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SIMULTANEOUS APPROXIMATION PROPERTIES OF DE LA

VALLÉE–POUSSIN MEANS IN WEIGHTED ORLICZ SPACES

SADULLA Z. JAFAROV

Abstract. We investigate the simultaneous approximation properties of the de la Vallée-Poussin
means in weighted Orlicz spaces in terms of the modulus of smoothness. In terms of the modulus
of smoothness the direct theorem of simultaneous approximation is proved. Also, in weighted
Orlicz spaces the modulus of smoothness are estimated from below and above in terms of n -th
partial Fourier sums and de la Vallée-Poussin means.

1. Introduction, some auxiliary results and main results

Let M(u) be a continuous increasing convex function on [0,∞) such that M(u)/u
→ 0 if u → 0, and M(u)/u → ∞ if u → ∞ . We denote by N the complementary of
M in Young’s sense, i.e. N(u) = max{uv−M(v) : v � 0} if u � 0. We will say that M
satisfies the Δ2−condition if M(2u) � cM(u) for any u � u0 � 0 with some constant
c , independent of u.

Let T denote the interval [−π ,π ] , C the complex plane, and Lp(T) , 1 � p � ∞ ,
the Lebesgue space of measurable complex-valued functions on T .

For a given Young function M , let L̃M(T) denote the set of all Lebesgue measur-
able functions f : T → C for which∫

T

M (| f (x)|)dx < ∞.

Let N be the complementary Young function of M . It is well-known [27, p. 69],
[40, pp. 52–68] that the linear span of L̃M(T) equipped with the Orlicz norm

‖ f‖LM(T) := sup

⎧⎨
⎩

∫
T

| f (x)g(x)|dx : g ∈ L̃N(T),
∫
T

N (|g(x)|)dx � 1

⎫⎬
⎭ ,

or with the Luxemburg norm

‖ f‖∗LM(T) := inf

⎧⎨
⎩k > 0 :

∫
T

M

( | f (x)|
k

)
dx � 1

⎫⎬
⎭
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becomes a Banach space. This space is denoted by LM(T) and is called an Orlicz space
[27, p. 26]. The Orlicz spaces are known as the generalizations of the Lebesgue spaces
Lp(T) , 1 < p < ∞. If M(x) = M(x, p) := xp, 1 < p < ∞, then Orlicz spaces LM(T)
coindices with the usual Lebesque spaces Lp(T) , 1 < p < ∞. Note that the Orlicz
spaces play an important role in many areas such as applied mathematics, mechanics,
regularity theory, fluid dynamics and statistical physics. Therefore, the approximation
of the functions by means of Fourier trigonometric series in Orlicz spaces is also im-
portant in these areas of research.

The Luxemburg norm is equivalent to the Orlicz norm and the equivalence

‖ f‖∗LM(T) � ‖ f‖LM(T) � 2‖ f‖∗LM(T) , f ∈ LM(T)

holds true [27, p. 80].
If we choose M(u) = up/p , 1 < p < ∞ then the complementary function is

N(u) = uq/q with 1/p+1/q = 1 and we have the relation

p−1/p‖u‖Lp(T) = ‖u‖∗LM(T) � ‖u‖LM(T) � q1/q‖u‖Lp(T) ,

where ‖u‖Lp(T) =
(∫

T

|u(x)|p dx

)1/p

stands for the usual norm of the Lp(T) space.

If N is complementary to M in Young’s sense and f ∈ LM(T) , g ∈ LN(T) then
the so-called strong Hölder inequalities [27, p. 80]∫

T

| f (x)g(x)|dx � ‖ f‖LM(T) ‖g‖∗LN (T) ,

∫
T

| f (x)g(x)|dx � ‖ f‖∗LM(T) ‖g‖LN(T)

are satisfied.
The Orlicz space LM(T) is reflexive if and only if the N− function M and its

complementary function N both satisfy the Δ2−condition [40, p. 113].
Let M−1 : [0,∞)→ [0,∞) be the inverse function of the N− function M. The lower

and upper indices [8, p. 350]

αM := lim
t→+∞

− logh(t)
logt

, βM := lim
t→o+

− logh(t)
logt

of the function

h : (0,∞) → (0,∞], h(t) := lim
y→∞

sup
M−1(y)
M−1(ty)

, t > 0

first considered by Matuszewska and Orlicz [38], are called the Boyd indices of the
Orlicz spaces LM(T ) .

