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WIJSMAN LACUNARY INVARIANT STATISTICAL CONVERGENCE

FOR TRIPLE SEQUENCES VIA ORLICZ FUNCTION

MUALLA BIRGÜL HUBAN ∗ AND MEHMET GÜRDAL

Abstract. In this paper, we generalized the Wijsman lacunary invariant statistical convergence
of closed sets in metric space by introducing the Wijsman lacunary invariant statistical φ̃ -
convergence for the sets of triple sequences. We introduce the concepts of Wijsman invari-
ant φ̃ -convergence, Wijsman invariant statistical φ̃ -convergence, Wijsman lacunary invariant
φ̃ -convergence, Wijsman lacunary invariant statistical φ̃ -convergence for the sets of triple se-
quences. In addition, we investigate existence of some relations among these new notations for
the sets of triple sequences.

1. Introduction and background

The idea of statistical convergence was first introduced by Fast [6] and Steinhaus
[28] independently in the same year 1951 and since then several generalizations and
applications of this concept have been investigated by various authors, namely Fridy
[7], Gürdal and Huban [10], Gürdal and Pehlivan [11, 12], Nabiev et al. [17], and many
others (see [4, 8, 24]).

Statistical convergence depends on the natural density of subsets of the set N of
positive integers. The natural density δ (A) of a subset A of N is defined by

δ (A) = lim
n→∞

n−1 |{k � n : k ∈ A}|

where |{k � n : k ∈ A}| denotes the number of elements of A not exceeding n. A se-
quence (xk) ⊂ R is said to be statistically convergent to � ∈ R if, for each ε > 0, the
set {k ∈ N : |xk − �|� ε} has the zero natural density.

The concept of convergence of sequences of points has been extended by sev-
eral authors [19, 20, 29, 30] to convergence of sequences of sets. One of such ex-
tensions considered in this paper is the concept of Wijsman convergence. Nuray and
Rhoades [18] extended the notion of Wijsman convergence of sequences of sets to that
of Wijsman statistical convergence and introduced the notion of Wijsman strong Cesaro
summability of sequences of sets and discussed its relations with Wijsman statistical
convergence.

In this study, we introduce the concepts of Wijsman invariant φ̃ -convergence, Wi-
jsman invariant statistical φ̃ -convergence,Wijsman lacunary invariant φ̃ -convergence,
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Wijsman lacunary invariant statistical φ̃ -convergence for the sets of triple sequences.
Also, we investigate existence of some relations among these new φ̃ -convergence con-
cepts for the sets of triple sequences.

We now recall the following basic concepts from [2, 15, 19, 26, 27] which will be
needed throughout the paper.

Let σ be a mapping of the positive integers into themselves. A continuous linear
functional ϕ on �∞, the space of real bounded sequences, is said to be an invariant
mean or a σ -mean if it satisfies the following conditions:

(i) ϕ(x) � 0, for the sequence x = (xn) with xn � 0 for all n ∈ N ,
(ii) ϕ (e) = 1, where e = (1,1,1, . . .) and
(iii) ϕ

(
xσ(n)

)
= ϕ (xn) for all x ∈ �∞.

The mapping σ is assumed to be one-to-one and such that σm (n) �= n for all
n,m ∈ Z+ , where σm (n) denotes the m th iterate of the mapping σ at n. Thus, ϕ
extends the limit functional on c , the space of convergent sequences, in the sense that
ϕ (xn) = limxn for all x ∈ c . In the case σ is translation mappings σ (n) = n+1, the
σ -mean is often called a Banach limit. The space Vσ of the bounded sequences whose
invariant means are equal may be defined, as follows;

Vσ =

{
x ∈ �∞ : lim

m→∞

1
m

m

∑
k=1

xσ k(n) = L, uniformly in m

}
.

In [27], Schaefer proved that a bounded sequence x = (xn) of real numbers is σ -
convergent to L if and only if

lim
p→∞

1
p

p

∑
k=1

xσ k(m) = L,

uniformly in m.

Let (X ,ρ) be a metric space. For any point x ∈ X and any non-empty subset A of
X , the distance d(x,A) from x to A is defined by

d (x,A) = inf
a∈A

ρ (x,a) .

