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UNIFORM ASYMPTOTIC EXPANSIONS FOR SOLUTIONS OF

THE PARABOLIC CYLINDER AND WEBER EQUATIONS

T. M. DUNSTER

Abstract. Asymptotic expansions are derived for solutions of the parabolic cylinder and Weber
differential equations. In addition the inhomogeneous versions of the equations are considered,
for the case of polynomial forcing terms. The expansions involve exponential, Airy and Scorer
functions and slowly varying analytic coefficient functions involving simple coefficients. The
approximations are uniformly valid for large values of the parameter and unbounded real and
complex values of the argument. Explicit and readily computable error bounds are either fur-
nished or available for all approximations.

1. Introduction

We study the homogeneous (h(z) = 0) and inhomogeneous (h(z) = zR , R = 0,1,
2, · · ·) versions of the parabolic cylinder equation

d2y
dz2 −

(
1
4
z2±a

)
y = h(z), (1.1)

as well as the closely related versions of the Weber’s equation

d2y
dz2 +

(
1
4
z2±a

)
y = h(z), (1.2)

where a is positive and large, and z lies in unbounded complex domains. By the super-
position principal the inhomogeneous monomial term can be extended to an arbitrary
polynomial. Both equations are characterized as having two turning points when a is
large, either both real or both imaginary. For a definition of turning points, see [3, Sect.
2.8(i)].

All solutions of the above equations can be expressed in terms of the parabolic
cylinder function U(a,z) , which is a solution of homogeneous equation

d2y
dz2 −

(
1
4
z2 +a

)
y = 0, (1.3)

and has the integral representations [3, Eqs. 12.5.1 and 12.5.4]
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U(a,z) =
e−z2/4

Γ
(

1
2 +a

) ∫ ∞

0
ta−

1
2 e−

1
2 t2−ztdt

(
ℜ(a) > − 1

2

)
, (1.4)

and

U(−a,z) =

√
2
π

ez2/4
∫ ∞

0
ta−

1
2 e−t2/2 cos

(
zt − 1

2πa+ 1
4π
)
dt

(
ℜ(a) > − 1

2

)
. (1.5)

It can also be expressed in terms of the confluent hypergeometric function [3, Sect.
13.2] by

U(a,z) = 2−
1
4− 1

2 ae−z2/4U
(

1
2a+ 1

4 , 1
2 , 1

2 z2) . (1.6)

The fundamental property of U(a,z) is that it is the unique solution of (1.3) that
is recessive in the sector |arg(z)| � π/4, whereas all other independent solutions are
dominant in this sector. Specifically, as z → ∞

U(a,z) ∼ z−a− 1
2 e−z2/4 (|arg(z)| � 3

4 π − δ
)
. (1.7)

Parabolic cylinder functions have a number of physical applications, most notably
as solutions of the Helmholtz equation [3, Sect. 12.17]. See also [2] for further proper-
ties in connection with physical applications. Solutions of the inhomogeneous Weber
equation (1.2) play a role in the study of flow through porous layers [1], [15].

Mathematical applications of parabolic cylinder functions include the uniform
asymptotic approximation of solutions of differential equations having two turning
points, most significantly for the case where a pair can coalesce [17]. Parabolic cylinder
functions are also used in approximating contour integrals having a coalescing saddle
point and an algebraic singularity [21, Chap. 22].

For numerical methods of evaluating parabolic cylinder and Weber functions for
real a and z see [9], [10], [11], [12], [13]. In a subsequent paper it is intended to apply
the new results in this paper to develop numerical algorithms to compute the parabolic
cylinder functions having complex argument.

There have been many investigations into the asymptotic behaviour of parabolic
cylinder functions, the most notable being by Olver [16] who considered both real and
complex values of a and z . He used elementary functions in a Liouville Green (LG)
expansion in intervals or domains free of turning points, and Airy functions in domains
or intervals containing a turning point. Error bounds were not given and the coefficients
are harder to compute near the turning points. Temme [20] modified the approxima-
tions found in [16] by redefining certain integration constants so that the coefficients
approach zero at infinity, and included useful numerical examples. In his paper only
real variables were considered and there were no error bounds. Jones [14] did provide
some error bounds, but these are quite limited and only real z was considered.

In this paper we also obtain LG expansions involving elementary functions for
the homogeneous equations away from turning points, and Airy expansions for the
homogeneous equations in domains or intervals containing a turning point. In addition,
we obtain expansions involving elementary functions for the inhomogeneous equations
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away from turning points, and expansions involving Scorer functions for solutions of
the inhomogeneous equations in domains containing a turning point.

The significance of the present paper is that explicit and computable error bounds
are available for all real and complex numerically satisfactory solutions of (1.1) and
(1.2), and for the turning point cases our coefficients are easier to compute than those in
the literature. Our new results come from the asymptotic theory provided in the recent
papers [4], [5] and [8]. In [5] LG expansions were derived, with error bounds, where
the coefficients in the expansions appear in the exponent of an exponential function,
rather than the typical case as a factor multiplying the exponential [18, Chap. 10]. As a
result, in general, the coefficients and error bounds of [5] are easier to compute.

In [8] simple error bounds were derived for Airy turning point expansions for
homogeneous differential equations having a turning point in the complex plane. A
feature is that the coefficients that appear in the asymptotic expansion of two slowly
varying coefficient functions are very easy to compute, either directly if not too close to
the turning point, or via Cauchy’s integral theorem in a neighbourhood of the turning
point. The same is true for the expansions furnished by [4], where new asymptotic so-
lutions, with error bounds, were constructed for inhomogeneous differential equations
having a turning point.

The plan of this paper is as follows. In section 2 we consider (1.1) with the upper
sign taken on a . In this case the two turning points are on the imaginary axis, and in the
homogeneous case we only need to derive LG expansions, using the theory of [5]. For
the inhomogeneous case we obtain expansions that involve elementary functions using
[4].

In section 3 we consider (1.1) with the lower sign taken on a . This time the
turning points are on the real axis, and in the homogeneous case we obtain expansions
involving Airy functions, using [8]. For the inhomogeneous case we obtain expansions
that involve Scorer functions, using [4].

In sections 4 and 5 we consider (1.2) with the upper and lower signs taken on a ,
respectively. Similar expansions are derived as in the previous two sections. There
are significant differences however, particularly in the behaviour of the solutions in
different sectors, and the process of identification of standard solutions.

In all the inhomogeneous cases we define appropriate fundamental particular solu-
tions that are not exponentially large at infinity in certain sectors of the complex plane.
Using the new theory of [4] uniform asymptotic approximations are constructed for
these solutions, and connection formulas are provided to aid in the approximation of all
other solutions.

Although the parameter a is considered real here, our results can be extended
to complex a without significant complication, since all the asymptotic theories being
applied are valid for large complex values of the parameter. The forms of the expansions
would remain the same, but the regions of validity would be modified accordingly, as
well as the error bounds. We do not pursue this since in most applications the parameter
is real.
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2. Parabolic cylinder functions with positive parameter

Let a = 1
2u , z be replaced by

√
2uz , and w(u,z) = y( 1

2u,
√

2uz) . Then (1.3)
becomes

d2w
dz2 −u2(z2 +1)w = 0. (2.1)

Our approximations, and their regions of validity, involve the following function

ξ =
∫ z

0

(
t2 +1

)1/2
dt =

1
2
z
√

z2 +1+
1
2

ln
(
z+
√

z2 +1
)

, (2.2)

where here and throughout bars do not denote complex conjugate, unless otherwise
noted. The branch is chosen so that ξ is real when z is, both being of the same sign,
and by continuity elsewhere in the plane with cuts along z = ±iy , 1 � y < ∞ . In what
follows certain paths of integration can pass across these cuts, with the understanding
that, if so, ξ varies continuously as a function of z on the path in question.

This variable comes from the Liouville transformation on (2.1); see [18, Chap. 10].
The regions of validity are based on the level curves ℜ(ξ ) = constant, some of which
are shown in Figure 1. In this figure the points z = ±i are shown. These are turning
points of (2.1), and our LG approximations are not valid in their vicinity. However, this
situation is covered in section 3, where Airy function expansions are used to provide
approximations which are valid at a turning point. Our main priority in this section is
to obtain asymptotic approximations in unbounded complex domains that contain the
whole real axis.

(0)

(i)

( i)

Figure 1: Level curves ℜ(ξ ) = constant



PARABOLIC CYLINDER AND WEBER FUNCTIONS 73

We also remark that the level curves emanating from z = ±i divide the plane into
four regions, in each of which a solution of (2.1) is recessive (and dominant elsewhere).
These four fundamental solutions are given by U( 1

2u,±√
2uz) and U(− 1

2u,±√
2uiz) .

We shall obtain uniform asymptotic approximations for the former pair, as they are
numerically satisfactory solutions in a domain containing the real axis.

Coefficients in our expansions are defined as follows. Firstly, identifying (2.1) in
the standard form d2w/dz2 = {u2 f (z)+g(z)}w(z) where f (z) = z2 +1 and g(z) = 0
we have that the Schwarzian derivative [18, Chap. 10, Eq. (2.03)]

Φ(z) =
4 f (z) f ′′(z)−5 f ′2(z)

16 f 3(z)
+

g(z)
f (z)

, (2.3)

takes the form

Φ(z) =
2−3z2

4(z2 +1)3
. (2.4)

Then following [8, Eqs. (1.12)–(1.14)] we define the set of coefficients

F̂1(z) = 1
2 Φ(z), F̂2(z) = − 1

4 f−1/2(z)Φ′(z), (2.5)

and

F̂s+1(z) = −1
2

f−1/2(z)F̂ ′
s (z)−

1
2

s−1

∑
j=1

F̂j(z)F̂s− j(z) (s = 2,3,4 · · ·) . (2.6)

The coefficients appearing in the following asymptotic expansions are then given by

Ês(z) =
∫

F̂s(z) f 1/2(z)dz (s = 0,1,2, · · ·) . (2.7)

In order to facilitate these integrations we introduce a new variable by

β =
z√

z2 +1
, (2.8)

from which
dβ
dz

=
(

1−β
2
)3/2

. (2.9)

We choose branch of the square root so that β is real and positive when z is real and
positive, and continuous in the z plane having cuts at z = ±iy (1 � y < ∞) on the
imaginary axis. We note in passing that from (2.2) and (2.8) we have

ξ =
β

2

(
1−β

2
) +

1
4

ln

(
β +1

1−β

)
. (2.10)

Now from (2.4), (2.5), (2.8) and (2.9) we find the first two coefficients are given
by

E1(β ) = 1
24 β
(

6−5β
2
)

, (2.11)
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E2(β ) = 1
16

(
1−β

2
)2(

5β
2 −2

)
, (2.12)

and from (2.7) and (2.9) for s = 2,3,4 · · ·

Es+1(β ) = −1
2

(
1−β

2
)2

E
′
s(β )− 1

2

∫ β

σ(s)

(
1− p2)2 s−1

∑
j=1

E
′
j(p)E

′
s− j(p)dp, (2.13)

where σ(s) is a suitably chosen constant. Our choice is σ(s) = 1 for s odd and

σ(s) = 0 for s even. By induction it is easy to verify that each E2s(β ) is even, and

each E2s+1(β ) is odd (and hence of course E2s+1(0) = 0). Moreover, with our choice
of σ(s) we observe that E2s(1) = 0, which simplifies the expansions in subsequent
sections.

