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RELATIVE (p,q,t)L–TH ORDER ORIENTED

SOME GROWTH PROPERTIES OF WRONSKIAN

TANMAY BISWAS AND CHINMAY BISWAS ∗

Abstract. In the paper we establish some new results depending on the comparative growth prop-
erties of composite transcendental entire and meromorphic functions using relative (p,q,t)L -th
order and relative (p,q,t)L -th lower order and wronskian generated by one of the factors.

1. Introduction, definitions and notations

Let us consider that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna theory of meromorphic functions which are avail-
able in [6, 9, 14, 15]. We also use the standard notations and definitions of the the-
ory of entire functions which are available in [13] and therefore we do not explain
those in details. Let f be an entire function defined in the open complex plane C .
The maximum modulus function Mf (r) corresponding to f is defined on |z| = r as
Mf (r) = max|z|=r | f (z)| . If f is non-constant then it has the following property:

PROPERTY (A). [2]: A non-constant entire function f is said have the Property
(A) if for any σ > 1 and for all sufficiently large values of r , [Mf (r)]2 � Mf (rσ ) holds.

For examples of functions with or without the Property (A), one may see [2].
When f is meromorphic, one may introduce another function Tf (r) known as

Nevanlinna’s characteristic function of f , playing the same role as Mf (r) .
The integrated counting function Nf (r,a)(N f (r,a)) of a -points (distinct a -points)

of f is defined as

Nf (r,a) =
∫ r

0

n f (t,a)−n f (0,a)
t

dt +n f (0,a) logr,

(
N f (r,a) =

∫ r

0

nf (t,a)−nf (r,a)
t

dt +nf (0,a) logr
)

,

where we denote by n f (t,a)(n f (t,a)) the number of a -points (distinct a -points) of f
in |z| � t and an ∞ -point is a pole of f . In many occasions Nf (r,∞) and N f (r,∞) are
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denoted by Nf (r) and N f (r) respectively. The function Nf (r,a) is called the enumera-
tive function. On the other hand, the function mf (r)≡mf (r,∞) known as the proximity
function is defined as

mf (r) =
1
2π

2π∫

0

log+ | f (reiθ )|dθ ,

where log+ x = max(logx,0) for all x � 0 and an ∞-point is a pole of f . Analogously,
m 1

f−a
(r) ≡ mf (r,a) is defined when a is not an ∞-point of f .

Thus the Nevanlinna’s characteristic function Tf (r) corresponding to f is defined
as

Tf (r) = Nf (r)+mf (r).

When f is entire, Tf (r) coincides with mf (r) as Nf (r) = 0. However, for a meromor-
phic function f , the Wronskian determinant W ( f ) = W (a1,a2, . . . ,ak, f ) is defined as

W ( f ) =

∣∣∣∣∣∣∣∣∣

a1 a2 · · · ak f
a′1 a′2 · · · a′k f ′
...

... · · · ...
...

a(k)
1 a(k)

2 · · · a(k)
k f (k)

∣∣∣∣∣∣∣∣∣
,

where a1,a2, . . . ,ak are linearly independent meromorphic functions and small with
respect to f (i.e., Tai(r) = S(r, f ) for i = 1,2,3. . . k ). From the Nevanlinna’s sec-
ond fundamental theorem, it follows that the set of values of a ∈ C∪{∞} for which
δ (a; f ) > 0 is countable and ∑a �=∞ δ (a; f )+ δ (∞; f ) � 2 (cf. [6, p. 43]), where

δ (a; f ) = 1− limsup
r→∞

N(r,a; f )
Tf (r)

= liminf
r→∞

m(r,a; f )
Tf (r)

.

If in particular ∑a �=∞ δ (a; f )+δ (∞; f ) = 2, we say that f has the maximum deficiency
sum. Moreover, if f is non-constant entire then Tf (r) is strictly increasing and contin-
uous function of r . Also its inverse T−1

f : (Tf (0),∞) → (0,∞) exists and is such that

lim
s→∞

T−1
f (s) = ∞ . Also the ratio

Tf (r)
Tg(r)

as r → ∞ is called the growth of f with respect

to g in terms of the Nevanlinna’s characteristic functions of the meromorphic functions
f and g . However, let us consider that x ∈ [0,∞) and k ∈ N . We define

exp[k] x = exp(exp[k−1] x), and log[k] x = log(log[k−1] x) .

