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AN IMPROVEMENT OF ZALCMAN’S LEMMA IN Cn

P. V. DOVBUSH

Dedicated to Christian Pommerenke and Lawrence Zalcman

Abstract. The aim of this article is to give a proof of improving of Zalcman’s lemma in Cn.

1. Introduction and main results

A family F of holomorphic functions on a domain Ω ⊂ Cn is normal in Ω if
every sequence of functions { f j} ⊆ F contains either a subsequence which converges
to a limit function f �= ∞ uniformly on each compact subset of Ω, or a subsequence
which converges uniformly to ∞ on each compact subset.

A family F is said to be normal at a point z0 ∈ Ω if it is normal in some neigh-
borhood of z0. It is routine to confirm that a family of analytic functions F is normal
in a domain Ω if and only if F is normal at each point of Ω.

There are many criteria for F to be normal. A particularly useful one is Marty’s
criterion, which is in terms of the spherical derivative f � of f , defined by

f �(z) := max
|v|=1

√
Lz(log(1+ | f |2),v),

where

Lz(log(1+ | f |2),v) :=
n

∑
k,l=1

∂ 2 log(1+ | f |2)
∂ zk∂ zl

(z)vkvl (z ∈ Ω,v ∈Cn)

(see [4]).

THEOREM 1. (Marty’s criterion, see [4]) A family F of functions holomorphic
on Ω ⊂Cn is normal on Ω if and only if for each compact subset K ⊂ Ω there exists a
constant M(K) such that at each point z ∈ K

f �(z) � M(K)

for all f ∈ F .
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Marty’s criterion is one of the main ingredients of the proof that a family of holo-
morphic functions is not normal.

THEOREM 2. Let F be a family of functions holomorphic on Ω ⊂Cn. Then F
is not normal at some point z0 ∈ Ω if and only if for each α ∈ (−1,∞) there exist
sequences f j ∈ F , z j → z0, r j → 0, such that the sequence

g j(z) := rα
j f j(z j + r jz)

converges locally uniformly in Cn to a non-constant entire function g satisfying g�(z) �
g�(0) = 1.

As a corollary, we have the following important supplement to Theorem 2:

COROLLARY 1. Let F be a family of zero-free holomorphic functions in a do-
main Ω ⊂Cn. The statement of Theorem 2 remains valid if −1 < α < ∞ is replaced
with −∞ < α < ∞.

REMARK 1. In case n = 1 Theorem 2 was proved in Hua [10, Lemma 6]. A
similar result was proved by Chen and Gu [3, Th.2] (see also Xue and Pung [16], cf.
Hua [10]). The special case α = 0 of Theorem 2 was proved in Zalcman [18, p. 814]
and is known as Zalcman’s rescaling lemma. Zalcman’s lemma – now upgraded to
the status of theorem – was first stated at [18]; for a state-of-the-art version, see [19,
Lemma 2]. The corresponding result for normal functions had been proved earlier by
Lohwater and Pommerenke [14].

Zalcman’s Lemma is used in the study of entire and meromorphic functions and for
establishing normality criteria. It is well-known that the Rescaling Lemma of Zalcman
plays an important role in Dynamic System of one complex variable. Much attention
has been given to find an appropriate generalization of Zalcman’s Lemma to several
complex variables, and more generally to complex manifolds (see [1], [2], [11], [7],
[17] ). The case α = 0 is proved in [4]. The case −1 < α � 0 is proved in [5, Theorem
1.1]. The proof of Theorem 2 is elementary; it uses only Marty’s criterion.

The Marty criterion is one of the most widely used for determining the normality
of a family of holomorphic functions. Marty’s criterion is in terms of the spherical
derivative f � of f . There are also criteria where it suffices to have an upper bound for
(1+ | f (z)|2) f �(z) in terms of f (z).

