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APPROXIMATION BY INTERPOLATION: THE CHEBYSHEV NODES

MAMA FOUPOUAGNIGNI, DANIEL DUVIOL TCHEUTIA,
WOLFRAM KOEPF ∗ AND KINGSLEY NJEM FORWA

Abstract. In this paper, we first revisit the well-known result stating that the Hermite interpo-
lation polynomials of a function f continuous on [−1,1] , with the zeros of the Chebyshev
polynomials of the first kind as nodes, converge uniformly to f on [−1,1] . Then we extend
this result to obtain the uniform convergence of the Hermite interpolation polynomials, with the
nodes taken as the zeros of the Chebyshev polynomials of the second, third and fourth kind,

not on the interval [−1,1] but rather on the intervals [− 2
√

2
3 , 2

√
2

3 ] , [−
√

3
2 ,1] , [−1,

√
3

2 ] , respec-
tively.

1. Introduction

Given n+ 1 distinct real numbers {zn,i}n
i=0 and n+ 1 real values {wi}n

i=0 , there
exists a unique polynomial pn(z) of degree at most n such that pn(zn,i) = wi , i =
0, . . . ,n . We can construct this interpolation polynomial using the Lagrange and New-
ton methods (see e.g. [1, 6, 7, 8]). The Weierstrass theorem (see e.g. [2, 10, 11]) states
that if f is a continuous function on a closed interval [a,b] , we can find a family of
polynomials which converges uniformly to f on [a,b] . In fact, it is shown for example

in [2, 6, 10] that if f ∈ C [0,1] , then the Bernstein polynomials
(
Bn( f ;x)

)
n

defined by

Bn( f ;x) =
n

∑
k=0

f

(
k
n

)(
n
k

)
xk(1− x)n−k,n ∈ N,

converge uniformly to f on [0,1]. It follows that the polynomial family (Gn( f ,x))n

with

Gn( f ,x) =
1

(b−a)n

n

∑
k=0

f

(
a+(b−a)

k
n

)(
n
k

)
(x−a)k(b− x)n−k

converges uniformly on [a,b] to f ∈ C [a,b] for a,b ∈ R . Moreover if f ∈ C p[0,1] ,
then the polynomials B(p)

n+p( f ;z) converge uniformly to f (p)(z) on [0,1] (see e.g. [2,
10]).

Mathematics subject classification (2010): 32E30, 97N50.
Keywords and phrases: Hermite Interpolation, approximation, Chebyshev polynomials.
∗ Corresponding author.

c© � � , Zagreb
Paper JCA-17-04

39

http://dx.doi.org/10.7153/jca-2021-17-04


40 M. FOUPOUAGNIGNI, D. D. TCHEUTIA, W. KOEPF AND K. N. FORWA

Consider n+ 1 distinct real numbers {zn,i}n
i=0 and let f ∈ C 1[−1,1] , then there

exists (see e.g. [2, 10]) a unique polynomial Q2n+1( f ;z) of degree at most 2n+1 such
that {

Q2n+1( f ;zn,i) = f (zn,i), i = 0,1, . . . ,n,

Q′
2n+1( f ;zn,i) = f ′(zn,i), i = 0,1, . . . ,n.

(1)

The polynomial Q2n+1( f ;z) is called the Hermite interpolating polynomial for f (see
e. g. [1, Section 3.6], [6], [10, p. 13]). There exists a basis {An,i(z),Bn,i(z), i =
0,1,2, . . . ,n} (An,i(z),Bn,i(z) ∈ R2n+1[z], for each i = 0,1, . . . ,n ) such that

Q2n+1( f ;z) =
n

∑
i=0

f (zn,i)An,i(z)+
n

∑
i=0

f ′(zn,i)Bn,i(z). (2)

REMARK 1. For f (z) = 1, z ∈ [−1,1] , (2) leads to

1 = Q2n+1( f ;z) =
n

∑
i=0

f (zn,i)An,i(z) =
n

∑
i=0

An,i(z),

that is
n

∑
i=0

An,i(z) = 1. (3)

Looking for necessary conditions on An,i(z) and Bn,i(z) in (2) for (1) to be satis-
fied, we get {

An,i(zn, j) = δi j and Bn,i(zn, j) = 0, i, j = 0,1, . . . ,n

A′
n,i(zn, j) = 0 and B′

n,i(zn, j) = δi j, i, j = 0,1, . . . ,n.
(4)

Let {ln,i(z), i = 0,1, . . . ,n} be the Lagrange basis polynomials in Rn[z] (the set of
polynomials of degree at most n with real coefficients) defined by

ln,k(z) =
n

∏
i=0
i�=k

( z− zn,i

zn,k − zn,i

)
, k = 0,1,2, . . . ,n,

then the Hermite basis polynomials {An,i(z),Bn,i(z), i = 0,1, . . . ,n} in R2n+1[z] are
given by:

An,i(z) = (1−2(z− zn,i)l′n,i(zn,i))l2n,i(z), i = 0,1, . . . ,n, (5)

Bn,i(z) = (z− zn,i)l2n,i(z), i = 0,1, . . . ,n.