We also denote log[0] x = x , log[−1] x = expx , exp[0] x = x and exp[−1] x = logx . Further
we assume that throughout the present paper l , p , q , m and n always denote positive
integers and t ∈ N∪{−1,0} . Now considering this, we just recall that Shen et al. [12]
defined the (m,n)-ϕ order and (m,n)-ϕ lower order of entire functions f .

DEFINITION 1. [12] Let ϕ : [0,+∞) → (0,+∞) be a non-decreasing unbounded
function and m � n . The (m,n)-ϕ order ρ (m,n)( f ,ϕ) and (m,n)-ϕ lower order
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λ (m,n)( f ,ϕ) of entire function f are defined as:

ρ (m,n)( f ,ϕ) = limsup
r→∞

log[m] Mf (r)

log[n] ϕ(r)
; λ (m,n)( f ,ϕ) = liminf

r→∞

log[m] Mf (r)

log[n] ϕ(r)
.

If f is a meromorphic function, then

ρ (m,n)( f ,ϕ) = limsup
r→∞

log[m−1] Tf (r)

log[n] ϕ(r)
; λ (m,n)( f ,ϕ) = liminf

r→∞

log[m−1] Tf (r)

log[n] ϕ(r)
.

Further for any non-decreasing unbounded function ϕ : [0,+∞) → (0,+∞) , if we

assume lim
r→+∞

log[n] ϕ(ar)
log[n] ϕ(r)

= 1 for all a > 0, then for any entire function f , using the

inequality Tf (r) � logMf (r) � 3Tf (2r) {c f . [6]} , one can easily verify that [12]

ρ (m,n)( f ,ϕ) = limsup
r→∞

log[m] Mf (r)

log[n] ϕ(r)
= limsup

r→∞

log[m−1] Tf (r)

log[n] ϕ(r)
,

λ (m,n)( f ,ϕ) = liminf
r→∞

log[m] Mf (r)

log[n] ϕ(r)
= liminf

r→∞

log[m−1] Tf (r)

log[n] ϕ(r)
,

when m > 1.
If we take m = p , n = 1 and ϕ(r) = log[q−1] r , then the above definitions reduce

to the following definitions :

DEFINITION 2. The (p,q)-th order and (p,q)-th lower order of an entire function
f are defined as:

ρ (p,q)( f ) = limsup
r→∞

log[p] Mf (r)

log[q] r
; λ (p,q)( f ) = liminf

r→∞

log[p] Mf (r)

log[q] r
.

If f is a meromorphic function, then

ρ (p,q)( f ) = limsup
r→∞

log[p−1] Tf (r)

log[q] r
; λ (p,q)( f ) = liminf

r→∞

log[p−1] Tf (r)

log[q] r
.

Definition 2 avoids the restriction p � q of the original definition of (p,q)-th
order (respectively (p,q)-th lower order) of entire functions introduced by Juneja et
al. [7]. However the above definition is very useful for measuring the growth of entire
and meromorphic functions. If p = l and q = 1 then we write ρ (l,1)( f ) = ρ (l)( f ) and
λ (l,1)( f ) = λ (l)( f ) where ρ (l)( f ) and λ (l)( f ) are respectively known as generalized
order and generalized lower order of entire or meromorphic function f . For details
about generalized order one may see [11]. Also for p = 2 and q = 1, we respectively
denote ρ (2,1)( f ) and λ (2,1)( f ) by ρ( f ) and λ ( f ) which are classical growth indicators
such as order and lower order of entire or meromorphic function f .

In this connection we just recall the following definition of index-pair where we
will give a minor modification to the original definition [7]:
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DEFINITION 3. An entire function f is said to have index-pair (p,q) if b <
ρ (p,q)( f ) < ∞ and ρ (p−1,q−1)( f ) is not a nonzero finite number, where b = 1 if p = q
and b = 0 for otherwise. Moreover, if 0 < ρ (p,q)( f ) < ∞ , then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ (p−n,q)( f ) = ∞ n < p,

ρ (p,q−n)( f ) = 0 n < q,

ρ (p+n,q+n)( f ) = 1 n ∈ N

.