We can now apply [5, Thm. 1.1] to obtain the solutions

W1(u,β ) = exp

{
uξ +

n−1

∑
s=1

Es(β )−Es(−1)
us

}{
1+ ηn,1(u,β )

}
, (2.14)

and

W2(u,β ) = exp

{
−uξ +

n−1

∑
s=1

(−1)s Es(β )−Es(1)
us

}{
1+ ηn,2(u,β )

}
. (2.15)

Bounds on the error terms are given by∣∣∣ηn, j(u,β )
∣∣∣� u−nωn, j(u,β )exp

{
u−1ϖn, j(u,β )+u−nωn, j(u,β )

}
, (2.16)

where

ωn, j(u,β ) = 2
∫ β

(−1) j

∣∣∣E′
n(p)dp

∣∣∣
+

n−1

∑
s=1

1
us

∫ β

(−1) j

∣∣∣∣∣
n−1

∑
k=s

(1− p2)2E
′
k(p)E

′
s+n−k−1(p)dp

∣∣∣∣∣, (2.17)

and

ϖn, j(u,β) = 4
n−2

∑
s=0

1
us

∫ β

(−1) j

∣∣∣E′
s+1(p)dp

∣∣∣ . (2.18)

Here the paths of integration are taken along paths that avoid z = ±i (i.e. β
unbounded) and on which ℜ(ξ ) is monotonic. They must also consist of a finite chain
of R2 arcs (as defined in [18, Chap. 5, sec. 3.3]).

Consider W2(u,β ) , which is recessive as ℜ(z) → ∞ , and the associated bounds
(2.16)–(2.18) with j = 2. An example of a suitable path in the z plane is shown in
Figure 2 (the thick line) for a point lying in the second quadrant, and above the level
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(0)

(i)

( i)

(z)

Figure 2: Path of integration

curve emanating from z = i . The map of this path under (2.8) is used for the integrals
in (2.17) and (2.18).

In order for the error bound (2.16) to be as sharp as possible such a path should
be chosen to be as far away from the singularity z = i , but also maintaining the mono-
tonicity requirement described above as ξ varies continuously along the path. Thus
we choose it to consist of the union of a segment of the level curve passing through z ,
starting from this point and ending on the imaginary axis, along with a horizontal line
extending to ℜ(z) = ∞ . The dashed line in the figure is the level curve in question.

The region of validity for (2.15) is the whole complex plane, with the exception of
points lying on the two level curves emanating from z = ±i in the left half plane (see
Figure 2). This is because all points except these can be linked to ℜ(z) = ∞ by a path

on which ℜ(ξ ) is monotonic.

Note that as z gets closer to the cut emanating from z = i the path necessarily must
get closer to the singularity z = i . This illustrates why all points on, and close, to this
cut must be excluded, along with their conjugates. Similarly, the region of validity for
(2.14) is the reflection about the imaginary axis of the corresponding domain for (2.15).

From the error bounds we note the doubly asymptotic behaviour that ηn,2(u,β )
is O(u−n) as u → ∞ in this unbounded domain, and also is O(z−2n) as z → ∞ to the
right of the above-mentioned level curves emanating from z = ±i . This a feature for
all the error terms in this paper.

Let us now match the asymptotic solutions with the parabolic cylinder function.
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From (2.2) we find that as ℜ(z) →±∞

ξ = ± 1
2z2 ± 1

2 ln(2z)± 1
4 +O(z−2), (2.19)

and so from (1.7) and (2.15) and matching unique recessive solutions at ℜ(z) = ∓∞
we derive

U
(

1
2u,−

√
2uz
)

=
(

2e
u

)u/4 1

{2u(1+ z2)}1/4
W1(u,β), (2.20)

and

U
(

1
2u,

√
2uz
)

=
(

2e
u

)u/4 1

{2u(1+ z2)}1/4
W2(u,β ). (2.21)

Although these can be differentiated, we find a simpler expansion with sharper
bounds by looking at the the differential equation satisfied by the derivative. In partic-
ular, from (2.1) we arrive at

d2Y
dz2 =

{
u2(1+ z2)+

2z2−1
(1+ z2)2

}
Y, (2.22)

whose solutions are given by

Y = (1+ z2)−1/2∂w/∂ z. (2.23)

The analysis follows similarly to above (and using tildes instead of bars), so that
in place of (2.4), we have from (2.3)

Φ̃(z) =
5z2−2

4(z2 +1)3
, (2.24)

and hence similarly to (2.11)–(2.13) the coefficients

Ẽ1(β ) = 1
24 β
(

7β
2 −6

)
, (2.25)

and

Ẽ2(β ) = 1
16

(
1−β

2
)2(

2−7β
2
)

, (2.26)

with subsequent coefficients also given by (2.13) (with bars replaced by tildes). Then
on matching in a similar manner to (2.21) and (2.20) we arrive at our desired expansions

U ′
(

1
2u,−

√
2uz
)

= −1
2

(
2e
u

)u/4{
2u
(
1+ z2)}1/4

× exp

{
uξ +

n−1

∑
s=1

Ẽs(β )− Ẽs(−1)
us

}
{1+ η̃n,1(u,z)} , (2.27)
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and

U ′
(

1
2u,

√
2uz
)

= −1
2

(
2e
u

)u/4{
2u
(
1+ z2)}1/4

× exp

{
−uξ +

n−1

∑
s=1

(−1)s Ẽs(β )− Ẽs(1)
us

}
{1+ η̃n,2(u,z)} , (2.28)

where U ′(a,z) = dU(a,z)/dz . These are valid in the same domains as for (2.20) and
(2.21) respectively, and the error terms have the same bounds (2.16)–(2.18), but with E
replaced by Ẽ .

2.1. Inhomogeneous equation

Let us now consider the equation

d2y
dz2 −

(
1
4
z2 +a

)
y = zR (R = 0,1,2, · · ·). (2.29)

For j ∈ {0,1,2,3} , k ∈ {1,2,3} with j < k we have by variation of parameters the
particular solutions

U ( j,k)
R (a,z) =

1
W {Uj(a,z),Uk(a,z)}

[
Uk(a,z)

∫ z

i j∞
tRUj(a,t)dt

−Uj(a,z)
∫ z

ik∞
tRUk(a, t)dt

]
, (2.30)

where for j = 0,1,2,3
Uj(a,z) = U

(
(−1) ja,(−i) jz

)
. (2.31)

Using the Wronskian [3, Eq. 12.2.11]

W {U(a,z),U(a,−z)} =
√

2π
Γ
(
a+ 1

2

) , (2.32)

we have the particular solution we are most interested in

U (0,2)
R (a,z) = −Γ

(
a+ 1

2

)
√

2π

[
U(a,z)

∫ z

−∞
tRU(a,−t)dt +U(a,−z)

∫ ∞

z
tRU(a,t))dt

]
.

(2.33)
This is the unique solution which is not exponentially large as z→±∞ , and in a domain
which includes the whole real axis. It is straightforward to verify that

U (0,2)
R (a,−z) = (−1)RU (0,2)

R (a,z).

We shall also consider connection formulas, and some of these involve U (0,1)
R (a,z) ,

which from using [3, Eq. 12.2.12]

W {U(a,z),U(−a,−iz)} = e−( 1
2 a− 1

4 )π i, (2.34)
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is given by

U (0,1)
R (a,z) = eiπ( 1

2 a− 1
4 )
[
U(−a,−iz)

∫ z

∞
tRU(a,t)dt

−U(a,z)
∫ z

i∞
tRU(−a,−it)dt

]
. (2.35)

To obtain asymptotic expansions let

w(u,z) = (2u)−
1
2 R−1y

(
1
2u,

√
2uz
)

, (2.36)

where again u = 2a . Then (2.29) becomes

d2w
dz2 −u2(z2 +1)w = zR. (2.37)

We now can apply [4, Thm. 4] to obtain the desired expansions

U ( j,k)
R

(
1
2u,

√
2uz
)

= (2u)
1
2 R+1w( j,k)

R (u,z), (2.38)

where

w( j,k)
R (u,z) =

1
u2

n−1

∑
s=0

Gs,R(z)
u2s + ε ( j,k)

n,R (u,z), (2.39)

in which
G0,R(z) = −zR/

(
z2 +1

)
, (2.40)

and
Gs+1,R(z) = G

′′
s,R(z)/

(
z2 +1

)
(s = 0,1,2, · · ·). (2.41)

The error terms ε ( j,k)
n,R (u,z) are O(u−2n−2) uniformly in certain unbounded do-

mains, as described below. In these domains they satisfy the bounds

∣∣∣ε ( j,k)
n,R (u,z)

∣∣∣ � 1
u2n+2

{∣∣∣Gn,R(z)
∣∣∣+ 1

2|z2 +1|1/4

∫
L

( j,k)
(z)

∣∣∣∣{(t2 +1
)1/4

Gn,R(t)
}′

dt

∣∣∣∣
}

+
L

( j,k)
n,R (z)

8u2n+3|z2 +1|1/4

{
1− 1

8u

∫
L

( j,k)
(z)

∣∣∣∣∣ 2−3t2

(t2 +1)5/2
dt

∣∣∣∣∣
}−1

×
∫

L
( j,k)

(z)

∣∣∣∣∣ 2−3t2

(t2 +1)5/2
dt

∣∣∣∣∣, (2.42)

in which

L
( j,k)
n,R (z) = sup

t∈L
( j,k)

(z)

∣∣∣(t2 +1
)1/4

Gn,R(t)
∣∣∣+ 1

2

∫
L

( j,k)
(z)

∣∣∣∣{(t2 +1
)1/4

Gn,R(t)
}′

dt

∣∣∣∣ .
(2.43)



PARABOLIC CYLINDER AND WEBER FUNCTIONS 79

The path of integration L
( j,k)

(z) is an R2 path that runs from z = i j∞ to z = ik∞
and passes through z , and avoids the singularities z = ±i . As t runs on these paths
from one end point to the other ℜ(ξ ) varies continuously and is monotonic. Since
Gn,R(z) = O(zR−2−4n) as z → ∞ we assume n > 1

4R− 3
8 to ensure convergence of the

integrals in (2.42) and (2.43).
The collection of all such points z for which such a path exists defines the regions

of validity. We denote these domains by Z( j,k) . In general such domains depend on
arg(u) , but since we are only considering positive u there is no such dependence in this
paper.