THEOREM 3. (Schwick’s Criterion, see [6]) Let F be a family of holomorphic
functions on a domain Ω ⊂ Cn with the property that for each compact set K ⊂ Ω
there is a function hK : (0,∞) → (0,∞), which is bounded on some neighborhood of
each x0 ∈ (0,∞), such that

(1+ | f (z)|2) f �(z) � hK(| f (z)|)

for all f ∈ F and z ∈ K. Then F is normal in Ω.
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In combination with Nevanlinna theory on completely ramified values of an entire
(holomorphic in C ) function, Zalcman’s Lemma immediately shows that requires even
less knowledge of (1+ | f (z)|2) f �(z).

THEOREM 4. A family F of holomorphic functions on a domain Ω ⊂Cn is nor-
mal on Ω if and only if for each compact set K ⊂ Ω, there exists a set E = E(K) ⊂C
containing at least three distinct values and a finite constant M = M(K) > 0 for which

f �(z) � M, z ∈ K, f (z) ∈ E (1)

for all f ∈ F .

We note that an analogous result for normal meromorphic functions in the unit
disk was proved by Lappan in 1974 [12]; his proof is also in the spirit of Zalcman’s
principle.

The plan of this paper is as follows. In Section 2, we state a number of auxiliary
results and prove a key lemma needed to prove Theorem 2. In Section 3, we give the
proofs of Theorem 2 and Theorem 4.

2. Auxiliary results

In order to prove our theorems, we attend to a few details. Let g(λ ) be an entire
(holomorphic in C ) function, if the equation g(λ ) = a, a∈C, has no simple roots then
a called a totally ramified values.

Note that an omitted value trivially satisfies this definition, but that it will be useful
to distinguish between omitted values and non-omitted totally ramified values.

In a proof of Theorem 4 we make use the following theorem of R. Nevanlinna.

THEOREM 5. [15, Theorem 17.3.10., p. 274] Let g be an entire function. Then
g has at most two totally ramified (finite) values.

Let f be a holomorphic function on an open connected set Ω in Cn. Define the
value set by

Af (a) = {z ∈ Ω : f (z) = a} = f−1[{a}].

THEOREM 6. (Hurwitz’s theorem [13, Corollary p. 80]) Let Ω be an open con-
nected set in Cn and let { f j} be a sequence of holomorphic functions on Ω, converging
uniformly on compact sets to a nonconstant holomorphic function f . If A f j(a) = /0 for
all j then Af (a) = /0.

Let ζ ,v ∈Cn, v �= 0. The set

{ξ ∈Cn : ξ = ζ + λv,λ ∈C}
is called a complex line in Cn.

The restriction of an entire (holomorphic in Cn ) function g to a complex line
{ξ = ζ + λv,λ ∈C} clearly is an entire g(ζ + λ · v) of complex variable λ in C.
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Note that

Lz(log(1+ | f (z)|2),v) =
|(Df (z),v)|2
(1+ | f (z)|2)2

on Ω. Appealing to the Cauchy-Schwarz inequality it is easy to show that

(1+ | f (z)|2) f �(z) = |Df (z)|.

The key lemma needed to prove our main result, Theorem 2, is the following one.

LEMMA 1. Let f be a holomorphic function on the closed unit ball B(0,1), and
α be a real number with −1 < α < ∞. Suppose

max
|z|�1/ j

(1− j|z|)1+α(1+ | f (z)|2) f �(z)
1+(1− j|z|)2α| f (z)|2 > 1.

Then there exists a point ξ ∗, |ξ ∗| < 1/ j, and a real number ρ , 0 < ρ < 1, such that

max
|z|�1/ j

(1− j|z|)1+αρ1+α(1+ | f (z)|2) f �(z)
1+(1− j|z|)2αρ2α | f (z)|2

=
(1− j|ξ ∗|)1+α ρ1+α(1+ | f (ξ ∗)|2) f �(ξ ∗)

1+(1− j|ξ ∗|)2αρ2α | f (ξ ∗)|2 = 1.

Proof. Set

ϕ(ρ ,z) :=
(1− j|z|)1+αρ1+α(1+ | f (z)|2) f �(z)

1+(1− j|z|)2αρ2α | f (z)|2 .