Similarly for 0 < λ (p,q)( f ) < ∞ , one can easily verify that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ (p−n,q)( f ) = ∞ n < p,

λ (p,q−n)( f ) = 0 n < q,

λ (p+n,q+n)( f ) = 1 n ∈ N

.

Analogously one can easily verify that Definition 3 of index-pair can also be ap-
plicable to a meromorphic function f . However, the function f is said to be of regular
(p,q) growth when (p,q)-th order and (p,q)-th lower order of f are the same. Func-
tions which are not of regular (p,q) growth are said to be of irregular (p,q) growth.

For entire functions, Somasundaram and Thamizharasi [10] introduced the notions
of the growth indicators L -order and L -lower order where L ≡ L(r) is a positive con-
tinuous slowly increasing function, which means that limr→∞ L(ar)/L(r) = 1 for all
a > 0. The more generalized concept of L -order and L -lower order for entire function
are L∗ -order and L∗ -lower order. Their definitions are as follows:

DEFINITION 4. [10] The L∗ -order ρL∗
f and the L∗ -lower order λ L∗

f of an entire
function f are defined as

ρL∗
f = limsup

r→∞

log[2] Mf (r)
log[reL(r)]

; λ L∗
f = liminf

r→∞

log[2] Mf (r)
log[reL(r)]

.

When f is meromorphic one can easily verify that

ρL∗
f = limsup

r→∞

logTf (r)
log[reL(r)]

; λ L∗
f = liminf

r→∞

logTf (r)
log[reL(r)]

.

If we take m = p , n = 1 and ϕ(r) = log[q−1] r · exp[t+1] L(r) , then Definition 1
turn into the definitions of (p,q,t)L -th order and (p,q,t)L -th lower order of an entire
function f which are:

ρL
f (p,q,t) = limsup

r→∞

log[p] Mf (r)

log[q] r+ exp[t] L(r)
;

λ L
f (p,q,t) = liminf

r→∞

log[p] Mf (r)

log[q] r+ exp[t] L(r)
.
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If f is a meromorphic function, then

ρL
f (p,q,t) = limsup

r→∞

log[p−1] Tf (r)

log[q] r+ exp[t] L(r)
;

λ L
f (p,q,t) = liminf

r→∞

log[p−1] Tf (r)

log[q] r+ exp[t] L(r)
.

In order to compare the relative growth of two entire functions having same non zero
finite (p,q, t)L -th order, one may introduce the definitions of (p,q,t)L -th type (respec-
tively (p,q, t)L -th lower type) of entire functions having finite positive finite (p,q, t)L -
th order.

DEFINITION 5. [4] Let f be an entire function with non-zero finite (p ,q,t)L -th
order ρL

f (p,q, t) . The (p,q,t)L -th type denoted by σL
f (p,q,t) and (p,q,t)L -th lower

type denoted by σL
f (p,q,t) are respectively defined as follows:

σL
f (p,q,t) = limsup

r→∞

log[p−1] Mf (r)

[log[q−1] r · exp[t+1] L(r)]ρ
L
f (p,q,t)

,

and

σL
f (p,q,t) = liminf

r→∞

log[p−1] Mf (r)

[log[q−1] r · exp[t+1] L(r)]ρ
L
f (p,q,t)

.

Mainly the growth investigation of entire or meromorphic functions has usually
been done through their maximum moduli or Nevanlinna’s characteristic function in
comparisonwith those of exponential function. But if one is paying attention to evaluate
the growth rates of any entire or meromorphic function with respect to a new entire
function, the notions of relative growth indicators [2, 8] will come. Extending this
notion, one may introduce the definitions of relative (p,q, t)L -th order and relative
(p,q, t)L -th lower order of a meromorphic function f with respect to an entire function
g in the following way:

DEFINITION 6. [4] Let f be a meromorphic function and g be an entire function.

Then relative (p,q, t)L -th order denoted as ρ (p,q,t)L
g ( f ) and relative (p,q,t)L -th lower

order denoted as λ (p,q,t)L
g ( f ) of f with respect to g are defined by

ρ (p,q,t)L
g ( f ) = limsup

r→∞

log[p] T−1
g (Tf (r))

log[q] r+ exp[t] L(r)
,

λ (p,q,t)L
g ( f ) = liminf

r→∞

log[p] T−1
g (Tf (r))

log[q] r+ exp[t] L(r)
.