The domains Z(0,2) and Z(0,3) are depicted in Figures 3 and 4, respectively: in
these and subsequent figures shaded regions are excluded. Note that Z(0,2) contains the

real z axis, in accord with our previous comments about U (0,2)
R (a,z) . The boundaries

of these two domains are level curves emanating from the singularities, as well as a
finite part of the imaginary axis in the case of Z(0,1) . On inspecting the level curves
in Figure 1 we deduce that all points on these boundaries must be excluded from the
domains, i.e. they are open.

(0)

(i)

( i)

Figure 3: Domain Z(0,2)

For the other cases we note that Z(0,3) is the complex conjugate of Z(0,1) , and
Z(1,2) (respectively Z(2,3) ) is the reflection of Z(0,1) (respectively Z(0,3) ) about the
imaginary axis.

We also remark that there is no appropriate path linking z =±i∞ , and hence Z(1,3)

is empty. Thus (2.38) and (2.39), along with the accompanying error bounds, cannot be
used for j = 1, k = 3. Instead appropriate connection formulas (given below) between
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(0)

(i)

( i)

Figure 4: Domain Z(0,1)

the particular solutions must be used.
Let us now consider the aforementioned connection formulas between the above

particular solutions. The relations we derive next will be useful in subsequent sections,
as well as in their own right.

THEOREM 1.

U (0,2)
R (a,z) = U (0,1)

R (a,z)+ ΛR(a)U(a,z), (2.44)

where for a+ 1
2 �= 0,−1,−2, · · ·

ΛR(a) = 2−
1
2 a+ 3

2 R+ 1
4
√

πe(
1
2 a+ 1

2 R− 3
4 )π iΓ

(
a+ 1

2

)
×F
(

1
2 − 1

2R,− 1
2R; 1

2a− 1
2R+ 3

4 ; 1
2

)
, (2.45)

in which F is Olver’s scaled hypergeometric function [3, Eq. 15.2.2]

F(a,b;c,z) =
F(a,b;c,z)

Γ(c)
=

∞

∑
s=0

(a)s(b)szs

Γ(c+ s)s!
. (2.46)

Moreover

ΛR(−a) = −{tan(πa)+ (−1)R sec(πa)+ i
}

2−
1
2 a+ 3

2 R− 1
4 π

×F
(

1
2 − 1

2R,− 1
2R; 1

2a− 1
2R+ 3

4 ; 1
2

)
, (2.47)
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provided a �= N + 1
2 for integer N with N−R even.

REMARK 1. The hypergeometric function appearing in (2.45) and (2.47) consists
of a finite number of terms. This is because either 1

2 − 1
2R or − 1

2R is a negative integer,
and hence from [3, Eq. 15.2.4] the series terminates. Also, for large a the terms
decrease rapidly, so the sum of the first few terms may suffice in obtaining a good
approximation.

Proof. We begin with the identity [19, Eq. 2.11.2.1]∫ ∞

0
tRU(a, t)dt = hR(a) := 2−

1
2 a− 1

2R− 3
4
√

πR!

×F
(

1
2R+ 1

2 , 1
2R+1; 1

2a+ 1
2R+ 5

4 ; 1
2

)
. (2.48)

Now we know for some constant ΛR(a) that U (0,1)
R (a,z) and U (0,2)

R (a,z) are related
by (2.44). The reason is that both are particular solutions of (2.29) that are not expo-
nentially large at z = +∞ , and therefore their difference must be a multiple of U(a,z) ,
which is the unique solution of the associated homogeneous equation (1.3) which is
also not exponentially large at z = +∞ .

To find the constant we plug in z = 0 in (2.33), and refer to (2.48), to obtain

U (0,2)
R (a,0) = −{1+(−1)R}(2π)−1/2Γ

(
a+ 1

2

)
U(a,0)hR(a). (2.49)

Next, we have from (2.30), (2.31), (2.34) and (2.48)

U (0,1)
R (a,0) = e(

1
2 a− 1

4 )π i [iR+1U(a,0)hR(−a)−U(−a,0)hR(a)
]
. (2.50)

Now from [3, 12.2.17] we have

U(−a,0) = (2/π)1/2 cos
{( 1

2a− 1
4

)
π
}

Γ
(
a+ 1

2

)
U(a,0). (2.51)

And so from (2.44), (2.49) and (2.51)

ΛR(a) =
{

eiπ(a− 1
2 )− (−1)R

}
(2π)−1/2Γ

(
a+ 1

2

)
hR(a)− eiπ( 1

2 a+ 1
2 R+ 1

4 )hR(−a).
(2.52)

The function hR(−a) is of course given by (2.48) with a replaced by −a . We can
simplify this by utilising the identity [3, Eqs. 5.5.3 and 15.10.17]

F
(
a,b;−c; 1

2

)
Γ(a+ c+1)Γ(b+ c+1)

=
2a+b−1F

(
1−a,1−b;c+2; 1

2

)
Γ(a)Γ(b)

− 1
π

sin(πc)F
(
a,b;a+b+ c+1; 1

2

)
. (2.53)

Therefore, using this along with (2.48) and [3, Eq. 5.5.5] we obtain

hR(−a)
Γ
(
a+ 1

2

) =

√
2
π

sin
{(

1
2a− 1

2R− 1
4

)
π
}

hR(a)

+2−
1
2a+ 3

2R+ 1
4
√

πF
( 1

2 − 1
2R,− 1

2R; 1
2a− 1

2R+ 3
4 ; 1

2

)
. (2.54)

Then from (2.48), (2.52) and (2.54) we arrive at (2.45) and (2.47). �
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3. Parabolic cylinder functions with negative parameter

Here we consider
d2y
dz2 −

(
1
4
z2 −a

)
y = 0, (3.1)

where again a is large and positive. The fundamental solution is clearly y(a,z) =
U(−a,z) . As before we let a = 1

2u , have z replaced by
√

2uz , and define w(u,z) =
y( 1

2u,
√

2uz) . Then (3.1) becomes

d2w
dz2 −u2(z2 −1)w = 0. (3.2)

In place of (2.2) we have instead the variables associated with LG (ξ ) and Airy
expansions (ζ ) given by

ξ =
2
3

ζ 3/2 =
∫ z

1

(
t2−1

)1/2
dt =

1
2
z
√

z2 −1− 1
2

ln
(
z+
√

z2−1
)

. (3.3)

For ξ we introduce a branch cut along the interval (−∞,1] , and for ζ we introduce a
branch cut along the interval (−∞,−1] . With these cuts the branches are chosen so that
ξ � 0 and ζ � 0 for 1 � z < ∞ , and by continuity elsewhere in the respective cut z
plane. Some level curves in the z plane corresponding to ℜ(ξ ) = constant are depicted
in Figure 5.

(0)( 1) (1)

Figure 5: Level curves ℜ(ξ ) = constant

The turning point z = 1 of (3.2) is mapped to ζ = ξ = 0, and ζ is an analytic



PARABOLIC CYLINDER AND WEBER FUNCTIONS 83

function of z at this point. For −1 < z < 1 we note that ζ is negative and that

2
3(−ζ )3/2 = 1

2 arccos(z)− 1
2z
√

1− z2. (3.4)

The construction of the coefficients in our expansions follows similarly to section
2, and in place of (2.3) we have

Φ(z) = − 3z2 +2

4(z2 −1)3
. (3.5)

We let
β =

z√
z2 −1

, (3.6)

where the branch of the square root is positive for z > 1 and is continuous in the plane
having a cut along [−1,1] . Thus β → 1 as z → ∞ in any direction.

Similarly to (2.11)–(2.13) obtain the LG coefficients for this case as

E1(β ) = 1
24β
(
5β 2−6

)
, (3.7)

E2(β ) = 1
16

(
β 2−1

)2 (
5β 2−2

)
, (3.8)

and for s = 2,3,4 · · ·

Es+1(β ) =
1
2

(
β 2−1

)2
E′

s(β )+
1
2

∫ β

σ(s)

(
p2−1

)2 s−1

∑
j=1

E′
j(p)E′

s− j(p)dp, (3.9)

where again σ(s) = 1 for s odd and σ(s) = 0 for s even, so that the even and odd coef-
ficients are even and odd functions of β , respectively, with E2s(1) = 0 (s = 1,2,3, · · ·).

The choice of σ(s) for the even coefficients is for convenience in our identification
of asymptotic solutions with parabolic cylinder functions. However, this choice of
the lower integration limit for the odd coefficients is required for our subsequent Airy
expansions to be valid in a full neighbourhood of the turning point; see [6, Thm. 2.1].
From this reference we find that the integration constants for the odd coefficients must
be chosen so that (1− z)1/2E2s+1(β ) is a meromorphic function of z at the turning
point z = 1. From (3.6) we see that this is equivalent to E2s+1(β ) (s = 0,1,2, · · ·)
needing to be odd functions of β .

It is straightforward to verify that

Es(β ) = (−1)sEs(β ), (3.10)

where Es are the coefficients used in the previous section. We also note from (3.3) and
(3.6) that

ξ =
β

2(β 2−1)
+

1
4

ln

(
β −1
β +1

)
. (3.11)

Let us now record the Airy function approximations using [8, Thm. 3.4]. These
are valid in an unbounded domain containing the turning point z = 1. This domain, Z
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(0)( 1) (1)

Figure 6: Domain Z

say, contains the points at infinity z = +∞ and z =±i∞ , but not z =−∞ nor the second
turning point z =−1. The domain is the one depicted in Figure 6, with boundaries (not
included in the domain) the level curves emanating from z = −1.