It is known that the indices αM and βM satisfy 0 � αM � βM � 1, αN +βM = 1,
αM + βN = 1 and the space LM(T) is reflexive if and only if 0 < αM � βM < 1. The
detailed information about the Boyd indices can be found in [7], [9]–[11], [35].
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A measurable function ω : T → [0,∞] is called a weight function if the set
ω−1 ({0,∞}) has Lebesgue measure zero. With any given weight ω we associate the
ω -weighted Orlicz space LM (T, ω) consisting of all measurable functions f on T

such that
‖ f‖LM(T,ω) := ‖ fω‖LM(T) .

Let 1 < p < ∞ , 1/p+1/p′ = 1 and let ω be a weight function on T . ω is said
to satisfy Muckenhoupt’s Ap -condition on T if

sup
J

⎛
⎝ 1
|J|

∫
J

ω p (t)dt

⎞
⎠

1/p ⎛
⎝ 1
|J|

∫
J

ω−p′ (t)dt

⎞
⎠

1/p′

< ∞,

where J is any subinterval of T and |J| denotes its length.
Let us indicate by Ap (T) the set of all weight functions satisfying Muckenhoupt’s

Ap -condition onT .
According to [31], [32, Lemma 3.3], and [32, Section 2.3] and [33] if LM(T) is

reflexive and ω weight function satisfying the condition ω ∈ A1/αM
(T)∩A1/βM

(T) ,
then the space LM (T,ω) is also reflexive.

Let LM (T,ω) be a weighted Orlicz space, let 0 < αM � βM < 1 and let ω ∈
A 1

αM
(T)∩A 1

βM

(T) . For f ∈ LM (T, ω) we set

(νh f ) (x) :=
1
2h

h∫
−h

f (x+ t)dt, 0 < h < π , x ∈ T.

By reference [15, Lemma 1], the shift operator νh is a bounded linear operator on
LM (T,ω) :

‖νh ( f )‖LM(T, ω) � c‖ f‖LM(T, ω) .

The function

Ωl
M,ω ( f ,δ ) := sup

0<hi�δ
1�i�l

∥∥∥∥∥
l

∏
i=1

(
I−νhi

)
f

∥∥∥∥∥
LM(T,ω)

, δ > 0, l = 1,2, . . .

is called l -th modulus of smoothness of f ∈ LM (T,ω) , where I is the identity operator.
It can easily be shown that Ωl

M,ω ( f , ·) is a continuous, nonnegative and nonde-
creasing function satisfying the conditions

lim
δ→0

Ωl
M,ω ( f ,δ ) = 0, Ωl

M,ω ( f +g,δ ) � Ωl
M,ω ( f ,δ )+ Ωl

M,ω (g,δ )

for f , g ∈ LM (T, ω) .
Let

a0

2
+

∞

∑
k=1

Ak(x, f ) =
∞

∑
k=−∞

cke
ikx (1)
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be the Fourier series of the function f ∈ L1(T) , where

Ak(x, f ) := (ak ( f )coskx+bk ( f ) sinkx) , k ∈ N,

ak( f ) and bk( f ) are the Fourier coefficients of the function f ∈ L1(T).
The n-th partial Fourier sums, and de la Vallée-Poussin means [49] of series (1.1)

are defined, respectively, as

Sn ( f ) := Sn(x, f ) =
a0

2
+

n

∑
k=1

Ak(x, f ) =
n

∑
k=−n

cke
ikx, n = 1,2,3, . . . ,

Vn ( f ) := Vn(x, f ) =
1
n

2n−1

∑
ν=n

Sν(x, f ).

Note that for the de la Vallée-Poussin means the integral representation

Vn ( f ) := Vn(x, f ) =
π∫

−π

f (x− t)Kn (t)dt,

holds with kernel

Kn (t) :=
1
π

sin
( 3nt

2

)
sin

(
nt
2

)
2nsin2 (

t
2

) .

The best approximation to f ∈ LM (T,ω) in the class ∏n of trigonometric polynomials
of degree not exceeding n is defined by

En ( f )M,ω := inf
{
‖ f −Tn‖LM(T, ω) : Tn ∈ Πn

}
.

Note that the existence of T ∗
n ∈ Πn such that En ( f )M,ω = ‖ f −T∗

n ‖LM(T,ω) follows, for
example, from Theorem 1.1 in [14, p. 59].

Let Wr
M(T,ω) , (r = 1,2, . . .) be the class of functions such that f (r−1) is abso-

lutely continuous and f (r) ∈LM(T,ω) becomes a Banach space under the consideration
of the norm

‖ f ‖Wr
M(T,ω):=‖ f ‖LM(T,ω) + ‖ f (r) ‖LM(T,ω) .