This means that the Hermite interpolation polynomials (2) are given in terms of the
Lagrange basis polynomials as ([6, Eq. (3.50)], [10, Eq. (1.38)])

Q2n+1( f ;z) =
n

∑
i=0

f (zn,i)
(
1−2(z− zn,i)l′n,i(zn,i)

)
l2n,i(z)+

n

∑
i=0

f ′(zn,i)(z− zn,i)l2n,i(z).

(6)
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We can show by direct calculus that for the Newton polynomial (see e.g. [7])

Nk(z) =
{

1, if k = 0
(z− zn+1,0)(z− zn+1,1) · · · (z− zn+1,k−1), if 1 � k � n+1,

we have

ln,i(z) =
Nn+1(z)

(z− zn+1,i)N′
n+1(zn+1,i)

and 2l′n,i(zn+1,i) =
N′′

n+1(zn+1,i)
N′

n+1(zn+1,i)
. (7)

Let 0 < θ < π , set z = cosθ and define for n = 0,1, . . .

Tn(z) = cos(nθ ).

For n = 1,2, . . . , Tn(z) is a polynomial of degree n in the variable z with leading
coefficient 2n−1 and is called the Chebyshev polynomial of first kind. The roots zn,k of
Tn(z) in increasing order are given by

zn,k = cosθn,k, with θn,k =
(2(n− k)−1)π

2n
, k = 0,1, . . . ,n−1. (8)

The zeros of orthogonal polynomials play a very important role in interpolation theory,
quadrature formulas, etc. (see e. g. [3, 8, 9]). One can show that for a given function
f ∈ C [−1,1] , the Hermite interpolation polynomials Q2n+1( f ;z) which satisfy{

Q2n+1( f ;zn+1,i) = f (zn+1,i), i = 0,1, . . . ,n,
Q′

2n+1( f ;zn+1,i) = 0, i = 0,1, . . . ,n,
(9)

converge uniformly on [−1,1] to f (see e.g. [3]). We will revisit the proof of this very
well known result in the second section of this work. The main question we are going
to answer in section 3 (and which is our main contribution in this work) is whether this
result is still valid if we consider now the zeros of the Chebyshev polynomials of the
second, third and fourth kind defined, respectively, for z = cosθ , 0 < θ < π by (see
e.g. [8, p. 123], [13])

Un(z) =
sin((n+1)θ )

sinθ
, Vn(z) =

cos((n+ 1
2 )θ )

cos( θ
2 )

, Wn(z) =
sin((n+ 1

2)θ )

sin( θ
2 )

? (10)

The zeros of Un(z) , Vn(z) and Wn(z) in increasing order are given, respectively, by

zn,k = cosθn,k, with θn,k =
n− k
n+1

π , k = 0,1, . . . ,n−1, (11)

zn,k = cosθn,k, with θn,k =
2(n− k)−1

2n+1
π , k = 0,1, . . . ,n−1, (12)

zn,k = cosθn,k, with θn,k =
n− k

n+ 1
2

π , k = 0,1,2, . . . ,n−1. (13)
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In the sequel, we will denote by Aj,n,i(z) and Qj,2n+1( f ;z), j = 1,2,3,4, the polyno-
mial An,i(z) (see (5)) and the Hermite interpolation polynomials Q2n+1( f ;z) (see (6))
with the zeros of Tn+1(z) , Un+1(z) , Vn+1(z) and Wn+1(z) as nodes, respectively.

As Atkinson [1] wrote, the Chebyshev polynomials are extremely important in
approximation theory and they also arise in many other areas of applied mathematics.
For a more complete discussion of them, see e. g. [4, 12]. One area above all in
which the Chebyshev polynomials have a pivotal role is the minimax approximation
of functions by polynomials [4, 7]. The monic Chebyshev polynomials of the first
kind of degree n is the polynomial deviating less from zero on [−1,1] among monic
polynomials of degree n :

min

{
max

−1�x�1
|qn(x)| ,qn ∈ R[x], qn = xn + . . .