We note that the denominator of the above fraction does not vanish on [0,1]×{z∈Cn :
|z| � 1/ j}. Since (1 + | f (z)|2) f �(z) is bounded continuous function on {|z| � 1/ j}
there exists a constant M < ∞ with the property that

ϕ(ρ ,z) � (1− j|z|)1+αρ1+αM (2)

for all (ρ ,z) ∈ [0,1]×{z ∈Cn : |z| � 1/ j}. It follows ϕ(ρ ,z) is continuous on [0,1]×
{z ∈Cn : |z| � 1/ j} and ϕ(0,z) ≡ 0 on {z ∈Cn : |z| � 1/ j}.

Suppose that ϕ(1,z∗1) := max|z|�1/ j ϕ(1,z)> 1. It is evident that |z∗1|< 1/ j. Hence
ϕ(0,z∗1) = 0 and ϕ(1,z∗1) > 1. By continuity of ϕ(ρ ,z) on [0,1]×{z∈Cn : |z|� 1/ j},
there exists ρ1, 0 < ρ1 < 1, such that ϕ(ρ1,z∗1) = 1.

Repeating this procedure we can find ρm, 0 < ρm < 1, and z∗m, |z∗m| < 1/ j, such
that

max
|z|�1/ j

ϕ(ρ1 . . .ρm,z) = ϕ(ρ1 . . .ρm,z∗m) > 1, ϕ(ρ1 . . .ρmρm+1,z
∗
m) = 1. (3)

The sequence {xm := ρ1 . . .ρm} is a bounded and decreasing sequence. Then the great-
est lower bound of the set {xm : m∈N}, say ρ , is the limit of {xm}. The sequence {z∗m}
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contains a subsequence, again denoted by {z∗m}, such that limm→∞ z∗m = ξ ∗. From (2)
follows that 0 < ρ < 1 and |ξ ∗| < 1/ j.

We claim that

max
|z|�1/ j

lim
m→∞

ϕ(ρ1 . . .ρm,z) = lim
m→∞

max
|z|�1/ j

ϕ(ρ1 . . .ρm,z). (4)

Since ϕ is continuous function on [0,1]×B(0,1/ j) by the Weierstrass theorem (see
[8, Theorem (Weierstrass) p. 565]) we can find |η | < 1/ j and |wm| < 1/ j such that

max
|z|�1/ j

lim
m→∞

ϕ(ρ1 . . .ρm,z) = max
|z|�1/ j

ϕ(ρ ,z) = ϕ(ρ ,η); (5)

ϕ(ρ1 . . .ρm,η) � max
|z|�1/ j

ϕ(ρ1 . . .ρm,z) = ϕ(ρ1 . . .ρm,wm), m = 1,2, . . . . (6)

By the Bolzano-Weierstrass theorem there is an infinite subsequence of {wm}, again
denoted by {wm}, and ς , |ς | � 1/ j, such that wm → ς as m → ∞. Because wm → ς
and ρ1 . . .ρm → ρ as m → ∞ and ϕ is continuous function on [0,1]×B(0,1/ j) from
(5) and (6) we see

ϕ(ρ ,η) � lim
m→∞

max
|z|�1/ j

ϕ(ρ1 . . .ρm,z) = ϕ(ρ ,ς)

� max
|z|�1/ j

ϕ(ρ ,z) = max
|z|�1/ j

lim
m→∞

ϕ(ρ1 . . .ρm,z) = ϕ(ρ ,η).

That is, the claim (4) is proved. Combining (4) and (5) we obtain

max
|z|�1/ j

ϕ(ρ ,z) = ϕ(ρ ,ξ ∗) = 1 (|ξ ∗| < 1/ j).

The proof of the lemma is complete. �

3. Proofs of main theorems

Proof of Theorem 2. “⇒” The proof is basically that was used by author in [5]
with minor modifications. To simplify matters we assume that z0 = 0 and all functions
under consideration are holomorphic on the closed unit ball B(0,1). By Marty’s cri-
terion (Theorem 1) F contains functions f j, j ∈ N, satisfying max|z|<1/(2 j) f �

j (z) >

21+|α | j3(1+|α |). Since 1− j|z| > 1/2 if |z| < 1/(2 j) there exists a ξ j with |ξ j| < 1/ j
such that

max
|z|�1/ j

(1− j|z|)1+|α | f �
j (z) = (1− j|ξ j|)1+|α | f �

j (ξ j)

� max
|z|�1/2 j

(1− j|z|)1+|α | f �
j (z) � j3(1+|α |).