Since the natural extension of a derivative is a differential polynomial, in this paper
we prove our results for a special type of linear differential polynomials viz. the wron-
skians. Actually in the paper we establish some new results depending on the compar-
ative growth properties of composite transcendental entire and meromorphic function
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using relative (p ,q, t)L -th order and relative (p,q,t)L -th lower order of meromorphic
function with respect to another entire function and that of wronskian generated by one
of the factors.

2. Lemmas

In this section we present two lemmas which will be needed in the sequel.

LEMMA 1. [1] Let f be meromorphic and g be entire then for all sufficiently
large values of r ,

Tf◦g(r) � {1+o(1)} Tg(r)
logMg(r)

Tf (Mg(r)).

LEMMA 2. [5] Let f be an entire function which satisfies the Property (A), β >
0 , δ > 1 and α > 2 . Then

βTf (r) < Tf (αrδ ).

LEMMA 3. [3] Assume that f is a transcendental meromorphic function with
∑a �=∞ ∑δ (a; f )+ δ (∞; f ) = 2 and let g be a transcendental entire function having the
maximum deficiency sum with regular (m, p) growth where m > 1 . Then

lim
r→∞

log[p] T−1
W(g)(TW ( f )(r))

log[p] T−1
g (Tf (r))

= 1.

LEMMA 4. Let f be transcendental meromorphic function which satisfies the
constraint ∑a �=∞ δ (a; f )+ δ (∞; f ) = 2 and g be a transcendental entire function hav-
ing the maximum deficiency sum with regular (m, p) growth where m > 1 . Then the
relative (p,q, t)L-th order and relative (p,q,t)L-th lower order of W ( f ) with respect
to W (g) are same as those of f with respect to g i.e.,

ρ (p,q,t)L
W(g) (W ( f )) = ρ (p,q,t)L

g ( f ) and λ (p,q,t)L
W(g) (W ( f )) = λ (p,q,t)L

g ( f ).

Proof. In view of Lemma 3, we obtain that

ρ (p,q,t)L
W(g) (W ( f )) = lim

r→∞

log[p] T−1
W (g)(TW ( f )(r))

log[q] r+ exp[t] L(r)

= lim
r→∞

log[p] T−1
g (Tf (r))

log[q] r+ exp[t] L(r)
· lim
r→∞

log[p] T−1
W(g)(TW ( f )(r))

log[p] T−1
g (Tf (r))

= ρ (p,q,t)L
g ( f ) ·1 = ρ (p,q,t)L

g ( f ).

In a similar manner, λ (p,q,t)L
W(g) (W ( f )) = λ (p,q,t)L

g ( f ) .
This completes the proof of the assertion. �
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3. Theorems

THEOREM 1. Suppose that f is a transcendental meromorphic function for which
∑a �=∞ δ (a; f )+δ (∞; f ) = 2 , and let g be an entire function and h be a transcendental
entire function having the maximum deficiency sum with regular (a, p) growth such that

ρL
g (m,n, t) < λ (p,q,t)L

h ( f ) � ρ (p,q,t)L
h ( f ) < ∞ where q � m and a > 1 . If h satisfies the

Property (A), then

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[p−m] T−1
W (h)(TW ( f )(r))

= 0,

when for some α < λ (p,q,t)L
h ( f ), there holds

exp[t] L(Mg(r)) = o{exp[m−1][(log[q−1] r)exp[t+1] L(r)]α}
as r → ∞ .