DEFINITION 1. Let (X ,ρ) be a metric space. For any non-empty closed subsets
A; Ak ⊆ X ; we say that the sequence (Ak) is Wijsman convergent to A if

lim
k→∞

d (x,Ak) = d (x,A)

We now recall that the concept of statistical convergence for triple sequences was
presented by Şahiner, Gürdal and Düden [23] as follows:

A function x : N×N×N → R (or C) is called a real (complex) triple sequence.
A triple sequence

(
x jkl

)
is said to be convergent to L in Pringsheim’s sense if for every

ε > 0, there exists n0(ε) ∈ N such that |x jkl −L| < ε whenever j,k, l � n0.
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DEFINITION 2. A subset K of N×N×N is said to have natural density δ3(K) if

δ3(K) = P− lim
n,k,l→∞

|Knkl |
nkl

exists, where the vertical bars denote the number of (n,k, l) in K such that p� n, q� k,
r � l . Then, a real triple sequence x = (xpqr) is said to be statistically convergent to L
in Pringsheim’s sense if for every ε > 0,

δ3
({

(n,k, l) ∈ N×N×N : p � n,q � k,r � l,
∣∣xpqr −L

∣∣ � ε
})

= 0.

Recently, Mursaleen and Edely [16] presented the idea of statistical convergence
for multiple sequences, and there are several papers dealing with double and triple
statistical and ideal convergence (see literature [1, 5, 9, 13, 21]). Also, the readers
should refer to the monographs [3] and [14] for the background on the sequence spaces
and related topics.

In several literary works, statistical convergence of any real sequence is identified
relatively to absolute value. While we have known that the absolute value of real num-
bers is special of an Orlicz function [22], that is, a function φ̃ : R → R in such a way
that it is even, non-decreasing on R+ , continuous on R , and satisfying

φ̃(x) = 0 if and only if x = 0 and φ̃(x) → ∞ as x → ∞.

Further, an Orlicz function φ̃ : R →R is said to satisfy the �2 condition, if there exists
an positive real number M such that φ̃ (2x) � M.φ̃ (x) for every x ∈ R+.

DEFINITION 3. ([25]) Let φ̃ : R → R be an Orlicz function. A sequence x = (xn)
is said to be statistically φ̃ -convergent to L if for each ε > 0,

lim
n

1
n

∣∣∣{k � n : φ̃ (xk −L) � ε
}∣∣∣ = 0.

Furthermore, a new type of sequence called triple lacunary sequence was intro-
duced in Esi and Savaş [5]. The triple sequence θ3 = θp,q,r =

{
( jp,kq, lr)

}
is called

triple lacunary sequence if there exist three increasing sequences of integers such that

j0 = 0, hp = jp − jp−1 → ∞ as p → ∞,

k0 = 0, hq = kq− kq−1 → ∞ as q → ∞,

and
l0 = 0, hr = lr − lr−1 → ∞ as r → ∞.

Let kp,q,r = jpkqlr, hp,q,r = hphqhr and θp,q,r is determined by

Ip,q,r =
{
( j,k, l) : jp−1 < j � jp,kq−1 < k � kq and lr−1 < l � lr

}
,

sp =
jp

jp−1
,sq =

kq

kq−1
, sr =

lr
lr−1

and sp,q,r = spsqsr.

Let D ⊂ N×N×N. The number

δ θ3
3 (D) = lim

p,q,r

1
hp,q,r

∣∣{( j,k, l) ∈ Ip,q,r : ( j,k, l) ∈ D
}∣∣

is said to be the θp,q,r -density of D, provided the limit exists.
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2. Main results

Following the above definitions and results, we aim in this section to introduce
some new notions of Wijsman invariant statistical convergence with the use of Orlicz
function, lacunary and triple sequences and obtain some analogous results from the new
definitions point of views.

DEFINITION 4. A triple sequence x =
(
x jkl

)
of real numbers is said to be σ3 -

convergence to L if

lim
p,q,r→∞

1
pqr

p

∑
j=1

q

∑
k=1

r

∑
l=1

xσ j(m),σ k(n),σ l(o) = L,

uniformly in m,n and o.