The power function t2α ,t > 0, is continuous, monotone (increasing when α > 0, de-
creasing when α < 0), hence

(1− j|z|)2α(1+ | f (z)|2) � 1+(1− j|z|)2α| f (z)|2 (−1 < α � 0 arbitrary)
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and
1+(1− j|z|)2α | f (z)|2 � [1+ | f (z)|2] (0 < α < ∞ arbitrary)

we have

(1− j|ξ j|)1+α(1+ | f j(ξ j)|2) f �
j (ξ j)

1+(1− j|ξ j|)2α | f j(ξ j)|2 > (1− j|ξ j|)1+|α | f �
j (ξ j) > j3(1+|α |). (7)

Hence

max
|z|�1/ j

(1− j|z|)1+α(1+ | f j(z)|2) f �
j (z)

1+(1− j|z|)2α| f j(z)|2 > 1.

According to Lemma 1, there exists ξ ∗
j , |ξ ∗

j | < 1/ j, and ρ j, 0 < ρ j < 1, such that

max
|z|�1/ j

(1− j|z|)1+αρ1+α
j (1+ | f j(z)|2) f �

j (z)

1+(1− j|z|)2αρ2α
j | f j(z)|2

=
(1− j|ξ ∗

j |)1+α ρ1+α
j (1+ | f j(ξ ∗

j )|2) f �
j (ξ

∗
j )

1+(1− j|ξ ∗
j |)2α ρ2α

j | f j(ξ ∗
j )|2

= 1.

Therefore inequality (7) shows that

1 =
(1− j|ξ ∗

j |)1+α ρ1+α
j (1+ | f j(ξ ∗

j )|2) f �
j (ξ ∗

j )

1+(1− j|ξ ∗
j |)2α ρ2α

j | f j(ξ ∗
j )|2

�
(1− j|ξ j|)1+α ρ1+α

j (1+ | f j(ξ j)|2) f �
j (ξ j)

1+(1− j|ξ j|)2α ρ2α
j | f j(ξ j)|2

� (1− j|ξ j|)1+|α |ρ1+|α |
j f �

j (ξ j) � ρ1+|α |
j j3(1+|α |) (|ξ j| < 1/ j).

It follows (1
j

)3
� ρ j → 0. (8)

Put
r j = (1− j|ξ ∗

j |)ρ j → 0.

Set
h j(z) = rα

j f j(ξ ∗
j + r jz).

We claim that appropriately chosen subsequences zk = ξ jk , ρk = r jk , and gk = h jk will
do. First of all, h j(z) is defined on |z| < 1

jρ j
, hence on |z| < j, since

|ξ ∗
j + r jz| � |ξ ∗

j |+ r j|z| < |ξ ∗
j |+ r j

1− j|ξ ∗
j |

jr j
=

1
j
.

By the invariance of the Levi form under biholomorphic mappings, we have

Lz(log(1+ |h j|2),v) = Lξ ∗
j +r jz(log(1+ |h j|2),r jv)
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and hence
h�

j(z) = r jh
�
j(ξ

∗
j + r jz).

Since r j = (1− j|ξ ∗
j |)ρ j a simple computations shows that

h�
j(z) =

r jrα
j (1+ | f j(ξ ∗

j + r jz)|2) f �
j (ξ

∗
j + r jz)

1+ r2α
j | f j(ξ ∗

j + r jz)|2

=
(1− j|ξ ∗

j |)1+α ρ1+α
j (1+ | f j(ξ ∗

j + r jz)|2) f �
j (ξ ∗

j + r jz)

1+[(1− j|ξ ∗
j |)/(1− j|ξ ∗

j + r jz|)]2α (1− j|ξ ∗
j + r jz|)2α ρ2α

j | f j(ξ ∗
j + r jz)|2

=
(1− j|ξ ∗

j |)1+α

(1− j|ξ ∗
j +r jz|)1+α · (1− j|ξ ∗

j +r jz|)1+α ρ1+α
j (1+| f j(ξ ∗

j +r jz)|2) f �
j (ξ

∗
j +r jz)[

1+
(

1− j|ξ ∗
j |

1− j|ξ ∗
j +r jz|

)2α · (1− j|ξ ∗
j +r jz|)2α ρ2α

j | f j(ξ ∗
j +r jz)|2

] .