}
= max

−1�x�1

∣∣21−nTn(x)
∣∣ = 21−n.

2. Approximation using the zeros of the first kind
Chebyshev polynomials as nodes (see e.g. [3])

For this polynomial family, we have

LEMMA 1. (see e.g. [3]) The polynomial A1,n,i(z) for the Chebyshev polynomials
of the first kind is given by

A1,n,i(z) = (1− zzn+1,i)
( Tn+1(z)

(n+1)(z− zn+1,i)

)2
. (14)

Proof.

T ′
n+1(zn+1,i) = (n+1)

sin(n+1)θn+1,i

sinθn+1,i
,

T ′′
n+1(zn+1,i) = (n+1)

zn+1,i sin(n+1)θn+1,i

sin3 θn+1,i
.

In fact,

T ′
n+1(z) =

d
dθ

cos(n+1)θ · dθ
dz

= −(n+1)
sin(n+1)θ
−sinθ

= (n+1)
sin(n+1)θ

sinθ
,

and for z = zn+1,i = cosθn+1,i , we get

T ′
n+1(zn+1,i) = (n+1)

sin(n+1)θn+1,i

sinθn+1,i
.
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T ′′
n+1(z) =

d
dθ

(T ′
n+1(z)) ·

dθ
dz

=
d
dθ

(
(n+1)

sin(n+1)θ
sinθ

)
· dθ

dz

=
( (n+1)2 sinθ cos(n+1)θ − (n+1)sin(n+1)θ cosθ

sin2 θ

)( −1
sinθ

)

= − (n+1)2 sinθ cos(n+1)θ
sin2 θ

+
(n+1)sin(n+1)θ cosθ

sin3 θ
.

For z = zn+1,i = cosθn+1,i , we get

T ′′
n+1(zn+1,i) =

(n+1)zn+1,i sin(n+1)θn+1,i

sin3 θn+1,i
.

Since zn+1,i, i = 0,1, . . . ,n are the zeros of Tn+1(z) which is a polynomial of degree
n+1 with leading coefficient 2n , then Tn+1(z) = 2nNn+1(z) . It follows that T ′

n+1(z) =
2nN′

n+1(z) , T ′′
n+1(z) = 2nN′′

n+1(z) which together with (7) give

A1,n,i(z) =
(
1−2(z− zn+1,i)l′n,i(zn+1,i)

)
l2n,i(z)

=
(
1− (z− zn+1,i)(

T ′′
n+1(zn+1,i)

T ′
n+1(zn+1,i)

)
)( Tn+1(z)

(z− zn+1,i)T ′
n+1(zn+1,i)

)2

=
(
1− (z− zn+1,i)

(n+1)zn+1,i sin(n+1)θn+1,i

sin3 θn+1,i

(n+1)
sin(n+1)θn+1,i

sinθn+1,i

)( Tn+1(z)
(z− zn+1,i)T ′

n+1(zn+1,i)

)2

=
(
1− (z− zn+1,i)

zn+1,i

sin2 θn+1,i

)( Tn+1(z)sinθn+1,i

(n+1)(z− zn+1,i)sin(n+1)θn+1,i

)2
.

Since (sin(n+ 1)θn+1,i)2 = (sin(2(n− i)+ 1)π
2 )2 = ((−1)n−i)2 = 1 and sin2 θn+1,i =

1− z2
n+1,i , we obtain

A1,n,i(z) =
(
1− z2

n+1,i− (z− zn+1,i)zn+1,i

)( Tn+1(z)
(n+1)(z− zn+1,i)

)2

= (1− zzn,i)
( Tn+1(z)

(n+1)(z− zn+1,i)

)2
. �

Let us now state and prove the well known interpolation and approximation result
for the first kind Chebyshev polynomials.

THEOREM 1. (see e.g. [3]) Let f ∈ C [−1,1] , the Hermite interpolation polyno-
mials Q1,2n+1( f ;z) (at the zeros zn+1,k, k = 0,1, . . . ,n, of the Chebyshev polynomials
Tn+1(z) given by (8)) which satisfies (9) converge uniformly on [−1,1] to f .
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Proof. z,zn+1,i ∈ [−1,1]⇒ zzn+1,i ∈ [−1,1] and then 1− zzn+1,i

� 0, thus A1,n,i(z) � 0. From (3), we have f (z) = ∑n
i=0 f (z)A1,n,i(z) .