We first define two sequences {as}∞
s=1 and {ãs}∞

s=1 by a1 = a2 = 5
72 , ã1 = ã2 =

− 7
72 , with subsequent terms as and ãs (s = 2,3, · · ·) satisfying the same recursion

formula

bs+1 = 1
2 (s+1)bs + 1

2

s−1

∑
j=1

b jbs− j. (3.12)

Next let

Es(z) = Es(β )+ (−1)sass
−1ξ−s, (3.13)

and

Ẽs(z) = Es(β )+ (−1)sãss
−1ξ−s. (3.14)

We use the standard notation for Airy functions of complex argument Ail(z) :=
Ai(ze−2π il/3) ( l = 0,±1). Then for each nonnegative integer m there exist three solu-
tions of (3.2) of the form

wm,l(u,z) = Ail
(
u2/3ζ

)
A2m+2(u,z)+Ai′l

(
u2/3ζ

)
B2m+2(u,z) (l = 0,±1), (3.15)
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where

A2m+2(u,z) =
(

ζ
z2 −1

)1/4

exp

{
m

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
u2s+1

}

+
1
2

(
ζ

z2 −1

)1/4

ε̃2m+2(u,z), (3.16)

and

B2m+2(u,z) =
1

u1/3{ζ (z2 −1)}1/4
exp

{
m

∑
s=1

E2s(z)
u2s

}
sinh

{
m

∑
s=0

E2s+1(z)
u2s+1

}

+
ε2m+2(u,z)

2u1/3{ζ (z2 −1)}1/4
. (3.17)

Here it is understood that first sums in (3.16) and (3.17) are zero if m = 0. Prin-
cipal branches are taken for the roots, and both coefficient functions are real for −1 <
z < ∞ . The error terms ε̃2m+2(u,z) and ε2m+2(u,z) are O(u−2m−2) uniformly for z
lying in the any unbounded closed subset of Z \{1} . For z ∈ Z \{1} they are bounded
by

|ε2m+2(u,z)| � 1
u2m+2 exp

{
2m+1

∑
s=1

ℜ{Es(z)}
us

}
e2m+2, j(u,z)

{
1+

e2m+2, j(u,z)
2u2m+2

}2

+
1

u2m+2 exp

{
2m+1

∑
s=1

(−1)s ℜ{Es(z)}
us

}
e2m+2,k(u,z)

{
1+

e2m+2,k(u,z)
2u2m+2

}2

, (3.18)

where for j,k = 0,±1, j < k

en, j(u,z) = un
∣∣δn, j(u)

∣∣+ ωn, j(u,z)exp
{
u−1ϖn, j(u,z)+u−nωn, j(u,z)

}
+ γn(u,ξ )exp

{
u−1βn(u,ξ )+u−nγn(u,ξ )

}
. (3.19)

Here δn,0(u) = 0 and

δn,±1(u) = λ±1 exp

{
−2

n−1

∑
s=1

E2s+1(1)
u2s+1

}
−1 = O(u−n), (3.20)

where λ±1(u) are the connection coefficients in the relation

λ−1(u)W−1(u,ζ ) = iW0(u,ζ )+ λ1(u)W1(u,ζ ), (3.21)

where Wj(u,ζ ) are the unique solutions of (3.2) having the behaviour

lim
z→+∞

z1/2euξW0(u,ζ ) = 1, (3.22)
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and
lim

z→∓i∞
z1/2e−uξW±1(u,ζ ) = 1. (3.23)

We shall shortly show that

λ1(u) = λ−1(u) =
(

2e
u

)u/2 Γ
(

1
2u+ 1

2

)
√

2π
. (3.24)

Also in (3.19) ωn, j(u,β ) and ϖn, j(u,β ) are given by (2.17) and (2.18) respec-

tively, with β replaced by β , and (−1) j replaced by 1. The integrals now must be
taken along paths that, under the map (3.6), are paths in the z plane that avoid ±1 (i.e.
where β is unbounded), and on which ℜ(ξ ) is monotonic. They must also consist of a
finite chain of R2 arcs. All points in Z must be accessible to at least two of z = +∞ and
z = ±i∞ by such a path. In fact all points in Z in the upper half plane are accessible to
z = +∞ and z = i∞ , and all points in Z in the lower half plane are accessible to z = +∞
and z = −i∞ . Thus in (3.18) and (3.19) we can take j = 0, k = 1 in the former case,
and j = −1, k = 0 in the latter.

The bounds break down near z = 1 since the coefficients Es(z) and Ẽs(z) are
unbounded there, but crucially these bounds are valid in a deleted neighbourhood of
this turning point. Moreover, the coefficient functions A2m+2(u,z) and B2m+2(u,z)
are analytic there. Hence near, and at z = 1, one can instead use Cauchy’s integral
formula

A2m+2(u,z) =
1

2π i

∮
|t−1|=r0

A2m+2(u,t)dt
t− z

(0 < r0 < 2), (3.25)

and similarly for B2m+2(u,z) . In these integrals the expansions above only have to
be used to compute the functions along the boundary (which is bounded away from
the turning point), and likewise the error terms can be bounded in a similar way. See
[8, Thm. 4.2] for details, including error bounds. This method has been shown to be
highly accurate and numerically stable for similar applications to Bessel functions [6]
and Laguerre polynomials [7].

Before identifying the asymptotic solutions (3.15) with the parabolic cylinder
functions, let us prove (3.24). Firstly, as z → +∞ (β → 1) we have from (3.3)

2
3ζ 3/2 = ξ = 1

2 z2 − 1
2 ln(2z)− 1

4 +O(z−2). (3.26)

Hence from (1.7)

U
(
− 1

2u,
√

2uz
)
∼
( u

2e

)u/4 e−uξ

(2uz2)1/4
. (3.27)

It follows that by uniqueness of solutions recessive at z = +∞

U
(
− 1

2u,
√

2uz
)

=
( u

2e

)u/4 1

(2u)1/4
W0(u,z). (3.28)

Similarly, for solutions recessive at z = ±i∞ we find that

U
(

1
2u,±i

√
2uz
)

=
(

2e
u

)u/4 e∓iπ(u+1)/4

(2u)1/4
W±1(u,z). (3.29)
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So (3.24) now follows from inserting (3.28) and (3.29) into the connection formula [3,
Eq. 12.2.18]

√
2πU(−a,z) = Γ

(
1
2 +a

){
e±iπ( 1

2 a− 1
4 )U(a,±iz)+ e∓iπ( 1

2 a− 1
4 )U (a,∓iz)

}
, (3.30)

and then comparing this with (3.21).
We note in passing that an asymptotic expansion for U(− 1

2u,
√

2uz) , uniformly
valid in an domain that contains the oscillatory interval [−1+δ ,1−δ ] (δ ∈ (0,1)), can
be obtained from (3.29) and (3.30) by constructing LG expansions for W±1(u,z) simi-
larly to (2.14) and (2.15). Such an expansion would be similar to [16, Eq. (5.11)], but
with the advantage that the new one would only involve a single sine (or cosine) term,
with the asymptotic series in its argument. Also error bounds would be provided. From
this an asymptotic expansion could then be derived for the zeros of U(− 1

2u,
√

2uz)
(and hence as a special case the Hermite polynomials: see [3, Eq. 12.7.2]). We shall
not pursue this here.

Let us now match the asymptotic solutions given by (3.15) with the parabolic
cylinder functions. From (3.7)–(3.9), (3.13), (3.14), (3.16), (3.17) and (3.26) we have
as z → ∞ in the right half plane

A2m+2(u,z) ∼ ζ 1/4

z1/2
cosh

{
m

∑
s=0

E2s+1(1)
u2s+1 + ε(A )

2m+2(u)

}
, (3.31)

and

B2m+2(u,z) ∼ 1

u1/3ζ 1/4z1/2
sinh

{
m

∑
s=0

E2s+1(1)
u2s+1 + ε(B)

2m+2(u)

}
, (3.32)

where ε(A )
2m+2(u) and ε(B)

2m+2(u) are real constants that are O(u−2m−2) as u → ∞ , and

can be bounded with the aid of (3.18) (and likewise ε(U)
2m+2(u) , ε(±)

2m+2(u) and ε(V )
2m+2(u)

in (3.35), (3.36) and (3.39) below). We omit details since such bounds are cumbersome.
In addition, as u2/3ζ → ∞ [3, Eqs. 9.7.5 and 9.7.6]

Ai
(
u2/3ζ

)
∼ e−uξ

2π1/2u1/6ζ 1/4

(∣∣∣arg(u2/3ζ
)∣∣∣� π − δ

)
, (3.33)

and

Ai′
(
u2/3ζ

)
∼−u1/6ζ 1/4e−uξ

2π1/2

(∣∣∣arg(u2/3ζ
)∣∣∣� π − δ

)
. (3.34)

Hence from (1.7), (3.15), (3.26), (3.31)–(3.34) we obtain on matching solutions reces-
sive at z = +∞

U
(
− 1

2u,
√

2uz
)

=
√

π2
3
4− 1

4 uu
1
4 u− 1

12

× exp

{
−1

4
u+

m

∑
s=0

E2s+1(1)
u2s+1 + ε(U)

2m+2(u)

}
wm,0(u,z), (3.35)
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and similarly for solutions recessive at z = ±i∞ we find

U
(

1
2u,∓i

√
2uz
)

=
√

π2
3
4 + 1

4 uu−
1
4 u− 1

12

× exp

{
1
4
(1±π i)u± 1

12
π i−

m

∑
s=0

E2s+1(1)
u2s+1 + ε(±)

2m+2(u)

}
wm,±1(u,z). (3.36)

Here ε(±)
2m+2(u) are complex conjugates.

Consider next the following numerically satisfactory companion to U(−a,z) for
real nonnegative z [3, Eq. 12.2.20]

V (−a,z) = (2π)−1/2
{

eiπ( 1
2 a+ 1

4 )U(a, iz)+ e−iπ( 1
2 a+ 1

4 )U(a,−iz)
}

. (3.37)

On using the Airy function connection formula [3, Eq. 9.2.10]

Bi(z) = e−π i/6Ai1(z)+ eπ i/6Ai−1(z), (3.38)

we find from (3.15), (3.36), (3.37), (3.38) that for z∈ Z (and in particular for 0� z < ∞)

V
(
− 1

2u,
√

2uz
)

= 2
1
4+ 1

4 uu−
1
4 u− 1

12 exp

{
1
4
u−

m

∑
s=0

E2s+1(1)
u2s+1 + ε(V)

2m+2(u)

}

×
{

Bi
(
u2/3ζ

)
A2m+2(u,z)+Bi′

(
u2/3ζ

)
B2m+2(u,z)

}
. (3.39)

For extensions covering the left half plane, and in particular at the turning point
z = −1 we can use the above approximations along with the connection formulas [3,
Eqs. 12.2.16 and 12.2.19]

U(−a,−z) = ∓ie±iπaU(−a,z)+
√

2π
Γ
(

1
2 −a

)e±iπ( 1
2 a+ 1

4 )U (a,±iz) , (3.40)

and

V (−a,−z) =
cos(πa)

Γ
( 1

2 +a
)U(−a,z)− sin(πa)V (−a,z). (3.41)

For the corresponding uniform asymptotic approximations of the derivatives of the
parabolic cylinder functions one can use the above results and appropriate connection
formulas given in [3, Sect. 12.8(i)].