Bearing in mind Lemma 1 it is easy to see that h�
j(0) = 1. Since

1
1+1/ j

�
1− j|ξ ∗

j |
1− j|ξ ∗

j + r jz| � 1
1−1/ j

we have

1+
( 1− j|ξ ∗

j |
1− j|ξ ∗

j + r jz|
)2α · (1− j|ξ ∗

j + r jz|)2α ρ2α
j | f j(ξ ∗

j + r jz)|2

�
( 1

1−1/ j

)2α ·
[
1+(1− j|ξ ∗

j + r jz|)2α ρ2α
j | f j(ξ ∗

j + r jz)|2
]

(−1 < α � 0 arbitrary)

and

1+
( 1− j|ξ ∗

j |
1− j|ξ ∗

j + r jz|
)2α · (1− j|ξ ∗

j + r jz|)2α ρ2α
j | f j(ξ ∗

j + r jz)|2

�
( 1

1+1/ j

)2α ·
[
1+(1− j|ξ ∗

j + r jz|)2α ρ2α
j | f j(ξ ∗

j + r jz)|2
]

(0 < α < ∞ arbitrary).

From the above inequalities and Lemma 1 we infer that1

h�
j(z) �

(
1+

sgn(α)
j

)2α ·
( 1−|ξ ∗

j |
1− j|ξ ∗

j + r jz|
)1+α

· (1− j|ξ ∗
j + r jz|)1+α ρ1+α

j (1+ | f j(ξ ∗
j + r jz)|2) f �

j (ξ
∗
j + r jz)

1+(1− j|ξ ∗
j + r jz|)2α ρ2α

j | f j(ξ ∗
j + r jz)|2

�
(
1+

sgn(α)
j

)2α ·
( 1− j|ξ ∗

j |
1− j|ξ ∗

j + r jz|
)1+α ·1

�
(
1+

sgn(α)
j

)2α ·
( 1

1−1/ j

)1+α

1sgn denotes the signum function (i.e., sgn(0) = 0, sgn(α) = 1 if α > 0 and −1 if α < 0).
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for all |z|< j. For every m∈ N the sequence {h j} j>m is normal in B(0,m) by Marty’s
criterion (Theorem 1). The well-known Cantor diagonal process yields a subsequence
{gk = h jk} which converges uniformly on every ball B(0,R). The limit function g

satisfies g�(z) � limsup j→∞ h�
j(z) � 1 = g�(0). Clearly, g is non-constant because

g�(0) �= 0.
“⇐” The reverse implication is essentially a backwards glance at the above, but

for future considerations we go in some details. Take α = 0. Suppose that there exist
sequences f j ∈ F , z j → 0, ρ j → 0, such that the sequence

g j(z) = f j(z j + ρ jz)

converges locally uniformly in Cn to a non-constant entire function g satisfying g�(z)�
g�(0) = 1, but F is normal. By Marty’s criterion (Theorem 1) there exists a constant
M > 0 such that

max
|z|�1/2

f �
j (z) < M

for all j. Since z j → 0, ρ j → 0, then for |z| < 1/2 and j sufficiently large, we have

|z j + ρ jz| � |z j|+ ρ j|z| � |z j|+ ρ j/2 < 1/2.

Thus
g�

j(z) = f �
j (z j + ρ jz)ρ j � Mρ j → 0 (|z| < 1/2).