Let ε > 0 and z ∈ [−1,1] . We want to show that

∃ Nε ∈ N such that ∀n � Nε , | f (z)−Q1,2n+1( f ;z)| < ε.

| f (z)−Q1,2n+1( f ;z)| =
∣∣∣ n

∑
i=0

( f (z)− f (zn+1,i))A1,n,i(z)
∣∣∣

�
n

∑
i=0

| f (z)− f (zn+1,i)|A1,n,i(z).

f continuous on [−1,1] and [−1,1] is compact implies f is uniformly continuous on
[−1,1]. That is ∃δε > 0 such that ∀ x,y ∈ [−1,1] , |x−y|< δε implies | f (x)− f (y)| <
ε. Let

In,ε,z := {i ∈ {0,1, . . . ,n} : |z− zn+1,i| < δε}
and

Jn,ε,z := {i ∈ {0,1, . . . ,n} : |z− zn+1,i| � δε}.
Then In,ε,z∪ Jn,ε,z = {0,1, . . . ,n} and In,ε,z∩ Jn,ε,z = /0 , thus

n

∑
i=0

| f (z)− f (zn+1,i)|A1,n,i(z) = ∑
i∈In,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z)

+ ∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z).

If i ∈ In,ε,z , |z− zn+1,i| < δε and then | f (z)− f (zn+1,i)| < ε
2 such that

∑
i∈In,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z) <
ε
2 ∑

i∈In,ε,z

A1,n,i(z) <
ε
2

n

∑
i=0

A1,n,i(z) =
ε
2
,

where we use respectively the fact that A1,n,i(z)� 0, In,ε,z ⊂{0,1, . . . ,n} and ∑n
i=0 A1,n,i(z)

= 1.
f ∈ C [−1,1] implies f is bounded. That is, ∃ M > 0 suct that | f (z)| < M ,

∀ z ∈ [−1,1]. Therefore | f (z)− f (zn+1,i)| � | f (z)|+ | f (zn+1,i)| � 2M . So

∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z) � 2M ∑
i∈Jn,ε,z

A1,n,i(z).

We have

i ∈ Jn,ε,z ⇒ |z− zn+1,i| � δε ⇔ 1
|z− zn+1,i|2 � 1

δ 2
ε
,

|z| � 1, |zn+1,i| � 1 ⇒ |zzn+1,i| � 1 ⇔ −1 � zzn+1,i � 1 ⇔ 0 � 1− zzn+1,i � 2 ⇒
1− zzn+1,i � 2, and

|Tn+1(z)| = |cos(n+1)θ |� 1.
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This leads to

∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z) � 2M ∑
i∈Jn,ε,z

(1− zzn+1,i)
( Tn+1(z)

(n+1)(z− zn+1,i)

)2

� 4M
δ 2

ε (n+1)2

n

∑
i=0

1 =
4M

δ 2
ε (n+1)

.

Since

lim
n−→∞

( 4M
δ 2

ε (n+1)

)
= 0,

then for ε
2 > 0 ∃ Nε ∈ N such that ∀ n � Nε , 4M

δ 2
ε (n+1)

< ε
2 implies

∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z) <
ε
2
.

In conclusion, we have ∀ n � Nε ,

n

∑
i=0

| f (z)− f (zn+1,i)|A1,n,i(z) � ∑
i∈In,ε,z

| f (z)− f (zn+1,i)|A1,n,i(z)

+ ∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|An,i(z)

� ε
2

+
ε
2

= ε.

Hence (Q1,2n+1( f ;z))n converges uniformly to f on [−1,1]. �
As written in [5], this kind of interpolation is referred to as Hermite-Fejér interpo-

lation.
Is this result still valid if we consider the Chebyshev polynomials of second, third

or fourth kind defined in (10) instead of the first kind? The answer is that this result
is no more valid on the interval [−1,1] for the Chebyshev polynomials of the second,

third and fourth kind but on the interval [− 2
√

2
3 , 2

√
2

3 ] , [−
√

3
2 ,1] , [−1,

√
3

2 ] , respectively.
The fact is that contrary to the Chebyshev polynomials of the first kind for which we
have a bound on [−1,1]×N ( |Tn(z)| � 1, ∀n ∈ N, ∀z ∈ [−1,1]), this is not the case for
the other families Un , Vn , Wn . |Un(z)| is not bounded on [−1,1]×N around z = −1+

and z = 1− as
lim

z→−1+,1−
|Un(z)| = n+1,

|Vn(z)| is bounded on [−1,1]×N around z = 1− but not around z = −1+ as

lim
z→1−

|Vn(z)| = 1, lim
z→−1+

|Vn(z)| = 2n+1,

and |Wn(z)| is bounded on [−1,1]×N around z = −1+ but not around z = 1− as

lim
z→−1+

|Wn(z)| = 1, lim
z→1−

|Wn(z)| = 2n+1.
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3. Main contributions: Approximation using the zeros of the
2nd , 3rd and 4th kind Chebyshev polynomials as nodes

For all n = 0,1,2, . . . , Un(z) , Vn(z) and Wn(z) defined in (10) are polynomials of
degree n with leading coefficient 2n . We state and prove the following.