DEFINITION 5. A triple sequence
{
Ajkl

}
is Wijsman invariant convergent to A if

for each x ∈ X

lim
p,q,r→∞

1
pqr

p,q,r

∑
j,k,l=1,1,1

d
(
x,Aσ j(m),σ k(n),σ l(o)

)
= d (x,A) ,

uniformly in m,n and o , and is written Ajkl → A(W3Vσ ) .

DEFINITION 6. Let φ̃ : R → R be an Orlicz function. A triple sequences
{
Ajkl

}
is Wijsman strongly invariant φ̃ -convergent to A if for each x ∈ X

lim
p,q,r→∞

1
pqr

p,q,r

∑
j,k,l=1,1,1

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
= 0,

uniformly in m,n and o , and is written Ajkl → A
(
W φ̃

3 Vσ

)
.

If double sequence
{
Ajk

}
is taken instead of a triple sequence

{
Ajkl

}
and φ̃ (x) =

|x| , then the concept Wijsman strongly invariant φ̃ -convergence is reduced to Wijsman
strongly invariant convergence.

DEFINITION 7. Let φ̃ : R → R be an Orlicz function. A triple sequence
{
Ajkl

}
is Wijsman invariant statistically φ̃ -convergent to A if for every ε > 0 and for each
x ∈ X

lim
p,q,r→∞

1
pqr

∣∣∣{ j � p,k � q, l � r : φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ = 0

or

δ3

({
(p,q,r) ∈ N×N×N : φ̃

(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

})
= 0

uniformly in m,n and o , and is written Ajkl → A
(
W φ̃

3 Sσ

)
.
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DEFINITION 8. θ3 = θr,s,t be a lacunary triple sequence. A triple sequence
{
Ajkl

}
is Wijsman lacunary invariant convergent to A if for each x ∈ X

lim
p,q,r→∞

1
hp,q,r

∑
j,k,l∈Ip,q,r

d
(
x,Aσ j(m),σ k(n),σ l(o)

)
= d (x,A)

uniformly in m,n and o , and is written Ajkl → A
(
W3V θ

σ
)
.

DEFINITION 9. Let φ̃ : R→R be an Orlicz function and θ3 = θr,s,t be a lacunary
triple sequence. A triple sequence

{
Ajkl

}
is Wijsman strongly lacunary invariant φ̃ -

convergence to A if for each x ∈ X

lim
p,q,r→∞

1
hp,q,r

∑
j,k,l∈Ip,q,r

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
= 0,

uniformly in m,n and o , and is written Ajkl → A
(
W φ̃

3 V θ
σ

)
.

DEFINITION 10. Let φ̃ : R → R be an Orlicz function and θ3 = θr,s,t be a lacu-
nary triple sequence. A triple sequence

{
Ajkl

}
is Wijsman lacunary invariant statisti-

cally φ̃ -convergent to A if for every ε > 0 and for each x ∈ X

lim
p,q,r→∞

1
hp,q,r

∣∣∣{( j,k, l) ∈ Ip,q,r : φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ = 0

or
δθ3

({
( j,k, l) ∈ Ip,q,r : φ̃

(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

})
= 0

uniformly in m,n and o , and is written Ajkl → A
(
W φ̃

3 Sθ3
σ

)
.

DEFINITION 11. Let φ̃ : R → R be an Orlicz function. A triple sequence
{
Ajkl

}
is said to be bounded if there exists M > 0 such that φ̃

(
Ajkl

)
� M for all j,k, l ∈ N.

We denote the space of all bounded triple sequences by �3
∞ .

THEOREM 1. Let φ̃ : R → R be an Orlicz function and θ3 = θr,s,t = {( jr,ks, lt)}
be a lacunary triple sequence. Then, the following statements hold:

(i) If
{
Ajkl

}
is Wijsman strongly lacunary invariant φ̃ -convergent to A, then{

Ajkl
}

is Wijsman lacunary invariant statistically φ̃ -convergent to A.