This implies that g�(0) = 0, which is a contradiction to g�(0) = 1. �

Proof of Corollary 1. Since a family {1/ f , f ∈ F} conforms to the hypotheses
of Theorem 1 the earlier argument shows that there exist sequences 1/ f j, z j → z0,
r j → 0, such that the sequence

g j(z) :=
rα

j

f j(z j + r jz)
(−1 < α < ∞ arbitrary)

converges locally uniformly in Cn to a non-constant entire function g satisfying g�(z)�
g�(0) = 1.

By Hurwitz’s theorem either g≡ 0 or g never vanishes. Since g�(0) = 1 it is easy
to see that g never vanishes then 1/g is entire function in Cn. It follows r−α

j f j → 1/g
uniformly in Cn. Since Levi form vanishes for any pluriharmonic function,

Lz(log(1+ |1/g|2),v) = Lz(log(1+ |g|2),v)−2Lz(log |g|,v) = Lz(log(1+ |g|2),v).
Therefore,

g�(z) = (1/g)�(z).

For every z ∈Cn we have g�(z) � g�(0) = 1, hence

(1/g)�(z) � (1/g)�(0) = 1.

The case −∞ < α < 1 is proved. This completes the proof of the theorem. �
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Proof of Theorem 4. Marty’s Theorem shows that (1) is necessary with E = C.

To prove sufficiency, suppose that (1) holds but F is not normal at point z0 ∈ Ω.
Since all features of the theorem are local, and translation and scale-change invariant,
it suffices to consider the case when z0 = 0 and Ω = B(0,1). If F is not normal at
0, it follows from Zalcman’s lemma [4, Theorem 3.1] that there exist f j ∈ F , z j → 0,
ρ j → 0, such that the sequence

g j(z) := f j(z j + ρ jz)

converges uniformly on compact subsets of Cn to a non-constant entire function g
satisfying g�(z) � g�(0) = 1.

Let K ⊂ B(0,1) be a closed ball in Cn about 0. Let E(K) ⊃ {a1,a2,a3}, where
a1,a2,a3 are distinct values in C.

Suppose that ζ l ∈ Ag(al). Choose R > 0 such that ζ l ∈ SR = {ξ ∈Cn : |ξ |< R}.
Since normality is a local property, the restriction of a family {g j − al} to any open
ball sn(ζ l) := {ξ ∈Cn : |ξ −ζ l|< 1/n}⊂ SR is a normal family. By Hurwitz’ theorem
to Agj (al)∩ sn(ζ l) �= /0 for j sufficiently large since g is not a constant function. It is
routine to show that there exist a sequence {pl

j} ⊂ SK , such that g j(pl
j) → al.

Since ρ j → 0 we see that z j + ρ j pl
j ∈ K for k sufficiently large. Now by (1),

f �
j (z j + ρ j pl

j) � M for k sufficiently large, so that

g�(ζ l) = lim
k→∞

g�
j(p

l
j) = lim

k→∞
ρ j f

�
j (z j + ρ j p

l
j) � lim

k→∞
ρ jM = 0.

Thus g�(ζ l) = 0.

Since

g�(ζ l) = max
{v∈Cn:|v|=1}

|dg(ζ l + λ · v)|λ=0/dλ |2
1+ |g(ζ l)|2 = 0

it follows al is a finite totally ramifies value for g(ζ l +λ ·v) ( v ∈Cn be arbitrary (but
fixed) and |v| = 1).

If {ξ ∈Cn : ξ = ζ l + λ · v}∩Ag(ak)  ζ k then ζ k = ζ l + λk · v for some λk ∈C.
Arguing as above we have

g�(ζ k) = g�(ζ l + λk · v) = 0.

Hence ak is a totally ramified value for g(ζ l + λ · v).
If {ξ ∈Cn : ξ = ζ l +λ ·v}∩Ag(ak) = /0 then ak is omitted value for g(ζ l +λ ·v)

and hence a totally ramified (finite) value of the function g(ζ l + λ · v).
Thus a1,a2,a3 are three totally ramified (finite) values for the entire function

g
(

ζ l + λ · v
)
. By Nevanlinna’s theorem g

(
ζ l + λ · v

)
is constant. Since v was ar-

bitrary the function g is constant, a contradiction. �
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