LEMMA 2. The polynomial A2,n,i(z) , A3,n,i(z) , A4,n,i(z) for the Chebyshev poly-
nomials of the second, third and fourth kind are given, respectively, by

A2,n,i(z) = (1+2z2
n+1,i−3zzn+1,i)

( Un+1(z)sinθn+1,i

(n+2)(z− zn+1,i)

)2
, (15)

where θn+1,i and zn+1,i are given by (11),

A3,n,i(z) =
(1+ zn+1,i)(1− z2

n+1,i− (z− zn+1,i)(2zn+1,i−1))V 2
n+1(z)

2(n+ 3
2 )2(z− zn+1,i)2

, (16)

where zn+1,i is given by (12),

A4,n,i(z) =
(1− zn+1,i)(1− z2

n+1,i− (z− zn+1,i)(2zn+1,i +1))W2
n+1(z)

2(n+ 3
2 )2(z− zn+1,i)2

, (17)

where zn+1,i is given by (13).

Proof. We prove the result for the second kind Chebyshev polynomials whereas
the same procedure remains valid for the third and fourth kind Chebyshev polynomials.

Un+1(z) = 2n+1Nn+1(z), U ′
n+1(zn+1,i) = − (n+2)cos(n+2)θn+1,i

sin2 θn+1,i
,

U ′′
n+1(zn+1,i) =

−3zn+1,i(n+2)cos(n+2)θn+1,i

sin4 θn+1,i
.

Therefore
U ′′

n+1(zn+1,i)
U ′

n+1(zn+1,i)
=

3zn+1,i

sin2 θn+1,i
,

and then since cos2(n+2)θn+1,k = cos2(n− k+1)π = ((−1)n−k+1)2 = 1,

A2,n,i(z) =
(
1−2(z− zn+1,i)l′n,i(zn+1,i)

)
l2n,i(z)

=
(
1− (z− zn+1,i)

U ′′
n+1(zn+1,i)

U ′
n+1(zn+1,i)

)( Un+1(z)sin2 θn+1,i

(n+2)(z− zn+1,i)cos(n+2)θn+1,i

)2

=
(
1− (z− zn+1,i)

3zn+1,i

sin2 θn+1,i

)( Un+1(z)sin2 θn+1,i

(n+2)(z− zn+1,i)cos(n+2)θn+1,i

)2

= (1+2z2
n+1,i−3zzn+1,i)

( Un+1(z)sinθn+1,i

(n+2)(z− zn+1,i)

)2
. �
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LEMMA 3. For n = 0,1,2, . . . ,

A2,n,i(z) � 0, ∀z ∈
[
−2

√
2

3
,
2
√

2
3

]
, A3,n,i(z) � 0, ∀z ∈

[
−
√

3
2

,1

]
,

A4,n,i(z) � 0, ∀z ∈
[
−1,

√
3

2

]
.

Proof. Case of A2,n,i

If zn+1,i = 0, then A2,n,i(z) =
(

Un+1(z)
z (n+2)

)2
� 0.

Suppose zn+1,i �= 0. A2,n,i(z) � 0 if 1 + 2z2
n+1,i − 3zzn+1,i � 0. 1 + 2z2

n+1,i −
3zzn+1,i = 0 if z = η1,n,i =

1+2z2n+1,i
3zn+1,i

. We consider the function g2(z) = 1+2z2
3z . If

z ∈ [−1,0[ then g2(z) � − 2
√

2
3 and z ∈]0,1] implies g2(z) � 2

√
2

3 . Therefore, we
deduce, taking into account that zn+1,i ∈ [−1,1] and η1,n,i = g2(zn+1,i) , that η1,n,i /∈
]− 2