3.1. Inhomogeneous equation

Here the inhomogeneous version of (3.1) that we study is given by

d2y
dz2 −

(
1
4
z2−a

)
y = zR. (3.42)
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Again the fundamental particular solutions are given by (2.30), but with a replaced by

−a . Our main interest is U (0,2)
R (−a,z) given by (2.33) with a replaced by −a , since

this is the unique solution that is not exponentially large in a domain containing the

whole real z axis. Note from (2.33) we have U (0,2)
R (−a,−z) = (−1)RU (0,2)

R (−a,z) .
Now since U(−a,z) and U(−a,−z) are linearly dependentwhen a− 1

2 = 0,1,2, · · · ,
and in particular [3, Eq. 12.2.15 ]

U
(−N− 1

2 ,−z
)

= (−1)NU
(−N− 1

2 ,z
)

(N = 0,1,2, · · ·), (3.43)

we see that U (0,2)
R (−a,z) is undefined if a = N + 1

2 with N −R being even: if N −R

is odd U (0,2)
R (−N− 1

2 ,z) does exist, since in this case (2.33) holds in the limiting case
a →−N− 1

2 .
Similarly to the previous section we define

w(u,z) = (2u)−
1
2 R−1y

(
− 1

2u,
√

2uz
)

, (3.44)

where y(a,z) is any solution of (3.42), and then w(u,z) satisfies

d2w
dz2 −u2(z2 −1)w = zR. (3.45)

We then apply [4, Thm. 4] to obtain the asymptotic solutions

w( j,k)
R (u,z) =

1
u2

n−1

∑
s=0

Gs,R(z)
u2s + ε( j,k)

n,R (u,z), (3.46)

where

G0,R(z) = −zR/
(
z2 −1

)
, (3.47)

and

Gs+1,R(z) = G′′
s,R(z)/

(
z2 −1

)
(s = 0,1,2, · · ·). (3.48)

For n > 1
4R− 3

8 the error terms satisfy the bounds (2.42) with bars removed, and on the
integration path ℜ(ξ ) varies continuously and is monotonic.

Next from [4, Thm. 8] there is a constant γm,R(u) (m = 1,2,3, · · ·) such that

w(−1,1)
R (u,z) = w(0,1)

R (u,z)+2πe−π i/6γm,R(u)wm,1(u,z), (3.49)

w(−1,0)
R (u,z) = w(−1,1)

R (u,z)−2πeπ i/6γm,R(u)wm,−1(u,z), (3.50)

and

w(−1,0)
R (u,z) = w(0,1)

R (u,z)−2π iγm,R(u)wm,0(u,z). (3.51)

The precise value is given by the following.
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LEMMA 1.

γm,R(u) = 2−
1
2 u+R− 1

2 u
1
4 u− 1

2 R− 13
12
√

π exp

{
−1

4
u+

m

∑
s=0

E2s+1(1)
u2s+1 + ε(U)

2m+2(u)

}

×F
(1

2 − 1
2R,− 1

2R; 1
4u− 1

2R+ 3
4 ; 1

2

)
. (3.52)

REMARK 2. With the aid of Stirling’s formula [3, Eq. 5.11.3] and (2.46) we find

that γm,R(u) ∼ 2−1/2u−4/3 as u → ∞ . Recall ε(U)
2m+2(u) = O(u−2m−2) .

Proof. Assume for a moment that z is real, taking the conjugate of (2.44), and

bearing in mind that in this case U (0,2)
R (a,z) and U(a,z) are real, and that the complex

conjugate U (0,1)
R (a,z) = U (0,3)

R (a,z) , we find that

U (0,2)
R (a,z) = U (0,3)

R (a,z)+ ΛR(a)U(a,z), (3.53)

where ΛR(a) is the complex conjugate of ΛR(a) . Therefore, on eliminating U (0,2)
R (a,z)

from (2.44) and (3.53), and then replacing a by −a , we get

U (0,3)
R (−a,z) = U (0,1)

R (−a,z)+2iℑ{ΛR(−a)}U(−a,z). (3.54)

From (2.47)

ℑ{ΛR(−a)} = −2−
1
2 a+ 3

2 R− 1
4 πF

(
1
2 − 1

2R,− 1
2R; 1

2a− 1
2R+ 3

4 ; 1
2

)
. (3.55)

On recalling that solutions of (3.42) and (3.45) are related by (3.44) we deduce that by
matching the unique solution not exponentially large at z = +∞ and z = i∞

U (0,1)
R

(
− 1

2u,
√

2uz
)

= (2u)
1
2 R+1w(0,1)

R (u,z). (3.56)

Similarly

U (0,3)
R

(
− 1

2u,
√

2uz
)

= (2u)
1
2 R+1w(−1,0)

R (u,z). (3.57)

So from (3.35), (3.51), (3.54)–(3.57) we get (3.52). �
We can match the asymptotic solutions given by (3.46)–(3.48) with the corre-

sponding particular solutions which are not exponentially large in the same domains
(see (3.56) and (3.57) below). However our main priority is to obtain asymptotic ex-
pansions which are valid at the turning point z = 1. These involve Scorer functions,
defined as follows. Firstly, Hi(z) is defined by

Hi(z) =
1
π

∫ ∞

0
exp
(− 1

3 t
3 + zt

)
dt, (3.58)

and is the uniquely defined particular solution of the inhomogeneous Airy equation

d2w
dz2 − zw =

1
π

, (3.59)
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having the behaviour

Hi(z) ∼− 1
πz

(
z → ∞, |arg(−z)| � 2

3π − δ
)
, (3.60)

for arbitrary small positive δ . See [3, Sect. 9.12] for further properties. Following [4]
we then define

Wi(−1,1)(z) = πHi(z), (3.61)

Wi(0,1)(z) = πe−2π i/3Hi
(
ze−2π i/3

)
, (3.62)

and
Wi(−1,0)(z) = πe2π i/3Hi

(
ze2π i/3

)
. (3.63)

These three particular solutions of the inhomogeneous Airy equation equation
w′′ − zw = 1 are the unique ones which are bounded as z → ∞ in the sectors

|arg(−ze−2π( j+k)i/3)| � 2
3 π − δ .

For asymptotic expansions with error bounds see [4, Thm. 5].

Now we are in a position to present expansions for w( j,k)
R (u,z) (and hence from

(3.56) and (3.57) for U ( j,k)
R (−a,z)) which are valid at the turning point. From [4, Thm.

7, Eqs (116), (117)] these read as follows. For any nonnegative integer m

w( j,k)
R (u,z) = γm,R(u)

{
Wi( j,k)

(
u2/3ζ

)
A2m+2(u,z)

+ Wi( j,k)′
(
u2/3ζ

)
B2m+2(u,z)

}
+Gm,R(u,z) ( j,k = 0,±1, j < k), (3.64)

where

Gm,R(u,z) =
1
u2

m

∑
s=0

G∗
s,R(z)
u2s − γm(u)

2π iu2/3

∮
Γ

{
ζ (t)
t2−1

}1/4 Jm(u,t)dt
ζ (t)(t − z)

+O

(
1

u2m+4

)
,

(3.65)
and

Jm(u,z) = −exp

{
m

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
u2s+1

}
m

∑
k=0

(3k)!

k!(3u2ζ 3)k

+
1

uζ 3/2
exp

{
m

∑
s=1

E2s(z)
u2s

}
sinh

{
m

∑
s=0

E2s+1(z)
u2s+1

}
m

∑
k=0

(3k+1)!

k!(3u2ζ 3)k . (3.66)

In (3.64) A2m+2(u,z) and B2m+2(u,z) are the turning point coefficient functions
given by (3.16) and (3.17). In (3.65) the coefficients G∗

s,R(z) are the analytic parts at
z = 1 (see [4, Thm. 9]) of Gs,R(z) (given by (3.47) and (3.48)). The first and third sums
in (3.66) are taken to be zero if m = 0. Again the expansions (3.64) are valid for z ∈ Z
(Figure 6). For a discussion about error bounds and the computation of Gm,R(u,z) near
the turning point see [4, Sect. 5.1]
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Finally we obtain an approximation for U (0,2)
R (−a,z) via the connection formula

U (0,2)
R (−a,z) = 1

2

{
U (0,1)

R (−a,z)+U (0,3)
R (−a,z)

}
+ ℜ{ΛR(−a)}U(−a,z), (3.67)

which comes from (2.44) and (3.53). Now from (2.47)

ℜ{ΛR(−a)} = −{tan(πa)+ (−1)R sec(πa)
}

×2−
1
2 a+ 3

2 R− 1
4 πF

(1
2 − 1

2R,− 1
2R; 1

2a− 1
2R+ 3

4 ; 1
2

)
. (3.68)

And then the desired expansion comes from plugging this, along with (3.56), (3.57) and
(3.64) into (3.67).

4. Weber functions with positive parameter

We now turn our attention to the Weber equation

d2y
dz2 −

(
a− 1

4
z2
)

y = 0, (4.1)

where a is positive and large, which has solutions

Wj(a,z) = U
(
(−1) jia,(−i) jze−π i/4

)
( j = 0,1,2,3). (4.2)

From (1.7) we observe that Wj(a,z) is recessive at z = eπ i/4i j∞ . Note also that by
uniqueness W2(a,z) = W0(a,−z) and W1(a,z) = W3(a,−z) , and so we can primarily
focus on W0(a,z) and W3(a,z) . The important property of these two is that as z → ∞
for j = 0 and j = 3 from (1.7) and (4.2)

Wj(a,z) ∼ e−
1
4 πa± 1

8 π iz∓ia− 1
2 e±iz2/4

(∣∣∣arg(ze∓π i/4
)∣∣∣� 3

4 π − δ
)

, (4.3)

where the upper signs are taken for j = 0 and lower signs for j = 3.
For real argument x the solutions W (a,±x) are of most interest, which are defined

from equating real and imaginary parts of the equation (see [16])

k−1/2(2a)W(a,x)+ ik1/2(2a)W (a,−x) = 21/2eπa/4eiρ(2a)W0(a,x), (4.4)

where
k(u) =

√
1+ eπu− eπu/2, (4.5)

1/k(u) =
√

1+ eπu + eπu/2, (4.6)

ρ(u) = 1
2φ2(u)+ 1

8 π , (4.7)

and
φ2(u) = arg

{
Γ
(

1
2 + 1

2 iu
)}

. (4.8)
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In (4.8) the branch of arg is taken to be zero when u = 0 and then defined by continuity
for u > 0. Note for real u

e2iφ2(u) =
Γ
(

1
2 + 1

2 iu
)

Γ
(

1
2 − 1

2 iu
) . (4.9)

For complex argument z we also have the relation [3, Eq. 12.14.4]

W (a,z) =

√
k(2a)

2
eπa/4

{
eiρ(2a)W0(a,z)+ e−iρ(2a)W3(a,z)

}
. (4.10)

We shall obtain LG and Airy expansions for the complex valued solutions Wj(a,z) , and
use these to obtain the desired expansions for W (a,x) for −∞ < x < ∞ .

