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DIRECT ESTIMATES FOR GUPTA TYPE GENERAL OPERATORS

EKTA PANDEY * AND R. K. MISHRA

Abstract. Gupta in [6] introduced a general family of linear positive operators which produce
large number of well known linear positive operators as particular cases. As the family of oper-
ators proposed by Gupta provides a unified approach this motivated us to extend the studies, and
we establish some convergence estimates of these important operators. We estimate an asymp-
totic formula and the rate of convergence for these operators for the function having derivatives
of bounded variation.

1. Introduction

In the year 1980 Mastroianni [15] suggested a discretely defined operators based
on the exponential type operators, which contain three well-known operators namely
Bernstein, Baskakov and Szdsz-Mirakyan operators as special cases. After a gap of
twenty years Mihesan [16] introduced another sequence of linear positive operators
based on exponential type operators. Mihesan’s approach was based on substitution of
the value of the parameter used in the definition, which then produce one more impor-
tant operators namely the Lupas operators. Although the additional Lupas operators
are not exponential type operators. These discretely defined operators are not possi-
ble to approximate integrable functions. In this direction Gupta and collaborators [2],
[5], [10] and [1 1] proposed several hybrid operators of Durrmeyer type and established
many interesting results concerning convergence. In this direction, some important
contribution we refer to [4], [14] and [12] etc. Very recently based on unified approach
concept Gupta in [6] introduced a generalized sequence of linear positive operators
having different and same basis function in summation and integration. Such operators
contain many well-known operators as special cases. For x € [0,c0), the generalized
operators due to Gupta [6] are defined in terms of the inner product as follows
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with the rising factorial (p), = H};{)(p +k) and (p)o = 1. These operators produce
following well-known operators as special cases (see [6]):

1. If p = u = n, we obtain the Baskakov-Durrmeyer type operators defined in [8].
2. If p = u = —n, we obtain the Bernstein-Durrmeyer polynomial defined in [9].
3. If p = u — oo, we obtain the Phillips operators defined in [18].

4. If p = u = n/c, we obtain the well known Srivastav-Gupta type operators (see
[19], [1] and [13]) which is generalized sequence of positive linear operators
containing above three cases.

5. If p =n,u — o, we obtain Baskakov-Szdsz type operators proposed in [3]

6. If p — oo and i = n, we obtain the Szdsz-Beta type operators introduced in [17].
7. If p =nx and y =n , we obtain the Lupags- Beta operators defined in [10]

8. If p =nx and u — oo, we obtain the Lupas-Szasz type operators proposed in [7].

The immense properties of operators (1) motivate us to extend the studies and es-
tablish some convergence estimates of these operators. In the present paper we establish
an asymptotic formula and the rate of convergence for these operators for the function
having derivatives of bounded variation. All the above cases exceptcase p = = —n
holds true for our results.

2. Moment estimation and auxiliary results

LEMMA 1. [6] The r-th order moment Vyp ;/(e5,x), eg=t°, s=0,1,2,--- satisfy
the following representation

Vn,p,u(er»x) =nx
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REMARK 1. Using Lemma 1, few moments are given by
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REMARK 2. Also, by Lemma 1, few central moments are given by

X
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Consequently for each x € [0,0), we have

Vn7p7y((€1 —er)m,x) = Ox(n*[(m+1)/2])'
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COROLLARY 1. From Lemma 1 and using Cauchy-Schwarz inequality, we have

Vapu(lt —x|",x \/Vnpu t—x)%, ):O(n—r/Z).
Also we have
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Now operators (1) can be redefined as

Vipu(fsx) = (ki H (x,.), f),

where

LEMMA 2. For fixed x > 0 and for sufficiently large n, we have
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The proof of the above lemma follows along the lines of Remark 2.
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3. Direct theorems

THEOREM 1. Let f be bounded and integrable function on the interval [0,o)
such that the second derivative of f exists at a fixed point x € [0,0), then we have

lim n[anle(f?x) —f(x)] :A(x)f/(x) —+ M

oo 2

[,
where A(x),B(x) are functions of x and C is certain constant.