We use c,c1,c2, . . . to denote constants (which may, in general, differ in differ-
ent relations) depending only on numbers that are not important for the questions of
interest.

In the proof of the main results we need the following results.

THEOREM 1.1. [5] Let LM(T,ω) be a weighted Orlicz space with Boyd indices
0 < αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ) and let T ∗

n be the best approxi-
mation polynomial to f . Then for every f ∈Wr

M(T,ω) , r = 0,1,2, . . . and n ∈ N the
inequality

‖ f (r) − (T ∗
n )(r) ‖LM(T,ω)� cEn( f (r))M,ω

holds with a constant c > 0 independent of n .
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THEOREM 1.2. [15] Let LM(T,ω) be a weighted Orlicz space with Boyd indices
0 < αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ) . Then for every f ∈Wr

M(T,ω)
(r = 0,1,2, . . .) the inequality

En( f )M,ω � c1

(n+1)r
En( f (r))M,ω

holds with a constant c1 > 0 independent of n.

THEOREM 1.3. [15] Let LM(T,ω) be a weighted Orlicz space with Boyd indices
0 < αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for every f ∈ LM(T,ω)

the inequality

En( f )M,ω � c2Ωl
M.ω

(
f ,

1
n+1

)
holds with a constant c2 > 0 independent of n.

Using Theorem 1.2 and 1.3 we have the following Corollary:

COROLLARY 1.1. Let LM(T,ω) be a weighted Orlicz space with Boyd indices
0 < αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for every f ∈Wr

M(T,ω)
(r = 0,1,2, . . .) the inequality

En( f )M,ω � c3

(n+1)r
Ωl

M.ω

(
f (r),

1
n+1

)

holds with a constant c3 > 0 independent of n.

THEOREM 1.4. [15] Let LM(T,ω) be a weighted Orlicz space with Boyd indices
0 < αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for each trigonometric

polynomial Tn of degree n the inequality

‖ (Tn)(r) ‖LM(T,ω)� c4n
r ‖ Tn ‖LM(T,ω), r = 1,2,3, . . . ,

holds with a constant c4 > 0 independent of n.

Using the method of proof of [43,Theorem 2.1] and Theorem 1.3 we can prove the
following Theorem:

THEOREM 1.5. Let LM(T,ω) be a weighted Orlicz space with Boyd indices 0 <
αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for every f ∈Wr

M(T,ω) (r =
0,1,2, . . .) the inequality

‖ f −Vn ( f ) ‖LM(T,ω)�
c5

(n+1)r
Ωl

M.ω

(
f (r),

1
n+1

)

holds with a constant c5 > 0 independent of n.
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The problems of approximation theory in weighted and nonweightedOrlicz spaces
have been investigated by several authors (see, for example, [1]–[4], [6], [13], [15]–
[17], [20]–[26], [38], [39]).

In the present paper we investigate the simultaneous approximation properties of
de la Vallée-Poussin means in weighted Orlicz spaces in terms of modulus of smooth-
ness.

Also, we estimate the modulus of smoothness from below and above in terms
n -th partial sums and de la Vallée-Poussin means in weighted Orlicz spaces. Similar
problems in different spaces have been investigated by several researchers (see, for
example, [18], [19], [21], [25], [29], [30], [36], [37], [41]–[51]).

Our main results are as follows.

THEOREM 1.6. Let LM(T,ω) be a weighted Orlicz space with Boyd indices 0 <
αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for every f ∈Wr

M (T,ω) and
m = 0,1,2, . . . ,r the estimate

‖ f (m) −V (m)
n ( f ) ‖LM(T,ω)�

c6

nr−m Ωl
M,ω

(
f (r),

1
n

)
(2)

holds with a constant c6 > 0 independent of n.

THEOREM 1.7. Let LM(T,ω) be a weighted Orlicz space with Boyd indices 0 <
αM � βM < 1, and let ω ∈ A1/αM

(T )∩A1/βM
(T ). Then for every f ∈ LM (T,ω) and

l = 1,2, . . . the following inequalities hold:
1.

c7Ωl
M,ω

(
f ,

1
n

)
�

(
n−2l

∥∥∥V (2l)
n ( f )

∥∥∥
LM(T,ω)

+‖ f −Vn( f )‖LM(T,ω)

)

� c8Ωl
M,ω

(
f ,

1
n

)
, (3)

where the constants c7 and c8 independent of n.
2.

c9Ωl
M,ω

(
f ,

1
n

)
�

(
n−2l

∥∥∥S(2l)
n ( f )

∥∥∥
LM(T,ω)

+‖ f −Sn( f )‖LM(T,ω)

)

� c10Ωl
M,ω

(
f ,

1
n

)
, (4)

where the constants c9 and c10 independent of n.

