hypergeometric function 2F1(a,b;c;z) is defined
by

F(a,b;c;z) = 2F1(a,b;c;z) =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn, (8)

where a,b,c∈C, c �= 0,−1,−2,−3, · · · and (x)n is the Pochhammer symbol defined by
(x)0 = 1, (x)n+1 = (x+n)(x)n = x(x+1)n (n = 0,1,2, · · ·) . The series (8) is absolutely
convergent in D. Moreover, if ℜ(c−a−b)> 0, then series (8) is convergent in |z|� 1.
The well-known Gauss formula (see [26])) for hypergeometric function is given by
2F1(a,b;c;1) = Λ for ℜ(c−a−b) > 0, and where

Λ =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

.

We shall use the following Lemma to prove result in this section.

LEMMA 4. (see [20]) Let a,b ∈ R \ {0} and c is a positive real number. Then
the following holds
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(i) For c > a+b+1,

∞

∑
n=0

(n+1)(a)n(b)n

(c)nn!
=

Γ(c)Γ(c−a−b−1)
Γ(c−a)Γ(c−b)

(ab+ c−a−b−1).

(ii) For c > a+b+2,

∞

∑
n=0

(n+1)2(a)n(b)n

(c)nn!
=

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(
(a)2(b)2

(c−a−b−2)2
+

3ab
c−a−b−1

+1

)
.

(iii) For a �= 1,b �= 1 and c �= 1 with c > max{0,a+b+1},
∞

∑
n=0

(a)n(b)n

(c)n(n+1)!
=

1
(a−1)(b−1)

(
Γ(c)Γ(c−a−b−1)

Γ(c−a)Γ(c−b)
− (c−1)

)
.

Below we use the ideas used by [1, 18] for the univalency of harmonic mappings
involving the Gaussian hypergeometric functions. The first result in this section is given
by

THEOREM 9. Let a,b ∈ R \ {0} and c is a positive real number. Suppose that
f1(z)= z+z2F(a,b;c;z), f2(z)= z+z(F(a,b;c;z)−1) and f3(z)= z+z

∫ z
0 F(a,b;c; t)dt ,

then the following holds

(i) If c > a+b+2 and

(a)2(b)2

(c−a−b−2)2
+

ab(α +4)
c−a−b−1

+2(1+ α) � β
Λ

, (9)

then f1 ∈ B0
H (α,β ).

(ii) If c > a+b+2 and

ab(ab+ c−1)
(c−a−b−2)2

+
ab(1+ α)

c−a−b−1
+ α � β −α

Λ
, (10)

then f2 ∈ B0
H (α,β ).

(iii) If a �= 1,b �= 1 and c �= 1 with c > max{0,a+b+1} and

Λ
(

ab
c−a−b−1

+
α

(a−1)(b−1)(c−a−b−1)
+ α

)
− α(c−1)

(a−1)(b−1)
� β , (11)

then f3 ∈ B0
H (α,β ).
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Proof. (i) Let f1(z) = z + ∑∞
n=2Cnzn, where Cn = (a)n−2(b)n−2

(c)n−2(n−2)! (n � 2). Using
Lemma 4 and Gauss formula, we have

∞

∑
n=2

n(n+ α −1)|Cn| =
∞

∑
n=2

n(n+ α −1)
(a)n−2(b)n−2

(c)n−2(n−2)!

=
∞

∑
n=0

(n+1)2 (a)n(b)n

(c)nn!
+(1+ α)

∞

∑
n=0

(n+1)
(a)n(b)n

(c)nn!
(12)

+ α
∞

∑
n=0

(a)n(b)n

(c)n n!

= Λ
(

(a)2(b)2

(c−a−b−2)2
+

ab(α +4)
c−a−b−1

+2(1+ α)
)

.

Now if (9) holds, then ∑∞
n=2 n(n+α−1)|Cn|� β . Now using Theorem 5, we conclude

that f1 ∈ B0
H (α,β ).