Proof. By the Taylor’s expansion of f, we have

£(0) = F@)+ £/ =)+ 35" 6) (¢ =0 +Rie, )1 —xP,

where }im r(z,x) = 0. Operating V,, 5 , to the above identity, we obtain
—X
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Using the Cauchy-Schwarz inequality, we have

Viput (R(t,5) (€2 — xeq).x) < \/Vn,p,,l (R2(1,%) ,x) \/vn,p,,i((e2 — xeo)*x).

In view of Remark 2, we have

lim Vy,p u (R? (2,%) ,x) = R* (x,x) = 0. 2)

n—oo

Thus, we get
r}i_lgnVn’p,u (R(2,x) (e —xeo)27x) =0.

Thus by Remark 2, we get
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COROLLARY 2. Under the assumptions of Theorem 1, the conclusions of the
asymptotic formulae will be as follows:
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1. For the Baskakov-Durrmeyer type operators (see [8]) and x > 0:

1im 1V, p u (f,%) = F(X)] p=p=n = xf'(x) +x(1 +x) f" (x).

Nn—oo
2. For the Bernstein-Durrmeyer polynomial (see [9]), and x € [0,1]:

lim n[Vn,p,u (f,x) - f(x)}P=IJ=—n = _xf/(x) +x(l _x)f//(x)'

Nn—oo
3. For the well-known Phillips operators (see [18]) and x > 0:

r}il}(}on[vn,p,# (f,.X) - f(x)}P"‘x’vlJ"‘x’ = .Xf//(X).

4. For the general Srivastav-Gupta type operators (see [19], [1] and [13]) and x > 0
if ce NU{0}; x€[0,1] if c=—1:

1im (Vi p 1 (f,%) = F(0)]p—p—nse = exf’(x) + x(1+cx) f" (x).

n—oo

5. In case of the Baskakov-Szdsz type operators (see [3]) and x > 0:

Bim Vi p a(f3) — 0l pmpo = T ().

frinrost 2

6. For the Szdsz-Beta type operators introduced in [17] and x > 0:

lim n[Vn,p,u(f»x) - f(x)]p=°<>.,u=n = xf/(x) + Mf”(x)~

Nn—oo 2
7. In case of the Lupas- Beta operators defined in [10] and x > 0:

im Vi (£~ £ oo = () + 0

8. For the Lupas-Szdsz type operators proposed in [7] and for x > 0:

3x

1),

r}i_rgn[vn,p,ll (fax) - f(x)]P=nx,u—>o<> =

We describe the class DB, of entirely continuous function f having a derivative of
bounded variation on the interval [0, ) as

DBy = {f 1 f(x) = flo) +/Cx(p(t)dt;f(t) — 00"t — oo} )

where @ is a function of bounded variation on every finite sub interval of [0,e) and
|f ()] < Mt" for r > 0.
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THEOREM 2. Let f € DBy, for all x € [0,°0) with the condition p — e as n — o
and lim,_.n/p =1 and & — o as n — o and lim,_...n/L = m, then for adequately
large n, we have

Vi (f%) =
< m lo(x+) — \/ npu+2np +)r(1;t ];)2pu2x
b o) — o) ”P‘;;f"”;gg};szvym
# 2 OB g — g { HRA 0 i 2
lopit - 20p A DUN 00) — 6) —pta) + 0}
+o(x+) \/ np“+2np +)'Z;L ];)2p”2x+M2’0(n_’/2),

where the secondary function @, is given by

o) —px—) 0<<x
0 () =40 t=x
Ot)—p(x+) x<t<oo

and VP @, denotes the total varitions of @, on [a,b]

Proof. From the definition of operators (1) and (3), we have

np,uf7 /kpu)ft — f(x))dt

_ /0 KM (x, 1) ( / (p(u)du) dr.

For ¢ € DBy, using (4) and applying the identity

_ P(x+) +1p(x—)
o) = @(u)+ TR R

Plxt) —e(x—) p-1
t— (sgn(u—x) + m)

+ (ot - 2R )y ), )

“4)

where
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From (4) and (5), we have

Vap.u (f:x) - f(x) = _E?p#((l)mx) +E;7p7ﬂ((l)x’x) +E§l7p#(¢mx)
+EZ7P’IL _|_E;7~,P~,IJ _|_Eg~,P~,IJ’

where

npli (P)m — (/ (Px du)k ,u
2x
np’J (px, = (/ (Px du)k IJ
np’J (px, = (/ (px du)k 'u
2x
ElPH — /(/‘px+ U )du)k57“(x,t)dt,
,Ll+l

ESPH = o0t —olv—) (sgn(u— )—i—ﬁT) du) kD (x,1)dt,

( #) xx(u)du> KPR (v, ).

