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QUASI–INVARIANT CONVERGENCE FOR DOUBLE SEQUENCE

ALAUDDIN DAFADAR ∗ AND D. K. GANGULY

Abstract. In this paper we introduce the concept of quasi-invariant convergence and quasi-
invariant statistical convergence of double sequence in a normed space and we shall present
a characterization of a bounded sequence to be quasi-invariant convergent.

1. Introduction

The concept of σ -convergent was first introduced by Raimi [18]. There is an-
other notion of convergence called statistical convergence which was first introduced
by H. Fast [11] and independently by Schoenberg [12] and since then several general-
ization of this notion was investigated by several authors ([3], [5], [6], [10], [19]).

Recently Savas and Nurry ([7]) introduced the concept of σ -statistical conver-
gence for real or complex sequences. Many generalization results had been done by
several authors ([1], [4], [15], [16], [17] etc.) for single and double sequence.

Motivated by their works we would like to extend the idea of σ -convergent and
σ -statistical convergence of single sequence to double sequence of real or complex
numbers in a norm linear spaces.

First we introduce the notion of σ -convergent and σ -statistical convergence from
the article of E. Savas and F. Nuray ([7], [9]) for single sequence.

Let N be the set of all positive integers. Let us consider a injection map

σ : N −→ N by σ i(m) �= m, ∀i ∈ N

and
σ i(m) = σ(σ i−1(m)), ∀m ∈ N, i = 1,2,3, . . .

Let Ω be a real normed space. A continuous linear functional ζ on the space l∞
of all bounded sequences in Ω is said to be an invariant mean or σ -limit if

(i) ζ (x) � 0 for the sequence x = {xn} ∈ Ω with xn � 0 ∀n
(ii) ζ (1,1,1,1, . . .) = 1
(iii) ζ (x) = ζ (xσ(n)) for all bounded sequence x .

DEFINITION 1. A sequence x = {xn} ∈ Ω is said to be σ -convergent to the num-
ber L if all its σ -limits coincide with L , i.e., ζ (x) = L ∀ζ ∈ l∞ .
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DEFINITION 2. A bounded sequence x = {xn} ∈ Ω is said to be invariant conver-
gent to L ∈ Ω if

lim
p−→∞

‖ 1
p

p−1

∑
i=0

xσ i(k)−L ‖= 0.

We denote by Vσ the set of all bounded sequences whose invariant means are
equal. The function σ is a one-to-one map from N to N and then σ i(n) �= n for all i ,
n ∈ N , where σ i(n) = σ(σ i−1(n)) , i = 1,2,3, . . . .

When σ(n) = n+1, i.e, if σ is a translation, then the σ -limit is called a Banach-
limit ([1]) and σ -convergent is reduced to almost convergent ([13], [14]). It is well-
known that c ⊂ Vσ ⊂ l∞ where c is the space of all convergent sequences, l∞ the
space of all bounded sequences in a real normed space and Vσ is the set of all almost
convergent sequences.

DEFINITION 3. A sequence x = (xi) ∈ Ω is said to be statistically convergent to
s ∈ Ω if for each ε > 0,

lim
p−→∞

1
p
|{i � p : ‖xi− s‖ � ε}| = 0,

where the vertical bars |.| denotes the cardinality of the enclosed set.

Savas and Nuray ([7]) introduced the notion of σ -statistical convergence for real
and complex single sequences as follows:

DEFINITION 4. A sequence (xi) is said to be invariant or σ -statistically conver-
gent to a real or complex number s if for each ε > 0

lim
m−→∞

1
m

| {0 � i � m :| xσ i(k) − s |� ε} |= 0,

uniformly in k .

It is denoted by Sσ − limx = L or xk → L(Sσ ) .
This definition was generalized by Nuray ([9]) for sequences in real normed space

Ω as follows:

DEFINITION 5. A sequence x = (xi) ∈ Ω is said to be invariant or σ - statistically
convergent s ∈ Ω if for each ε > 0

lim
m−→∞

1
m

| {i � m :‖ xσ i(k) − s ‖� ε} |= 0

uniformly in k .