(ii) If
(
Ajkl

) ∈ �3
∞ and

{
Ajkl

}
is Wijsman lacunary invariant statistically φ̃ -

convergent to A, then
{
Ajkl

}
is Wijsman strongly lacunary invariant φ̃ -convergent

to A.
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Proof. (i) Ajkl → A
(
W φ̃

3 V θ
σ

)
. For every ε > 0 and for each x ∈ X , then we have

∑
( j,k,l)∈Ip,q,r

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ∑

j,k,l∈Ip,q,r

φ̃
(
d
(
x,Aσ j (m),σk (n),σ l (o)

)
−d(x,A)

)
�ε

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)

� ε.
∣∣∣{( j,k, l) ∈ Ip,q,r : φ̃

(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ .
This shows that Ajkl → A

(
W φ̃

3 Sθ3
σ

)
.

(ii) Suppose that
{
Ajkl

}
belongs to the space �3

∞ and Ajkl → A
(
W φ̃

3 Sθ3
σ

)
. Then

we can assume that

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� M

for each x ∈ X and all j,k and l. Given every ε > 0 and for each x ∈ X , we have

1
hp,q,r

∑
( j,k,l)∈Ip,q,r

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
=

1
hp,q,r

∑
( j,k,l)∈Ip,q,r

φ̃
(
d
(
x,Aσ j (m),σk(n),σ l (o)

)
−d(x,A)

)
�ε

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)

+
1

hp,q,r
∑

( j,k,l)∈Ip,q,r

φ̃
(
d
(
x,Aσ j (m),σk(n),σ l (o)

)
−d(x,A)

)
<ε

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)

� M
hp,q,r

∣∣∣{( j,k, l) ∈ Ip,q,r : φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣+ ε.

This shows that Ajkl → A
(
W φ̃

3 V θ
σ

)
. �

THEOREM 2. Let φ̃ : R → R is an Orlicz function. Suppose for given δ > 0 and
every ε > 0, there exists

1
pqr

∣∣∣{0 � j � p−1,0 � k � q−1,0 � l � r−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ < δ

for all p � p0, q � q0, r � r0, m � m0, n � n0, o � o0, then
{
Ajkl

}
is Wijsman

invariant statistically φ̃ -convergent to A.
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Proof. Let δ > 0. For every ε > 0, we choose p′0,q
′
0,r

′
0,m0,n0 and o0 such that

for all x ∈ X ,

1
pqr

∣∣∣{0 � j � p−1,0 � k � q−1,0 � l � r−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ <
δ
2

(1)

for all p � p′0, q � q′0, r � r′0, m � m0, n � n0, o � o0. It is enough to prove that
there exists p′′0 , q′′0 , r′′0 such that for each x ∈ X ,

1
pqr

∣∣∣{0 � j � p−1,0 � k � q−1,0 � l � r−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ < δ (2)

for p � p′′0 , q > q′′0, r > r′′0 , 0 � m � m0, 0 � n � n0 and 0 � o � o0.
Since taking p0 = max

{
p′0, p

′′
0

}
, q0 = max

{
q′0,q

′′
0

}
and r0 = max

{
r′0,r

′′
0

}
, (2)

holds for each x ∈ X , p � p0, q � q0, r � r0 and for all m,n and o, which gives the
result. Once m0,n0 and o0 have been chosen 0 � m � m0, 0 � n � n0, 0 � o � o0,

m0,n0 and o0 fixed. So, suppose that x
SL

θ3
(φ)

∼ y , and let

F =
∣∣∣{0 � j � m0 −1,0 � k � n0−1,0 � l � o0−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣.
Now taking 0 � m � m0, 0 � n � n0, 0 � o � o0 and p � m0, q � n0, r � o0, by (1)
for each x ∈ X , we get

1
pqr

∣∣∣{0 � j � p−1,0 � k � q−1,0 � l � r−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
� 1

pqr

∣∣∣{0 � j � m0 −1,0 � k � n0−1,0 � l � o0−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
+

1
pqr

∣∣∣{m0 � j � p−1,n0 � k � q−1,o0 � l � r−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
� F

pqr
+

δ
2

and taking p,q,r sufficiently large, we can write

F
pqr

+
δ
2

< δ
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which gives (2) and thus, the result follows. �

THEOREM 3. Let φ̃ : R → R be an Orlicz function and θ3 = θr,s,t = {( jr,ks, lt)}
be a lacunary triple sequence. Then

{
Ajkl

}
is Wijsman lacunary invariant statistically

φ̃ -convergent to A iff
{
Ajkl

}
is Wijsman invariant statistically φ̃ -convergent to A.