√
2

3 , 2
√

2
3 [ . Hence the linear term 1 + 2z2

n+1,i − 3zzn+1,i = −3zn+1,i(z− η1,n,i) is

positive on the interval ] − 2
√

2
3 , 2

√
2

3 [ . In fact, if zn+1,i > 0, therefore η1,n,i > 0,

that is, η1,n,i > 2
√

2
3 and then z−η1,n,i � 2

√
2

3 −η1,n,i < 0 which yields −3zn+1,i(z−
η1,n,i) > 0. Similarly, if zn+1,i < 0, therefore η1,n,i < 0, that is, η1,n,i <− 2

√
2

3 and then

0 < − 2
√

2
3 −η1,n,i < z−η1,n,i which yields −3zn+1,i(z−η1,n,i) > 0. As conclusion,

A2,n,i(z) � 0, ∀z ∈ [− 2
√

2
3 , 2

√
2

3 ] .

Case of A3,n,i

If zn+1,i = 1
2 , then A3,n,i(z) =

(
3Vn+1(z)

(2n+3)(2z−1)

)2
� 0.

Suppose zn+1,i �= 1
2 , then 1− z2

n+1,i− (z− zn+1,i)(2zn+1,i − 1) = 0 if z = η2,n,i =
z2n+1,i−zn+1,i+1

2zn+1,i−1 . The study of the variations of the function g3(z) = z2−z+1
2z−1 yields g3(z) �

−
√

3
2 for z ∈ [−1,1/2[ and g3(z) � 1 for z∈]1/2,1] . Therefore we deduce, taking into

account that zn+1,i ∈ [−1,1] and η2,n,i = g3(zn+1,i) , that η2,n,i /∈]−
√

3
2 ,1[ . Hence the

linear term 1− z2
n+1,i− (z− zn+1,i)(2zn+1,i −1) = −(2zn+1,i−1)(z−η2,n,i) is positive

on the interval ]−
√

3
2 ,1[ . In fact, since z2 − z+ 1 > 0 on R , if zn+1,i > 1

2 , therefore
η2,n,i > 0, that is, η2,n,i > 1 and then z−η2,n,i � 1−η2,n,i < 0 which yields −(2zn+1,i−
1)(z−η2,n,i) > 0. Similarly, if zn+1,i < 1

2 , therefore η2,n,i < 0, that is, η1,n,i < −
√

3
2

and then 0 � −
√

3
2 −η2,n,i < z−η2,n,i which yields −(2zn+1,i−1)(z−η2,n,i) � 0. As

conclusion, A3,n,i(z) � 0, ∀z ∈ [−
√

3
2 ,1] .

Case of A4,n,i

The proof follows from the latter case. In fact, since Wn(z) = (−1)nVn(−z) due
to the uniqueness of a family of polynomials orthogonal with respect to a given weight
function, if {zn+1,i, i = 0,1, . . . ,n} are the zeros of Vn+1(z) and {ζn+1,i, i = 0,1, . . . ,n}
the zeros of Wn+1(z) , then ζn+1,i = −zn+1,i, i = 0,1, . . . ,n .
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Let us denote by A3,n,i(z,t) and A4,n,i(z,t) the respective expressions of A3,n,i(z)
and A4,n,i(z) in which zn+1,i is replaced by t . Then, A3,n,i(z) := A3,n,i(z,zn+1,i) and
A4,n,i(z) := A4,n,i(z,ζn+1,i) . By using the equality A4,n,i(z,t) = A3,n,i(−z,−t) which
can be proven by direct computation using equations (16) and (17), we deduce that

A4,n,i(z)= A4,n,i(z,ζn+1,i)= A3,n,i(−z,−ζn+1,i)= A3,n,i(−z,zn+1,i)� 0, ∀z∈
[
−1,

√
3

2

]

since A3,n,i(z,zn+1,i) � 0, ∀z ∈ [−
√

3
2 ,1] . �

THEOREM 2.

(a) If f ∈ C [− 2
√

2
3 , 2

√
2

3 ] then the Hermite interpolation polynomials Q2,2n+1( f ;z)
(at the zeros zn+1,i, i = 0,1, . . . ,n, of the Chebyshev polynomial Un+1(z) given

by (11)) which satisfy (9) converge uniformly on [− 2
√

2
3 , 2

√
2

3 ] to f .

(b) If f ∈ C [−
√

3
2 ,1] then the Hermite interpolation polynomials Q3,2n+1( f ;z) (at

the zeros zn+1,i, i = 0,1, . . . ,n, of the Chebyshev polynomial Vn+1(z) given by

(12)) which satisfy (9) converge uniformly on [−
√

3
2 ,1] to f .