(ii) Let f2(z) = z+ ∑∞
n=2 Dnzn, where Dn =

(a)n−1(b)n−1

(c)n−1(n−1)!
(n � 2). Using Lemma 4

and Gauss formula, we have

∞

∑
n=2

n(n+ α −1)|Dn| =
∞

∑
n=2

n(n+ α −1)
(a)n−1(b)n−1

(c)n−1(n−1)!

=
∞

∑
n=0

(n+1)
(a)n+1(b)n+1

(c)n+1 n!
+(1+ α)

∞

∑
n=0

(a)n+1(b)n+1

(c)n+1 n!

+ α
∞

∑
n=0

(a)n+1(b)n+1

(c)n+1(n+1)!

= Λ
[

ab(ab+ c−1)
(c−a−b−2)2

+
ab(1+ α)

c−a−b−1
+ α

]
−α.

Now if (10) holds, then in view of Theorem 5, we have f2 ∈ B0
H (α,β ).

(iii) Let f3(z) = z+ ∑∞
n=2 Enzn, where En =

(a)n−2(b)n−2

(c)n−2(n−1)!
n � 2. Therefore in view

of Lemma 4 and Gauss formula, we have

∞

∑
n=2

n(n+ α −1)|En| =
∞

∑
n=2

n(n+ α −1)
(a)n−2(b)n−2

(c)n−2(n−1)!

=
∞

∑
n=0

(n+1)
(a)n(b)n

(c)n n!
+(1+ α)

∞

∑
n=0

(a)n(b)n

(c)n n!

+ α
∞

∑
n=0

(a)n(b)n

(c)n (n+1)!
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=
Γ(c)Γ(c−a−b−1)

Γ(c−a)Γ(c−b)
(ab+ c−a−b−1)

+ (1+ α)
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

+
α

(a−1)(b−1)

(
Γ(c)Γ(c−a−b−1)

Γ(c−a)Γ(c−b)
− (c−1)

)
.

If (11) holds, then by Theorem 5, we have f3 ∈ B0
H (α,β ). �

Note that for η ∈ C\ {−1,−2, · · ·} and n ∈ N∪{0} , we have

(−1)n(−η)n

n!
=

(
η
n

)
=

Γ(η +1)
n!Γ(η −n+1)

.

In particular, when η = m(m ∈ N,m � n) , we have

(−m)n =
(−1)nm!
(m−n)!

.

Using this relation in Theorem 9, we can obtain harmonic univalent polynomials that
belong to the class B0

H (α,β ).

COROLLARY 4. Let m ∈ N,c be a positive real numbers. Let

F1(z) = z+
m

∑
n=0

(
m
n

)
(m−n+1)n

(c)n
zn+2, F2(z) = z+

m

∑
n=0

(
m
n

)
(m−n+1)n

(c)n
zn+1

and

F3(z) = z+
m

∑
n=0

(
m
n

)
(m−n+1)n

(c)n

zn+2

n+1
.

Then the following holds.

(i) If

m2(m−1)2

(c+2m−1)(c+2m−2)
+

m2(α +4)
c+2m−1

+2(1−α) � β [Γ(c+m)]2

Γ(c)Γ(c+2m)
,

then F1 ∈ B0
H (α,β ).

(ii) If

m2(c+m2−1)
(c+2m−2)(c+2m−1)

+
m2(1+ α)
c+2m−1

+ α � (β −α) [Γ(c+m)]2

Γ(c)Γ(c+2m)
,

then F2 ∈ B0
H (α,β ).
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(iii) If

Γ(c)Γ(c+2m)

(Γ(c+2m)]2

(
m2

c+2m−1
+

α
(m+1)2(c+2m−1)

+ α
)
− α(c−1)

(m+1)2 � β ,

then F3 ∈ B0
H (α,β ).

Proof. The results follow, if we put a = b = −m in Theorem 9. �

We conclude this paper by remarking that, by appropriately selecting parameters
in Theorem 9 and Corollary 4, our results would lead to new results and further appli-
cations. These consideration can fruitfully be worked out and we skip the details in this
regards.

Acknowledgements. The authors express their sincere thanks to the editor and
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