Again with a = 1
2u , z replaced by

√
2uz , and w(u,z) = u−1y( 1

2u,
√

2uz) . we
recast (4.1) into

d2w
dz2 −u2(1− z2)w = 0. (4.11)

The analysis is similar to section 3 since the equation has real turning points at z =±1.
Here the role of ξ is played by iξ , and the level curves −ℜ(iξ ) = ℑ(ξ ) = constant
are depicted in Figure 7. These of course are orthogonal to those from section 3 (Figure
5). The Airy variable ζ is replaced by −ζ .

(0)( 1) (1)

Figure 7: Level curves ℑ(ξ ) = constant

We follow the same steps as section 3, using f (z) = 1− z2 instead of the negative
of this function. As a result we find Es(β ) are replaced by (−i)sEs(β ) (equivalently
isEs(β )), Es(z) replaced by (−i)sEs(z) , Ẽs(z) replaced by (−i)sẼs(z) .
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For l = 0,±1 solutions valid at the turning point z = 1 are then given by

w(W )
m,l (u,z) = Ail

(
−u2/3ζ

)
A

(W )
2m+2(u,z)+Ai′l

(
−u2/3ζ

)
B

(W )
2m+2(u,z), (4.12)

where for nonnegative m A
(W)
2m+2(u,z) and B

(W )
2m+2(u,z) are again given by (3.16) and

(3.17), but with Es(z) and Ẽs(z) being replaced by (−i)sEs(z) and (−i)sẼs(z) , respec-

tively. Also the error terms, ε(W )
2m+2(u,z) and ε̃(W )

2m+2(u,z) , say, satisfy the bounds (3.18)
and (3.19) with Es(z) and Ẽs(z) replaced as above. In these bounds ωn, j(u,β ) and
ϖn, j(u,β ) are the same as described in section 3, that is, given by (2.17) and (2.18)

respectively, with β replaced by β , and (−1) j replaced by 1. The only difference is
that on the paths of integration ℑ(ξ ) must be monotonic (and again avoid z = ±1).

We consider Wj(a,z) for j = 0,2,3. For j = 0 the equivalent path in the z plane
has its end point at z = eπ i/4∞ , for j = 2 the end point is at z = e−3π i/4∞ , and for j = 3
the end point is at z = e−π i/4∞ . All points in the common domain of validity, which we
call Z̆ , must be accessible to at least two of these points at infinity by such a path on
which the continuous branch of ℑ(ξ ) is monotonic. The collection of all such points
is denoted by Z̆ as shown in Figure 8. In this figure the boundaries are the level curve
ℑ(ξ ) = constant and the interval −∞ < z � −1, the latter being the branch cut for ζ .
Note these boundaries do not lie in Z̆ (thus it is open). Note that z = 1 is excluded
from the error bounds, since the integrals diverge there. But near this turning point we
again can use Cauchy integrals of the form (3.25) for both computing the coefficient
functions as well as obtaining error bounds.

(0)( 1) (1)

Figure 8: Domain Z̆
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Since the coefficient functions A
(W )
2m+2(u,z) and B

(W )
2m+2(u,z) are entire and real

on the real axis, we can use the Schwarz reflection principle to immediately extend the
domain of asymptotic validity of the asymptotic expansions and their error bounds to
the whole z plane, with the exception of points on the cut (−∞,−1] .

We now identify recessive solutions of (4.11), and as a result we find for j = 0,3
that

Wj

(
1
2u,

√
2uz
)

= 23/4√πu−1/12e±i(χm(u)+ 1
24 π)

× exp
{
− 1

8πu+ ε(W∓)
2m+2(u)

}
w(W)

m,∓1(u,z), (4.13)

where upper signs for j = 0 and lower signs for j = 3, and ε(W±)
2m+2(u) = O(u−2m−2) .

Here we have introduced the parameter

χm(u) =
u
4

ln

(
2e
u

)
+

m

∑
s=0

(−1)s E2s+1(1)
u2s+1 . (4.14)

For j = 2 we likewise find

W2

(
1
2u,

√
2uz
)

= 23/4√πu−1/12ei(χm(u)− 1
8 π)

× exp
{

3
8 πu+ ε(W−)

2m+2(u)
}

w(W )
m,0 (u,z). (4.15)

Uniform asymptotic approximations for the derivatives of these functions, valid in
the same domain, can be derived using (4.2), (4.13), (4.15) and [3, Sect. 12.8(i)].

Let us now record LG expansions, which will primarily be used to relate χm(u) to
φ2(u) . Similarly to (2.21) we find that

Wj

(
1
2u,

√
2uz
)

=
e±i(χm(u)− 1

8 π)

(2u)1/4eπu/8 (1− z2)1/4
exp

{
m

∑
s=1

(−1)s E2s(β )
u2s

}

× exp

{
±iuξ ∓ i

m

∑
s=0

(−1)s E2s+1(β )
u2s+1

}{
1+ η(W)

2m+2, j(u,z)
}

, (4.16)

with upper signs for j = 0 and lower signs for j = 3. The error terms η(W )
2m+2, j(u,z)

are bounded by (2.16) with β replaced by β , and ωn, j(u,β ) and ϖn, j(u,β ) given as
described earlier in this section.

The domain of validity of (4.16) for W0( 1
2u,

√
2uz) , Z̆0 , is shown in Figure 9, with

the corresponding one for W0( 1
2u,

√
2uz) being the conjugate of this. Here we take the

branch cuts for ξ to be the lines −∞ < z �−1 (solid line) and 1 � z < ∞ (dashed line):
the latter can be crossed into the lower half plane without violating the monotonicity
condition on ℑ(ξ ) , but we are content to use the unshaded region as shown. The
other boundary, the level curve in the fourth quadrant emanating from z = 1, cannot be
crossed: indeed all points on this curve must be excluded from the domain, as well as
those on the aforementioned cut associated with z = −1.
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(0)( 1) (1)

Figure 9: Domain Z̆0

Now both LG expansions are valid at z = 0, so from (4.16) and [3, Eq. 12.2.6],
and recalling that E2s+1(0) = 0, we have

W0
(

1
2u,0

)
W3
(

1
2u,0

) =
U
(

1
2 iu,0

)
U
(− 1

2 iu,0
) =

2−iu/2Γ
(

3
4 − 1

4 iu
)

Γ
(

3
4 + 1

4 iu
)

= ei(2χm(u)− 1
4 π)

⎧⎨
⎩1+ η(W)

2m+2,0(u,0)

1+ η(W)
2m+2,3(u,0)

⎫⎬
⎭ . (4.17)

Next using [3, Eqs. 5.5.3 and 5.5.5] one can show with some algebra and simpli-
fication that

2−iu/2Γ
(

3
4 − 1

4 iu
)

Γ
(

3
4 + 1

4 iu
) = e−π i/4

{
tanh

(
1
4π(u+ i)

)
Γ
(

1
2 − 1

2 iu
)

Γ
(

1
2 + 1

2 iu
)

}1/2

. (4.18)

Now let
εm(u) = 1

2 φ2(u)+ χm(u), (4.19)

where φ2(u) is given by (4.8). Then from (4.9), (4.17), (4.18)

eiεm(u) =
{
tanh

(
1
4 π(u+ i)

)}1/4

⎧⎨
⎩1+ η(W)

2m+2,3(u,0)

1+ η(W)
2m+2,0(u,0)

⎫⎬
⎭

1/2

= 1+O(u−2m−2), (4.20)

and hence εm(u) = O(u−2m−2) . Thus from (4.19) we arrive at the relation we were
aiming for, namely χm(u) = − 1

2φ2(u)+O(u−2m−2) .
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We now proceed to obtain our main results, for real z = x . From (4.4) we have

k−1/2(u)W
(

1
2u,

√
2ux
)

+ ik1/2(u)W
(

1
2u,−

√
2ux
)

= 21/2eπu/8ei( 1
2 φ2(u)+ 1

8 π)W0

(
1
2u,

√
2ux
)

. (4.21)

Hence equating real parts, defining εR,2m+2(u) = ℜ{ε(W−)
2m+2(u)} and εI,2m+2(u)

= ℑ{ε(W−)
2m+2(u)} (both being O(u−2m−2)), and using (4.13) leads to

W
(

1
2u,

√
2ux
)

= 25/4
√

πk(u)u−1/12eεR,2m+2(u)

×ℜ
{

ei( 1
2 φ2(u)+χm(u)+ 1

6 π+εI,2m+2(u))w(W )
m,−1(u,x)

}
. (4.22)

Thus from (4.12), (4.19), (4.20) and [3, Eq. 9.2.11] we arrive at the first of our main
asymptotic expansions

W
(

1
2u,

√
2ux
)

= 21/4
√

πk(u)u−1/12eεR,2m+2(u)
[{

Bi
(
−u2/3ζ

)
A

(W )
2m+2(u,x)

+Bi′
(
−u2/3ζ

)
B

(W )
2m+2(u,x)

}
cos(εm(u)+ εI,2m+2(u))

−sin(εm(u)+ εI,2m+2(u))w(W )
m,0 (u,x)

]
, (4.23)

where the error terms associated with the coefficient functions A
(W )
2m+2(u,x) and

B
(W )
2m+2(u,x) are O(u−2m−2) uniformly for −1+ δ � x < ∞ (δ > 0). Also observe

that cos(εm(u)+ εI,2m+2(u)) = 1+O(u−4m−4) and

sin(εm(u)+ εI,2m+2(u))w(W )
m,0 (u,x) = O

(
u−2m−2)envAi

(
−u2/3ζ

)
= O

(
u−2m−2)envBi

(
−u2/3ζ

)
, (4.24)

as u→∞ , where the envelope (env) of the Airy functions are defined by [3, Eqs. 2.8.20
and 2.8.21].