(c) If f ∈ C [−1,
√

3
2 ] then the Hermite interpolation polynomials Q4,2n+1( f ;z) (at

the zeros zn+1,i, i = 0,1, . . . ,n, of the Chebyshev polynomial Wn+1(z) given by

(13)) which satisfy (9) converge uniformly on [−1,
√

3
2 ] to f .

Proof. Let ε > 0.

(a) Let f ∈ C [− 2
√

2
3 , 2

√
2

3 ] and z ∈ [− 2
√

2
3 , 2

√
2

3 ] . Proceeding as in the proof of
Theorem 1, we show that,

∑
i∈In,ε,z

| f (z)− f (zn+1,i)|A2,n,i(z) <
ε
2
,

and for i ∈ Jn,ε,z , we also have 1
(z−zn+1,i)2

� 1
δ 2

ε
, |1 + 2z2

n+1,i − 3zzn+1,i| � 6. Since

f (z), 1/(1−z2) are continuous on [− 2
√

2
3 , 2

√
2

3 ] which is closed, there exist M1 and M2

positive real numbers such that | f (z)− f (zn+1,i)|� M1 and U2
n+1(z) � 1/(1−z2)� M2 .

It follows that

∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A2,n,i(z) � M1 ∑
i∈Jn,ε,z

|1+2z2
n+1,i−3zzn+1,i|

( Un+1(z)
(n+2)(z− zn+1,i)

)2

� 6M1M2

δ 2
ε (n+2)2

n

∑
i=0

1 =
6M1M2(n+1)

δ 2
ε (n+2)2 .

But

lim
n→∞

6M1M2(n+1)
δ 2

ε (n+2)2 = 0,
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then for ε
2 > 0, ∃ Nε ∈ N such that ∀ n � Nε ,

6M1M2(n+1)
δ 2

ε (n+2)2
< ε

2 implies

∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A2,n,i(z) <
ε
2
.

In conclusion, we have ∀ n � Nε ,

n

∑
i=0

| f (z)− f (zn+1,i)|A2,n,i(z) � ∑
i∈In,ε,z

| f (z)− f (zn+1,i)|A2,n,i(z)

+ ∑
i∈Jn,ε,z

| f (z)− f (zn+1,i)|A2,n,i(z)

� ε
2

+
ε
2

= ε.

Hence (Q2,2n+1( f ;z))n converges uniformly to f on [− 2
√

2
3 , 2

√
2

3 ] .

(b) Let f ∈ C [−
√

3
2 ,1] and z ∈ [−

√
3

2 ,1] . We proceed as in (a) using the fact that

A3,n,i(z) � 0, ∀z ∈ [−
√

3
2 ,1] and

∣∣V 2
n+1(z)

∣∣ � 2
1+z � 2

1−
√

3
2

= M2 .

(c) Let f ∈ C [−1,
√

3
2 ] and z ∈ [−1,

√
3

2 ] . We proceed as in (a) taking into consid-

eration that A4,n,i(z) � 0, ∀z ∈ [−1,
√

3
2 ] and

∣∣W 2
n+1(z)

∣∣ � 2
1−z � 2

1−
√

3
2

= M2 . �

LEMMA 4. Let zn,k, k = 0,1, . . . ,n−1 be the zeros of Un(z) . Then the set {zn,k, n∈
N, k = 0,1, . . . ,n−1} is dense in [−1,1] .

Proof. Let a,b ∈ [−1,1] . We want to show that there exist two positive integers
k,n,k < n , such that

a � cos
n− k
n+1

π � b ⇔ arccosb
π

� n− k
n+1

� arccosa
π

,

since arccos is a decreasing function on [−1,1] . But Q (the set of rational numbers)
is dense in R (the set of real numbers) and [−1,1]⊂ R . It follows that there exist two
integers p,q > 0, p < q such that

arccosb
π

� p
q

� arccosa
π

.

Taking n = q−1 and k = q− p−1, we have the result. �

REMARK 2.

1. Using the same approach, we prove that the zeros of Vn(z) and Wn(z) are also
dense in [−1,1] . The density in [−1,1] implies the density in every interval
[a,b] ⊂ [−1,1] .
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2. We consider a function g ∈ C [a,b] , a,b ∈ R . ϕ : [−1,1] → [a,b] , t �−→ 1
2 (b−

a)t + 1
2 (a+ b) is an increasing bijection with ϕ(−1) = a and ϕ(1) = b . Then

ϕ−1 : [a,b]→ [−1,1] , z �−→ 2z−a−b
b−a . Therefore, g∈C [a,b] if and only if g◦ϕ ∈

C [−1,1] . And we deduce that gn(t) = Q1,2n+1(g ◦ϕ ; t) converges uniformly on
[−1,1] to g ◦ϕ . We conclude that gn ◦ϕ−1 converges uniformly on [a,b] to g .
This means that our results can be extended to every continuous function on a
subinterval of R .