Proof. Let us suppose that γ > 2 and δ → 1+ in Lemma 2. Since T−1
h (r) is

an increasing function of r , it follows from Lemma 1, Lemma 2 and the inequality
Tg(r) � log+ Mg(r) {cf. [6]} for all sufficiently large values of r that

T−1
h (Tf◦g(r)) � T−1

h [{1+o(1)}Tf (Mg(r))]

i.e., T−1
h (Tf◦g(r)) � γ[T−1

h (Tf (Mg(r)))]δ

i.e., log[p] T−1
h (Tf◦g(r)) � log[p] T−1

h (Tf (Mg(r)))+O(1) (1)

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ε)[log[q] Mg(r)+exp[t] L(Mg(r))]+O(1) (2)

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε)[log[m] Mg(r)+ exp[t] L(Mg(r))]+O(1)

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε)

× [exp[m−1][(log[n−1] r)exp[t+1] L(r)](ρ
L
g (m,n,t)+ε) + exp[t] L(Mg(r))]+O(1). (3)

Also in view of Lemma 4, we obtain for all sufficiently large values of r that

log[p−m] T−1
W (h)(TW ( f )(r)) � exp[m−1][(log[q−1] r)exp[t+1] L(r)](λ

(p,q,t)L
W(h) (W( f ))−ε)

.

i.e., log[p−m] T−1
W(h)(TW ( f )(r)) � exp[m−1][(log[q−1] r)exp[t+1] L(r)](λ

(p,q,t)L
h ( f )−ε). (4)

Now from (3) and (4) we get for all sufficiently large values of r that

log[p] T−1
h (Tf◦g(r))

log[p−m] T−1
W (h)(TW ( f )(r))

� (ρ (p,q,t)L
h ( f )+ ε)[exp[m−1][(log[n−1] r)exp[t+1] L(r)](ρ

L
g (m,n,t)+ε)

exp[m−1][(log[q−1] r)exp[t+1] L(r)](λ
(p,q,t)L
h ( f )−ε)

+
exp[t] L(Mg(r))]+O(1)

exp[m−1][(log[q−1] r)exp[t+1] L(r)](λ
(p,q,t)L
h ( f )−ε)

. (5)
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Since ρL
g (m,n, t) < λ (p,q,t)L

h ( f ) , we can choose ε(> 0) in such a way that

ρL
g (m,n,t)+ ε < λ (p,q,t)L

h ( f )− ε. (6)

Now let for some α < λ (p,q,t)L
h ( f ),

exp[t] L(Mg(r)) = o{exp[m−1][(log[q−1] r)exp[t+1] L(r)]α} as r → ∞ .

As α < λ (p,q,t)L
h ( f ) we can choose ε(> 0) in such a way that

α < λ (p,q,t)L
h ( f )− ε. (7)

Since exp[t] L(Mg(r)) = o{exp[m−1][(log[q−1] r)exp[t+1] L(r)]α} as r → ∞ we get on
using (7) that

exp[t] L(Mg(r))

exp[m−1][(log[q−1] r)exp[t+1] L(r)]α
→ 0 as r → ∞

i.e.,
exp[t] L(Mg(r))

exp[m−1][(log[q−1] r)exp[t+1] L(r)](λ
(p,q,t)L
h ( f )−ε)

→ 0 as r → ∞. (8)

Now in view of (5) , (6) and (8) we obtain that

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[p−m] T−1
W(h)(TW ( f )(r))

= 0.

Thus the theorem follows. �

THEOREM 2. Let g be a transcendental entire function with ∑
a �=∞

δ (a;g)+δ (∞;g)

= 2 and k be a transcendental entire function having the maximum deficiency sum with
regular (m, l) growth. Also let f be a meromorphic function and h is an entire function

such that ρ (p,q,t)L
h ( f ) < ∞ , λ (l,n,t)L

k (g) > 0 and ρL
g (m,n,t) < ∞ where m > q. If h

satisfy the Property (A), then

lim
r→∞

log[p+m−q] T−1
h (Tf◦g(r))

log[l] T−1
W(k)(TW (g)(r))+ exp[t] L(Mg(r))

�
ρL

g (m,n, t)

λ (l,n,t)L
k (g)

,

when exp[t] L(Mg(r)) = o{log[l] T−1
W (k)(TW (g)(r))} as r → ∞ .