From Lemma 2, we obtain

ElPH

nou P(x+) + uex—) /N NP
E; T E— (t — x)kbH (x,1)dr

+) + pp(x—
- %-Vw#(el — xeo,x)
Plx+)+uex—) x
w41 u—1

From Lemma 2 and Corollary | for sufficiently large n, we have

ppov = Q000D [ (s B ) p#a]
+w [— /: (/t (sgn(u x) + %) du> K,f*‘(xﬁ)dt}

< mm’(ﬁ') @ (x=)[Vapu(lt —x],x)

= () -

|\/ npu+2np+nu 2 +2pux
TR

—Du-2)



34 E. PANDEY AND R. K. MISHRA

Eg’p #is obviously zero by definition of y.(x). Now by Stieltjes integral and
integration by part, for y = x — x+/n, we have

EPH gy x _/ (/ 0. (u du> (BPH (x,1)) di
— [ oy

x—x/\/n
= [ e yar
0
~ [ B (.
x—x/\/n
Since ﬂ,f’“(x,t) < 1 and @,(x) =0, we have

/xxx/f( (1) = @u(x)) B (x,1)dt| <

and from Lemma 2 and taking h = we get

xt’

U
=

np(u—1)(u—2) 0 T (x—n)?

N

[ puopes e

[npu+2np +nu?|+2p s .
- np(u—1)(n—2) / Vi) e
K[npu+2np +nu?l+2pu X[g o
np(u—1)(u—2) &
Thus, we have
oy _ Plnpu+2np +np 4+ 2ppx Y
B el S T Ty &
X X
+va—x\/ﬁ(px'

Now we find estimate of E; PH(@y,x) using Lemma 2 and integration by part, we
obtain

B ) = [ ( [ ) (gpr oy

-/ ” ( [ <px<u>du) dy (1~ BEH (x,1)) dr

2x
= — | @u(u)du(l—BP*(x,2x))
2x

+ [ et) (1= B (x,0)) dr

=: E; +E3.
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From Lemma 1

/x2x ox(u)du

X[npp +2np +np?| +2pux
np(p—1)(n—2)
x[npu +2np +np?+2pu?

= - D—2 E S0 -xeb)l

Ey| < 1= B (x, 2%))

[ o)~ ot
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E3| <

/ I o] 4 R 2np i)+ 2pply /2" olt)
. np(i— 1)1 —2) b/ (=)

2
X e Clnpp+2np+np?)+2pp3 v
=—=W Ox+ §V Oy
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Next, we estimate Ey PH(@y,x) as follows. Let there exist an integer r such that
f(t) =0(") as t — oo then for some positive constant M depending on f,x,r, then
we get

|E57" (gr, )|

= [ ([ @0 otinan) e+ s
< /2 °° ( / ’ (p(t)du) KPH (x, 1)t

= | [ GO = s nyar

ot | [ag# o

+|o(x+) , kDM (x,1)dt

5*‘ (x,)dt

N

; FORH (x,0)dr

+1f(x)

+|o(x+)] ‘/wkﬁ"’“‘(x,t)dt

<M +1f(x)

/ 12 kP (x,1)dt
2x

/ kDM (x,1)dt

+[o(x+) |‘/ KM (x,1)dr],

using the inequality 7 < 2(r — x) for ¢ > 2x, we have

B3 ()| < M| [ 2 00 e

L)

¥2

/ (1 — X 2K0H (x,1)dt
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| / KM (x,1)dr| .
2x
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Using Corollary 1 and Lemma 1 and Holder inequality, we have following estima-

2 2
.0, < M O(n-T/2 lf ()| (x[npu+2np +nul+2pu
e T [
K[npu+2np +nu?) +2pu’x

O =D —2)

Collecting all the estimates Ef’p’”((px7x),E;’p’“(qomx),Eg’p’“((pmx),EZ’p’“,Eg’p’“

and Eg PH we obtain the required result. [

REMARK 3. one can obtain rate of convergence of different operators mentioned

in Section 1 for the different values of p and u from above theorem.
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