Thus in summary

W
(

1
2u,

√
2ux
)

= 21/4
√

πk(u)u−1/12
[{

Bi
(
−u2/3ζ

)
A

(W )
2m+2(u,x)

+Bi′
(
−u2/3ζ

)
B

(W )
2m+2(u,x)

}
+O

(
u−2m−2)envBi

(
−u2/3ζ

)]
. (4.25)

If we equate imaginary parts of (4.21) we are unable to obtain a satisfactory
approximation for the numerically satisfactory companion function W ( 1

2u,−√
2ux) ,

since an error term dominates the approximating Airy function Ai and its deriva-
tive. We overcome this problem by simply replacing x by −x in (4.21) and using
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W0(a,−x) = W2(a,x) . Consequently we have

k−1/2(u)W
(

1
2u,−

√
2ux
)

+ ik1/2(u)W
(

1
2u,

√
2ux
)

= 21/2eπu/8ei( 1
2 φ2(u)+ 1

8 π)W2

(
1
2u,

√
2ux
)

. (4.26)

Hence from (4.15) and by equating real parts of (4.26) we obtain the desired expansion

W
(

1
2u,−

√
2ux
)

= 25/4
√

πk(u)u−1/12eπu/2
[
Ai
(
−u2/3ζ

)
A

(W)
2m+2(u,x)

+Ai′
(
−u2/3ζ

)
B

(W )
2m+2(u,x)+O

(
u−2m−2)envAi

(
−u2/3ζ

)]
, (4.27)

which like (4.23) is uniformly valid for −1+ δ � x < ∞ (δ > 0). Of course for both
these approximations it suffices to use them for 0 � x < ∞ .

4.1. Inhomogeneous equation

The inhomogeneous version of (4.1) is

d2y
dz2 −

(
a− 1

4
z2
)

y = zR. (4.28)

For j ∈ {0,1,2,3} , k ∈ {1,2,3} with j < k solutions of (4.28) are furnished by

W ( j,k)
R (a,z) =

1
W {Wj(a,z),Wk(a,z)}

[
Wk(a,z)

∫ z

eπi/4i j∞
tRWj(a,t)dt

−Wj(a,z)
∫ z

eπi/4ik∞
tRWk(a, t)dt

]
. (4.29)

The solution W (0,3)
R (a,z) is the one we are most interested in, because it is the

unique solution that is non-oscillatory on the positive real axis, and is O(zR−2) as z→∞
in the right half plane, whereas all other solutions are exponentially large in part or all
of the right half plane. The function is also real-valued on the real axis. A solution that

is numerically satisfactory in the left half plane is W (1,2)
R (a,z) = (−1)RW (0,3)

R (a,−z) .
Now from (2.34) and (4.2)

W {W0(a,z),W3(a,z)} = −ie−πa/2, (4.30)

and hence from (4.29)

W (0,3)
R (a,z) = ieπa/2

[
W3(a,z)

∫ z

eπi/4∞
tRW0(a,t)dt−W0(a,z)

∫ z

e−πi/4∞
tRW3(a,t)dt

]
.

(4.31)
On comparing the differential equations (3.1) and (4.28), and identifying solutions

that are not exponentially large in the same regions of the z plane, we have the following
relations for two more solutions that we shall use

W (2,3)
R (a,z) = ie−3iπR/4U (0,1)

R

(
ia,ze3π i/4

)
, (4.32)
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and
W (0,2)

R (a,z) = ie−3iπR/4U (0,2)
R

(
ia,ze3π i/4

)
, (4.33)

where U (0,2)
R (a,z) is given by (2.33) and U (0,1)

R (a,z) is given by (2.35).
In order to derive a connection relation between these two functions we use (2.44)

to get

ie−3iπR/4U (0,2)
R (ia,z) = ie−3iπR/4U (0,1)

R (ia,z)+ iΛR(ia)e−3iπR/4U(ia,z), (4.34)

and hence on replacing z by ze3π i/4 and using (4.2), (4.32) and (4.33) we arrive at

W (0,2)
R (a,z) = W (2,3)

R (a,z)+ ie−3iπR/4ΛR(ia)W2(a,z). (4.35)

With w(u,z) = (2u)−
1
2 R−1y( 1

2u,
√

2uz) we transform (4.28) to

d2w
dz2 −u2(z2 −1)w = zR. (4.36)

From [4] asymptotic solutions valid at z = 1 are given by

w̆( j,k)
R (u,z) = γ(W )

m,R (u)
{

Wi( j,k)
(
−u2/3ζ

)
A

(W )
2m+2(u,z)

+ Wi( j,k)′
(
−u2/3ζ

)
B

(W )
2m+2(u,z)

}
+G

(W )
m,R (u,z) ( j,k = 0,±1, j < k). (4.37)

Here

γ(W)
m,R (u) = 2R−1− 1

4 iuu−
1
2 R− 13

12 eπu/8ei(χm(u)− 1
4 πR+ 1

8 π)Γ
(

1
2 + 1

2 iu
)

×F
(

1
2 − 1

2R,− 1
2R; 3

4 − 1
2R+ 1

4 iu; 1
2

){
1+O

(
u−2m−2)} , (4.38)

G
(W )
m,R (u,z) is given by (3.65) and (3.66) with γm,R(u) replaced by γ(W )

m,R (u) , G∗
s,R(z) are

replaced by (−1)s+1G∗
s,R(z) , ζ replaced by −ζ , t2 −1 replaced by 1− t2 , and Es(z)

and Ẽs(z) are replaced by (−i)sEs(z) and (−i)sẼs(z) , respectively. All error terms are
O(u−2m−2) in whole z plane except for points on the cut (−∞,−1] .

The connection coefficient γ(W )
m,R (u) was derived as follows. Firstly on identifying

solutions that are not exponentially large at z = ∞ in the first and third quadrants we
have

W (0,2)
R

(
1
2u,

√
2uz
)

= (2u)
1
2 R+1w̆(−1,0)

R (u,z), (4.39)

and similarly for those that are not exponentially large at z = ∞ in the third and fourth
quadrants we have

W (2,3)
R

(
1
2u,

√
2uz
)

= (2u)
1
2 R+1w̆(0,1)

R (u,z). (4.40)

Now from (4.35), (4.39) and (4.40)

w̆(−1,0)
R (u,z) = w̆(0,1)

R (u,z)+ ie−3iπR/4(2u)−
1
2 R−1ΛR

(
1
2 iu
)
W2
(

1
2u,z
)
. (4.41)
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So from (2.45), (3.51) (with w and γm,R replaced by w̆ and γ(W )
m,R , respectively), (4.15),

and (4.41) we get (4.38).
We note the uniform asymptotic expansion

W (0,3)
R

(
1
2u,

√
2uz
)

= (2u)
1
2 R+1w̆(−1,1)

R (u,z). (4.42)

where w̆(−1,1)
R (u,z) is given by (4.37) with Wi(−1,1)(−u2/3ζ ) = πHi(−u2/3ζ ) .

5. Weber functions with negative parameter

We finally consider Weber’s equation in the form

d2y
dz2 +

(
1
4
z2 +a

)
y = 0, (5.1)

with complex valued solutions Wj(−a,±z) ( j = 0,3), real solutions W (−a,±x) (−∞ <
x < ∞), and where again a is positive and large.

As before let a = 1
2u , z be replaced by

√
2uz , and w(u,z) = u−1y( 1

2u,
√

2uz) ;
then (5.1) becomes

d2w
dz2 +u2(z2 +1)w = 0. (5.2)

As in section 2 the turning points are at z = ±i and thus we do not require Airy
expansions, since our main interest is the real axis which is free from turning points.
The LG expansions will be constructed in the complex plane similarly to those for the
parabolic cylinder functions of section 2, with ξ as given by (2.2) and (2.10) replaced
by iξ in the approximations of this section.

The level curves determining the regions of validity are thus ℑ(ξ ) = constant,
and several are depicted in Figure 10. These are orthogonal to those used in section 2
(Figure 1).

As z → +∞ we use (2.19) and so similarly to (4.16) we arrive at

Wj

(
− 1

2u,
√

2uz
)

=
e∓i(χ̂m(u)− 1

8 π)eπu/8

(2u)1/4 (1+ z2)1/4
exp

{
m

∑
s=1

(−1)s E2s(β )
u2s

}

× exp

{
±iuξ ∓ i

m

∑
s=0

(−1)s E2s+1(β )
u2s+1

}{
1+ η2m+2, j(u,z)

}
, (5.3)

where upper signs are for j = 0 and lower signs for j = 3. Here

χ̂m(u) =
u
4

ln

(
2e
u

)
−

m

∑
s=0

(−1)s E2s+1(1)
u2s+1 . (5.4)

Error bounds are furnished by (2.16) and (2.17) with both lower integration limits
as β = 1, but this value corresponding to z = eπ i/4∞ for j = 0 and z = e−π i/4∞ for
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(0)

(i)

( i)

Figure 10: Level curves ℑ(ξ ) = constant

j = 3. Also as p passes along the paths of integration ℑ(ξ ) must be monotonic rather

than ℜ(ξ ) .

The error terms η2m+2, j(u,z) are O(u−2m−2) uniformly in the right half plane,
except in the neighbourhoods of z = ±i . These approximations are also valid in part of
left half plane that includes the negative real z axis, but this extension is not required.

For the derivatives we find in a similar manner to (2.28) and (2.27) that

W ′
j

(
− 1

2u,
√

2uz
)

=
1
2
e∓i(χ̃m(u)− 5

8 π)(2u)1/4eπu/8 (1+ z2)1/4

× exp

{
m

∑
s=1

(−1)s Ẽ2s(β )
u2s

}
exp

{
±iuξ ∓ i

m

∑
s=0

(−1)s Ẽ2s+1(β )
u2s+1

}{
1+ η̃2m+2, j(u,z)

}
,

(5.5)

where

χ̃m(u) =
u
4

ln

(
2e
u

)
−

m

∑
s=0

(−1)s Ẽ2s+1(1)
u2s+1 . (5.6)

Error bounds are the same as for the corresponding ones in (5.3) except with E replaced
by Ẽ .
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From (5.5) and [3, Eq. 12.2.7] and using Ẽ2s+1(0) = 0 we see that

W ′
0

(− 1
2u,0

)
W ′

3

(− 1
2u,0

) =
U ′ (− 1

2 iu,0
)

U ′ ( 1
2 iu,0

) = − i2iu/2Γ
(

1
4 + 1

4 iu
)

Γ
(

1
4 − 1

4 iu
)

= e−i(2χ̃m(u)− 5
4 π)
{

1+ η̃2m+2,0(u,0)
1+ η̃2m+2,3(u,0)

}
. (5.7)

Now we get using (5.7), similarly to (4.17),

e−i( 1
2 φ2(u)+χ̃m(u)) =

{
tanh

(
1
4 π(u+ i)

)}1/4
{

1+ η̃2m+2,3(u,0)
1+ η̃2m+2,0(u,0)

}1/2

= 1+O(u−2m−2).