Proof. Let Ajkl → A
(
W φ̃

3 Sθ3
σ

)
. Then, for given δ > 0 there exists p0,q0,r0 such

that for all ε > 0 and for each x ∈ X ,

1
hp,q,r

∣∣∣{0 � j � hp−1,0 � k � hq−1,0 � l � hr−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ < δ

for p � p0, q � q0, r � r0 and m = jp−1 + 1+ v, v � 0, n = kq−1 + 1+w, w � 0,
o = lr−1 +1+z, z � 0. Let s � hp, t � hq and u � hr. Write s = αhp +e, t = βhq + f
and u = γhr +g where 0 � e � hp, 0 � f � hq and 0 � g � hr, α,β and γ are integers.
Since s � hp, t � hq and u � hr, we can write

1
stu

∣∣∣{0 � j � s−1,0 � k � t−1,0 � l � u−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
� 1

stu

∣∣∣{0 � j � (α +1)hp−1,0 � k � (β +1)hq−1,0 � l � (γ +1)hr −1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
=

1
stu

α

∑
f=0

β

∑
g=0

γ

∑
h=0

∣∣∣{ehp � j � (e+1)hp−1, f hq � k � ( f +1)hq−1,

ghr � l � (g+1)hr −1 : φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣
� 1

stu
(α +1)(β +1)(γ +1)hphqhrδ

and since for 1
mαhp � 1, 1

m βhq � 1 and 1
mγhr � 1, we have

1
stu

∣∣∣{0 � j � s−1,0 � k � t−1,0 � l � u−1 :

φ̃
(
d

(
x,Aσ j(m),σ k(n),σ l(o)

)
−d (x,A)

)
� ε

}∣∣∣ � 8.δ .

Thus , by Theorem 2, W φ̃
3 Sθ3

σ ⊂ W φ̃
3 Sσ . It is easy to see that W φ̃

3 Sσ ⊂ W φ̃
3 Sθ3

σ . This
completes the proof. �

From Theorem 3, we have
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THEOREM 4. Let φ̃ : R → R be an Orlicz function and θ3 = θr,s,t = {( jr,ks, lt)}
be a lacunary triple sequence. Then

{
Ajkl

}
is Wijsman lacunary invariant convergent

to A iff
{
Ajkl

}
is Wijsman strongly invariant φ̃ -convergent to A.

When (σ (m) ,σ (n) ,σ (o)) = (m+1,n+1,o+1), from Definitions 5-10, we
have the definitions of almost Wijsman, almost convergence, Wijsman strongly almost
φ̃ -convergence, Wijsman almost statistical φ̃ -convergence, Wijsman lacunary almost
convergence, Wijsman strongly lacunary almost φ̃ -convergence, Wijsman lacunary al-
most statistical φ̃ -convergence for the sets of triple sequences.

So, similar inclusions to Theorems 1-4 hold between Wijsman strongly lacu-
nary almost φ̃ -convergent triple set sequences, Wijsman lacunary almost statistical φ̃ -
convergent triple set sequences, Wijsman almost statistical φ̃ -convergent triple set se-
quences, Wijsman lacunary almost convergent triple set sequences and Wijsman strongly
almost φ̃ -convergent triple set sequences.
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[17] A. A. NABIEV, E. SAVAŞ AND M. GÜRDAL, Statistically localized sequences in metric spaces, J.
Appl. Anal. Comput. 9 2 (2019) 739–746.
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[26] E. SAVAŞ AND F. NURAY, On σ -statistically convergence and lacunary σ -statistically convergence,

Math. Slovaca, 43 (3) (1993), 309–315.
[27] P. SCHAEFER, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1) (1972), 104–110.
[28] H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2

(1951), 73–74.
[29] U. ULUSU AND F. NURAY, I -lacunary statistical convergence of sequences of sets, Progress in

Applied Mathematics, 4 (2) (2012), 99–109.
[30] R. A. WIJSMAN, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math.

Soc., 70 (1) (1964), 186–188.

(Received February 6, 2021) Mualla Birgül Huban
Isparta University of Applied Sciences

Isparta, Turkey
e-mail: muallahuban@isparta.edu.tr

Mehmet Gürdal
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