Our intention is to generalize these concepts for double sequence in real normed
space. First we give some definitions for pursuing our work. We present some re-
sults on quasi-invariant convergent and quasi-invariant statistical convergent for double
sequence in real normed space Ω .
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2. Definitions and notations

Let us now define σ -convergent and σ -statistical convergence for double se-
quence in a real normed space Ω as follows:

DEFINITION 6. A double sequence x = (xi j) of real numbers is said to be σ -
convergent or invariant convergent to a number s if,

lim
m,n−→∞

1
mn

m

∑
i=0

n

∑
j=0

xσ i(k)σ j(l) = s

uniformly in k , l (= 1,2,3, . . .) .
In this case we write σ2 − limx = s .

DEFINITION 7. A double sequence x = (xi j) in real normed space Ω is said to be
σ -statistical convergent to a number s if for each ε > 0,

lim
m,n−→∞

1
mn

| {(i � m, j � n : ‖xσ i(k)σ j(l) − s‖ � ε} |= 0

uniformly in k , l (= 1,2,3, . . .) .

Let ld∞ be the set of all bounded double sequences in a real normed space Ω .
We define the function f on ld∞ by

f (x) ≡ f (xi j) = limp,q−→∞

{
supm,n

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq) ‖
}

∀x = (xi j) ∈ ld∞.

The function f is clearly a real valued function and satisfies the following properties:
(i) f (x) � 0
(ii) f (αx) = |α| f (x) , ∀ α ∈ R

(iii) f (x+ y) � f (x)+ f (y) , x,y ∈ ld∞ .
Therefore f is a symmetric convex functional on the space ld∞ . According to the

corollary of Hahn-Banach theorem there must exist non-trivial linear functional F on
Ω such that

| F(xi j) |� f (xi j).

We now state a well known lemma ([9]) as follows:

LEMMA 1. Let Ω be a real norm linear space and f : Ω −→ R be a functional
such that the following assertion holds

(i) f (x) � 0
(ii) f (αx) =| α | f (x) , ∀α ∈ R

(iii) f (x+ y) � f (x)+ f (y) , x,y ∈ ld∞
Then for each x0 ∈ Ω , there exist a linear functional F on Ω such that

∀x ∈ Ω, | F(x) |� f (x), F(x0) = f (x0).
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Let Θ be the family of functionals satisfying the above conditions. Then for each
s ∈ Ω , we can write

∀F ∈ Θ, F(xi j − s) = 0 iff f (xi j − s) = 0, (xi j) ∈ ld∞. (1)

In view of the Lemma 1 we now state the following theorem which is well known in
literature.

THEOREM 1. In ld∞ , there exist a non-trivial functional F such that for all a,b,∈
R , each s ∈ Ω and all (xi j),(yi j) ∈ ld∞ , the following assertions hold

(i) F(axi j +byi j) = aF(xi j)+bF(yi j)
(ii) F(xσ(i)σ( j)) = F(xi j)
(iii) |F(xi j)| � f (xi j)
(iv) F(xi j − s) = 0 if and only if f (xi j − s) = 0 .

Now we give the following definitions:

DEFINITION 8. A sequence (xi j) ∈ ld∞ is said to be quasi invariant convergent to
s ∈ Ω or quasi σ -summable to s if

∀F ∈ Θ, F(xi j − s) = 0 (2)

and in this case we write (Q−σ)− limxi j = s .

3. Main results

In this paper we extend the results of F. Nuray ([9]) for double sequence in a real
normed space Ω .

THEOREM 2. A bounded sequence (xi j) is quasi invariant convergent to s∈ Ω iff

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ −→ 0 (3)

as p,q −→ ∞ , uniformly in m,n (= 1,2,3, . . .).