4. Some simulations

Figure 1: Plots of f , Q1,2n+1 , Q2,2n+1 , Q3,2n+1 and Q4,2n+1 for n = 1000

In this section, we simulate the results of Theorems 1, 2. Here we consider the
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function

f (x) =
√∣∣∣sin(

πx
2

)
∣∣∣, x ∈ [−1,1].

In Figure 1, we plot f (z) and Qj,2n+1(z), j = 1,2,3,4 for n = 1000 on the interval of
convergence to visualize the results of Theorems 1, 2. In Figure 2, we plot Q2,2n+1(z)
and f (z) on [−1,− 2

√
2

3 ] and [ 2
√

2
3 ,1] ; Q3,2n+1(z) and f (z) on [−1,−0.95] , Q4,2n+1(z)

and f (z) on [0.95,1] to see the behaviour of the Hermite interpolation polynomials
outside the interval of convergence. We observe from the simulations that there is not
convergence outside the interval of convergence.

Figure 2: Plots of f , Q2,2n+1 , Q3,2n+1 and Q4,2n+1 outside the interval of convergence
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5. Possible extension

In Sections 2 and 3, we have proved for a continuous function f , the uniform
convergence towards f of the Hermite interpolation polynomials Qj,2n+1( f ;z), j =
1,2,3,4, satisfying (9). Now we consider a function f ∈ C 1[−1,1] and the Hermite
interpolation polynomial Qj,2n+1( f ;z), j = 1,2,3,4, which satisfies

{
Q2n+1( f ;zn+1,i) = f (zn+1,i), i = 0,1, . . . ,n,
Q′

2n+1( f ;zn+1,i) = f ′(zn+1,i), i = 0,1, . . . ,n,

defined by

Qj,2n+1( f ;z) =
n

∑
i=0

f (zn+1,i)Aj,n,i(z)+
n

∑
i=0

f ′(zn+1,i)Bj,n,i(z),

where Aj,n,i(z) , Bj,n,i and Qj,2n+1( f ;z), j = 1,2,3,4, are the polynomial An,i(z) ,
Bn,i(z) and the Hermite interpolation polynomials Q2n+1( f ;z) with the zeros of Tn+1(z) ,
Un+1(z) , Vn+1(z) and Wn+1(z) as nodes, respectively. By direct computation, we ob-
tain

B1,n,i(z) =
(sinθn+1,iTn+1(z))2

(n+1)2(z− zn+1,i)
=

1− z2
n+1,i

(n+1)2(z− zn+1,i)
(Tn+1(z))2,

B2,n,i(z) =
(sin2 θn+1,iUn+1(z))2

(n+2)2(z− zn+1,i)
=

(1− z2
n+1,i)

2

(n+2)2(z− zn+1,i)
(Un+1(z))2,

B3,n,i(z) =
(sinθn+1,i cos

θn+1,i
2 Vn+1(z))2

(n+ 3
2 )2(z− zn+1,i)

=
(1− z2

n+1,i)(1+ zn+1,i)

2(n+ 3
2 )2(z− zn+1,i)

(Vn+1(z))2,

B4,n,i(z) =
(sinθn+1,i sin

θn+1,i
2 Wn+1(z))2

(n+ 3
2 )2(z− zn+1,i)

=
(1− z2

n+1,i)(1− zn+1,i)

2(n+ 3
2)2(z− zn+1,i)

(Wn+1(z))2.

If we take for example the functions f (x) = 1
1+25x2 or f (x) =

√
3+2x+4x2 which

are in C 1[−1,1] , we remark from numerical simulations with Maple that the sequence
{Qj,2n+1( f ;z)}n, j = 1,2,4 and its derivative {Q′

j,2n+1( f ;z)}n, j = 1,2,4 converge
uniformly to f and f ′ on [−1,1] , respectively, and the sequence {Q3,2n+1( f ;z)}n and
its derivative {Q′

3,2n+1( f ;z)} converge uniformly to f and f ′ on (−1,1] , respectively.
So one possible extension of this work could be to provide theoretical proof of this
convergence guessed by numerical simulation.
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