(5.8)
From (4.19) this shows χ̃m(u)− χm(u) = O(u−2m−2) and hence by comparing (4.14)
and (5.6) that the series in both must be equivalent, and hence χ̃m(u) = χm(u) . Thus
from (4.19) we have

ei( 1
2 φ2(u)+χ̃m(u)) = eiεm(u) = 1+O(u−2m−2). (5.9)

Next, from (4.4) with a = −u/2 we have

k
−1/2

(u)W
(
− 1

2u,
√

2ux
)

+ ik
1/2

(u)W
(
− 1

2u,−
√

2ux
)

= 21/2e−πu/8e−i( 1
2 φ2(u)− 1

8 π)W0

(
− 1

2u,
√

2ux
)

, (5.10)

where
k(u) = k(−u) =

√
1+ e−πu− e−πu/2. (5.11)

Therefore, from (5.3) with j = 0, (5.9) and (5.10), and on expressing

1+ η2m+2,0(u,x) =
∣∣1+ η2m+2,0(u,x)

∣∣exp
(
iarg
{
1+ η2m+2,0(u,x)

})
, (5.12)

where here arg is the principal argument, we deduce that

W
(
− 1

2u,
√

2ux
)

=

{
2k

2
(u)

u(1+ z2)

}1/4

exp

{
m

∑
s=1

(−1)s E2s(β )
u2s

}

× cos

{
uξ +

1
4

π −
m

∑
s=0

(−1)s E2s+1(β )
u2s+1 + ε̃2m+2,0(u,x)

}∣∣1+ η2m+2,0(u,x)
∣∣ , (5.13)

and

W
(
− 1

2u,−
√

2ux
)

=

{
2

uk
2
(u)(1+ z2)

}1/4

exp

{
m

∑
s=1

(−1)s E2s(β )
u2s

}

× sin

{
uξ +

1
4

π −
m

∑
s=0

(−1)s E2s+1(β )
u2s+1 + ε̃2m+2,0(u,x)

}∣∣1+ η2m+2,0(u,x)
∣∣ , (5.14)



PARABOLIC CYLINDER AND WEBER FUNCTIONS 103

where
ε̃2m+2,0(u,x) = arg

{
1+ η2m+2,0(u,x)

}− εm(u). (5.15)

Recall that εm(u) is explicitly given by (4.19) and is O(u−2m−2) as u→ ∞ . In addition
η2m+2,0(u,x) = O(u−2m−2) , uniformly for 0 � x < ∞ , and hence the same is true for
ε̃2m+2,0(u,x) . We emphasize the doubly asymptotic behaviour that η2m+2,0(u,x) → 0
as x → ∞ .

5.1. Inhomogeneous equation

Solutions of the inhomogeneous equation

d2y
dz2 +

(
1
4
z2 +a

)
y = zR, (5.16)

are given by W ( j,k)
R (−a,z) . With the same change of variable and parameter as in

previous sections this is transformed to

d2w
dz2 +u2(z2 +1)w = zR, (5.17)

and for j,k ∈ {0,1,2,3} with j < k asymptotic solutions are furnished by

w̃( j,k)
R (u,z) =

1
u2

n−1

∑
s=0

(−1)s+1 Gs,R(z)
u2s + ε̃( j,k)

n,R (u,z), (5.18)

where Gs,R(z) are given by (2.40) and (2.41). The error terms satisfy (2.42) and (2.43)
where the paths of integration are as described for those bounds, except that they run
from z = eπ i/4i j∞ to z = eπ i/4ik∞ , and the monotonicity condition is for ℑ(ξ ) .

From (4.31) a particular solution is given by

W (0,3)
R (−a,z) = ie−πa/2

[
W3(−a,z)

∫ z

eπi/4∞
tRW0(−a, t)dt

−W0(−a,z)
∫ z

e−πi/4∞
tRW3(−a,t)dt

]
. (5.19)

Again this is the solution of most interest, since it is not exponentially large in the right

half plane. In fact, as we shall show, unlike W (0,3)
R (a,z) it is also not exponentially

large in part of the left half plane including the whole negative real axis. Matching this
solution with corresponding asymptotic solution that is also not exponentially large in
the right half plane yields

W (0,3)
R

(
− 1

2u,
√

2uz
)

= (2u)
1
2 R+1w̃(−1,1)

R (u,z). (5.20)

Note that this solution is real for real z . See Figure 11 for region of validity Z̆(0,3) ,
all boundaries of which must be excluded: these are the parts of the imaginary axis from
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(0)

(i)

( i)

Figure 11: Domain Z̆(0,3)

z = ±i to z = ±i∞ , and the level curves in the left half plane emanating from z = ±i .
Note the region includes the whole real z axis, with the error term being O(u−2n−2) as
u → ∞ and also is vanishing as z → ∞ . However, it does not vanish as z →−∞ .

To get a sharper approximation for ℜ(z) � 0 we use a suitable connection formula,
derived as follows. Firstly, from (4.35)

W (0,2)
R

(
− 1

2u,
√

2uz
)

= W (2,3)
R

(
− 1

2u,
√

2uz
)

+ ie−3iπR/4ΛR
(− 1

2 iu
)
W2

(
− 1

2u,
√

2uz
)

. (5.21)

Next we can assert there is a constant αR(u) such that

W (0,3)
R

(
− 1

2u,
√

2uz
)

= W (0,2)
R

(
− 1

2u,
√

2uz
)

+ αR(u)W0

(
− 1

2u,
√

2uz
)

, (5.22)

since the difference of the two particular solutions of (5.17) appearing in this equa-
tion is a solution of the homogeneous equation (5.2) which, like both of them, is not
exponentially large in the first quadrant; this difference must then be a multiple of
W0
(− 1

2u,
√

2uz
)
.

We can find αR(u) by letting z → ∞e−π i/4 . In this limit we have from (5.22)

W (0,2)
R

(
− 1

2u,
√

2uz
)
∼−αR(u)W0

(
− 1

2u,
√

2uz
)

, (5.23)
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since in this case W (0,3)
R

(− 1
2u,

√
2uz
)

is O(zR−2) and the other two are exponentially
large. On the other hand, in the same limit we have from (5.21)

W (0,2)
R

(
− 1

2u,
√

2uz
)
∼ ie−3iπR/4ΛR

(− 1
2 iu
)
W2

(
− 1

2u,
√

2uz
)

. (5.24)

Therefore from (4.3), (5.22), (5.23) and (5.24)

αR(u) = −ie−3iπR/4ΛR
(− 1

2 iu
)

lim
z→∞exp(−π i/4)

W2
(− 1

2u,
√

2uz
)

W0
(− 1

2u,
√

2uz
)

= −e−3iπR/4e−πu/2ΛR
(− 1

2 iu
)
, (5.25)

and hence from (2.45)

αR(u) =
√

πe−
1
4 πu+ 1

4 iπ(1−R)2
3
2 R+ 1

4 + 1
4 iuΓ
(

1
2 − 1

2 iu
)

×F
(

1
2 − 1

2R,− 1
2R; 3

4 − 1
2R− 1

4 iu; 1
2

)
. (5.26)

Next, from (5.22) we obtain by replacing z by −z

W (0,3)
R

(
− 1

2u,−
√

2uz
)

= (−1)RW (0,2)
R

(
− 1

2u,
√

2uz
)

+ αR(u)W0

(
− 1

2u,−
√

2uz
)

,

(5.27)
since by uniqueness W (0,2)

R (−a,−z) = (−1)RW (0,2)
R (−a,z) , both being solutions of

(5.17) that are not exponentially large in the first and third quadrants. So from (5.22)
and (5.27)

W (0,3)
R

(
− 1

2u,
√

2uz
)

= (−1)RW (0,3)
R

(
− 1

2u,−
√

2uz
)

+(−1)R+1αR(u)W0

(
− 1

2u,−
√

2uz
)

+ αR(u)W0

(
− 1

2u,
√

2uz
)

. (5.28)

We then finally use

W0

(
− 1

2u,
√

2uz
)

= c0(u)W0

(
− 1

2u,−
√

2uz
)

+ c3(u)W3

(
− 1

2u,−
√

2uz
)

, (5.29)

where from (4.2) and [3, Eq. 12.2.17]

c0(u) = −ie−πu/2, (5.30)

and

c3(u) =
√

2πeπ i/4e−πu/4

Γ
(

1
2 − 1

2 iu
) . (5.31)

Consequently, from (5.28), (5.29) and (5.30) we get our desired connection formula

W (0,3)
R

(
− 1

2u,
√

2uz
)

= (−1)RW (0,3)
R

(
− 1

2u,−
√

2uz
)

+
{
(−1)R+1− ie−πu/2

}
αR(u)W0

(
− 1

2u,−
√

2uz
)

+αR(u)c3(u)W3

(
− 1

2u,−
√

2uz
)

,

(5.32)
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where αR(u) is given by (5.26) and c3(u) by (5.31).

We can go a step further, noting that when z is real so too is W (0,3)
R (a,z) , and

moreover W0(a,z) and W3(a,z) are complex conjugates. Hence the coefficients of
these two functions in (5.32) must be also complex conjugates. This allows us to recast
this connection formula into the form

W (0,3)
R

(
− 1

2u,
√

2uz
)

= (−1)RW (0,3)
R

(
− 1

2u,−
√

2uz
)

+
{
(−1)R+1− ie−πu/2

}
αR(u)W0

(
− 1

2u,−
√

2uz
)

+
{
(−1)R+1 + ie−πu/2

}
αR(u)W3

(
− 1

2u,−
√

2uz
)

, (5.33)

where αR(u) is given by (5.26) with i replaced by −i .
For ℜ(z) � 0 we can use this, along with (5.3), (5.18) and (5.20), to obtain an

asymptotic expansion which is uniformly valid in this left half plane except near z =
±iy , 1 � y < ∞ . We also note that all error terms vanish as ℜ(z) →−∞ .

We observe that the last two terms on the RHS of (5.33) are exponentially small
in the unshaded region of the left half plane in Figure 11, and hence the first term,
which has the asymptotic expansion (5.18), dominates here (as expected). As z enters
the shaded region in the second quadrant the second term on the RHS term becomes
exponentially large and it dominates, and as z enters the shaded region in the the third
quadrant the third term on the RHS term becomes exponentially large and it dominates.
This is an example of the Stokes phenomenon where a function’s asymptotic behaviour
changes from subdominant to dominant, or vice versa, as its argument crosses a Stokes
line.
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