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A SERIES REPRESENTATION FOR RIEMANN’S ZETA FUNCTION

AND SOME INTERESTING IDENTITIES THAT FOLLOW

MICHAEL MILGRAM

Abstract. Using Cauchy’s Integral Theorem as a basis, what may be a new series representation
for Dirichlet’s function η(s) , and hence Riemann’s function ζ (s) , is obtained in terms of the
Exponential Integral function Es(iκ) of complex argument. From this basis, infinite sums are
evaluated, unusual integrals are reduced to known functions and interesting identities are un-
earthed. The incomplete functions ζ±(s) and η±(s) are defined and shown to be intimately
related to some of these interesting integrals. An identity relating Euler, Bernouli and Harmonic
numbers is developed. It is demonstrated that a known simple integral with complex endpoints
can be utilized to evaluate a large number of different integrals, by choosing varying paths be-
tween the endpoints.
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