2. Proofs of the main results

Proof of Theorem 1.6. f ∈Wr
M (T,ω) and T ∗

n ∈ ∏n (n = 0,1,2, . . .) be the poly-
nomial of best approximation to f . The following inequality holds:

‖ f (m) −V (m)
n ( f ) ‖LM(T,ω)

� ‖ f (m) − (T ∗
n )(m) ‖LM(T,ω) + ‖ (T ∗

n )(m) −V (m)
n ( f ) ‖LM(T,ω) . (5)
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Then according to Theorem 1.1 and 1.3 we get

‖ f (m)− (T ∗
n )(m) ‖LM(T,ω) � c11En( f (m))M,ω.

� c12

nr−m En( f (r))M,ω. � c13

nr−m Ωl
M,ω

(
f (r),

1
n

)
. (6)

On the other hand using Theorem 1.4 and 1.5 , Corollary 1.1 we obtain that

‖ (T ∗
n )(m) −V (m)

n ( f ) ‖LM(T,ω) � c14n
m

{
‖Vn ( f )− f‖LM(T,ω) +‖ f −T ∗

n ‖LM(T,ω)

}
� c15n

m
{

c16

nr Ωl
M,ω

(
f (r),

1
n

)
+En( f )M,ω.

}

� c17

nr−m Ωl
M,ω

(
f (r),

1
n

)
. (7)

Using (2.1), (2.2) and (2.3), we finally conclude that

‖ f (m) −T (m)
n ‖LM(T,ω)�

c18

nr−m Ωl
M,ω

(
f (r),

1
n

)
.

Thus, the inequality (1.2) of Theorem 1.6 is proved. �

Proof of Theorem 1.7. Considering [15] the inequality

Ωl
M,ω

(
Vn ( f ) ,

1
n

)
� c19n

−2l
∥∥∥V (2l)

n ( f )
∥∥∥

LM(T,ω)
(8)

holds. Taking into account the properties of modulus of smoothness Ωl
M,ω

(
f , 1

n

)
and

(2.4), we conclude that

Ωl
M,ω

(
f ,

1
n

)
�

(
Ωl

M,ω

(
f −Vn ( f ) ,

1
n

)
+ Ωl

M,ω

(
Vn ( f ) ,

1
n

))

� c20

(
‖ f −Vn ( f )‖LM(T,ω) +n−2l

∥∥∥V (2l)
n ( f )

∥∥∥
LM(T,ω)

)
. (9)

We estimate the modulus of smoothness Ωl
M,ω ( f , ·) from below. By [15] the following

inequalities hold:

En( f )M,ω � c21Ωl
M,ω

(
f ,

1
n+1

)
, (10)

n−2l
∥∥∥V (2l)

n ( f )
∥∥∥

LM(T,ω)
� c22Ωl

M,ω

(
f ,

1
n+1

)
. (11)

Let Vv( f ,x) be the de la Vallée-Poussin sums of the series (1.1) and let T ∗
n ∈ Πn

be the polynomial of best approximation to f in LM (T,ω) , that is ‖ f −T ∗
n ‖LM(T,ω) =

En( f )M,ω . Then we can write the following inequality:

‖ f −Vn( f )‖LM(T,ω) � ‖ f −T ∗
n ‖LM(T,ω) +‖T ∗

n −Vn( f )‖LM(T,ω)
� c23En( f )M,ω +‖Vn(T ∗

n − f , ·)‖LM(T,ω)
� c24En( f )M ,ω . (12)
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Consideration of (2.6), (2.7) and (2.8) gives us

n−2l
∥∥∥V (2l)

n ( f )
∥∥∥

LM(T,ω)
+‖ f −Vn( f )‖LM(T,ω)

� c25

(
Ωl

M,ω

(
Vn ( f ) ,

1
n+1

)
+En( f )M,ω

)

� c26

(
Ωl

M,ω

(
f ,

1
n+1

)
+ Ωl

M,ω

(
f −Vn ( f ) ,

1
n+1

)
+En( f )M,ω

)

� c27Ωl
M,ω

(
f ,

1
n+1

)
. (13)

From (2.5) and (2.9) we obtain estimation (1.3) of Theorem 1.7.
According to [15] there exists a constant c28 > 0 such that

‖ f −Sn( f )‖LM(T,ω) � c28En( f )M,ω . (14)

The proof of the estimation (1.4) is obtained in analogy to proof of the estimation (1.3)
using the inequality (2.10).

So, Theorem 1.7 is proved. �
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