Proof. First suppose that (xi j) is quasi-invariant convergent to s . Then (Q−σ)−
limxi j = s . Therefore by (1) and (2) we can write

f (xi j − s) = 0

i.e., we have

limp,q−→∞

{
sup
m,n

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖
}

= 0.

Hence for any ε > 0, there exist integers p0 > 0,q0 > 0 such that ∀p > p0 , q > q0 and
m,n = 1,2,3, . . . we find that

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ < ε.
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Since ε > 0 is arbitrary, we have

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ −→ 0

as p −→ ∞ , q −→ ∞ , uniformly in m,n .
Therefore the condition (3) is necessary.
Conversely suppose that the condition (3) hold, i.e.,

sup
m,n

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ −→ 0 as p,q −→ ∞

or,

f (xi j − s) = limp,q−→∞

{
sup
m,n

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖
}

= 0.

Hence by (1) , we have,
∀F ∈ Θ, F(xi j − s) = 0.

So by (2) ,
(Q−σ)− limxi j = s.

Therefore the condition (3) is sufficient also. �

THEOREM 3. If a bounded double sequence x = (xi j) is invariant convergent to
s ∈ Ω , then the sequence is quasi invariant convergent to s.

Proof. Let the bounded sequence x = (xi j) be invariant convergent to s .
Therefore for any ε > 0 there exist integers p0 > 0, q0 > 0 such that

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ < ε for p > p0, q > q0, m,n = 1,2,3, . . . .

Since ε > 0 is arbitrary, we can write

1
pq

‖
p−1

∑
i=0

q−1

∑
j=0

xσ i(mp)σ j(nq)− s‖ −→ 0 as p,q −→ ∞

and uniformly in m,n .
Hence by (3) , the sequence (xi j) is quasi invariant convergent to s . �

4. Quasi invariant statistical convergence for double sequence

Ganguly and Dafadar [3] investigated the quasi statistical convergence of dou-
ble sequence of real numbers and described some important results related to double
sequences. Also F. Nuray [9] explored some interesting results on quasi invariant sta-
tistical convergence of single sequences in normed spaces. Inspiring from the above
articles we first give some definitions on quasi invariant statistical convergence for dou-
ble sequences as follows:



174 A. DAFADAR AND D. K. GANGULY

DEFINITION 9. A double sequence x = (xi j) is said to be quasi invariant statisti-
cally convergent to s ∈ Ω if for each ε > 0,

lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xσ i(mp)σ j(nq)− s‖ � ε} |= 0

uniformly in m,n .

DEFINITION 10. A double sequence x = (xi j) is said to be quasi almost statisti-
cally convergent to s ∈ S if for each ε > 0,

lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xmp+i,nq+ j− s‖ � ε} |= 0

uniformly in m,n .

Now we present a theorem

THEOREM 4. If a double sequence x = (xi j) ∈ ld∞ be quasi almost statistically
convergent to s ∈ Ω , then it is quasi invariant statistically convergent to s.

Proof. Suppose that x = (xi j) ∈ ld∞ is quasi almost statistically convergent to s ∈
Ω .

Then by definition, for any ε > 0 there exist integers p0 > 0, q0 > 0 such that

lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xmp+i,nq+ j − s‖ � ε} |< ε

for p > p0 , q > q0 , m,n = 1,2,3, . . .

= lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xk+i,l+ j − s‖ � ε} |< ε

for p > p0 , q > q0 , m,n = 1,2,3, . . . , where k = mp , l = nq .

= lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xσ i(k)σ j(l) − s‖ � ε} |< ε

= lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xσ i(mp)σ j(nq)− s‖ � ε} |< ε

uniformly in m,n .
As ε > 0 is arbitrary, we have

lim
p,q−→∞

1
pq

| {i � p, j � q : ‖xσ i(mp)σ j(nq)− s‖ � ε} |= 0

uniformly in m,n .
Hence the sequence x = (xi j) is quasi invariant statistically convergent to s . �
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