Proof. From (2) for all sufficiently large values of r ,we have

log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε)[log[q] Mg(r)+ exp[t] L(Mg(r))+O(1)]

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε) · log[q] Mg(r)

+(ρ (p,q,t)L
h ( f )+ ε) · [exp[t] L(Mg(r))+O(1)]
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i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε) · log[q] Mg(r)
[ (ρ (p,q,t)L

h ( f )+ ε) · log[q] Mg(r)

(ρ (p,q,t)L
h ( f )+ ε) · log[q] Mg(r)

+
(ρ (p,q,t)L

h ( f )+ ε) · [exp[t] L(Mg(r))+O(1)

(ρ (p,q,t)L
h ( f )+ ε) · log[q] Mg(r)

]

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε) · log[q] Mg(r)
[
1+

exp[t] L(Mg(r))+O(1)

log[q] Mg(r)

]

i.e., log[p+1] T−1
h (Tf◦g(r)) � log(ρ (p,q,t)L

h ( f )+ ε)+ log[q+1] Mg(r)

+ log
[
1+

exp[t] L(Mg(r))+O(1)

log[q] Mg(r)

]

Taking log
(
1+ exp[t] L(Mg(r))+O(1)

log[q] Mg(r)

)
∼ exp[t] L(Mg(r))+O(1)

log[q] Mg(r)
, we get for all sufficiently

large values of r ,

log[p+1] T−1
h (Tf◦g(r)) � log[q+1] Mg(r)+ log(ρ (p,q,t)L

h ( f )+ ε)

+
exp[t] L(Mg(r))+O(1)

log[q] Mg(r)

i.e., log[p+1] T−1
h (Tf◦g(r))

� log[q+1] Mg(r)
[
1+

exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L
h ( f )+ ε)

log[q] Mg(r) · log[q+1] Mg(r)

]
.

i.e., log[p+2] T−1
h (Tf◦g(r))

� log[q+2] Mg(r) log
[
1+

exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L
h ( f )+ ε)

log[q] Mg(r) · log[q+1] Mg(r)

]
.

Again using log(1 + x) ∼ x for x = exp[t] L(Mg(r))+O(1)+log[q] Mg(r)·log(ρ(p,q,t)L
h ( f )+ε)

q+1
Π

k=q
log[k] Mg(r)

,

we get from above for all sufficiently large positive numbers of r ,

log[p+2] T−1
h (Tf◦g(r)) � log[q+2] Mg(r)

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ε)
q+1
Π

k=q
log[k] Mg(r)

.
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Continuing this process, we get

log[p+m−q] T−1
h (Tf◦g(r)) � log[q+m−q] Mg(r)

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ ε)
q+m−q−1

Π
k=q

log[k] Mg(r)
.

i.e., log[p+m−q] T−1
h (Tf◦g(r)) � log[m] Mg(r)

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ ε)
m−1
Π

k=q
log[k] Mg(r)

.

i.e., log[p+m−q] T−1
h (Tf◦g(r)) � (ρL

g (m,n,t)+ ε)[log[n] r+ exp[t] L(r)]

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ ε)
m−1
Π

k=q
log[k] Mg(r)

. (9)

Again in view of Lemma 4, we have for all sufficiently large values of r that

log[l] T−1
W (k)(TW(g)(r)) � (λ (l,n,t)L

W (k) (W (g))− ε)[log[n] r+ exp[t] L(r)]

i.e., log[n] r+ exp[t] L(r) �
log[l] T−1

W (k)(TW (g)(r))

(λ (l,n,t)L
k (g)− ε)

. (10)

Hence from (9) and (10) , it follows for all sufficiently large values of r that

log[p+m−q] T−1
h (Tf◦g(r)) �

( ρL
g (m,n,t)+ ε

λ (l,n,t)L
k (g)− ε

)
· log[l] T−1

W (k)(TW (g)(r))

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ ε)
m−1
Π

k=q
log[k] Mg(r)

i.e,
log[p+m−q] T−1

h (Tf◦g(r))
log[l] T−1

W(k)(TW (g)(r))+ exp[t] L(Mg(r))

�
( ρL

g (m,n,t)+ ε

λ (l,n,t)L
k (g)− ε

)
·

log[l] T−1
W (k)(TW (g)(r))

log[l] T−1
W (k)(TW(g)(r))+ exp[t] L(Mg(r))

+
exp[t] L(Mg(r))+O(1)+ log[q] Mg(r) · log(ρ (p,q,t)L

h ( f )+ ε)

[log[l] T−1
W (k)(TW (g)(r))+ exp[t] L(Mg(r))] ·

m−1
Π

k=q
log[k] Mg(r)
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i.e,
log[p+m−q] T−1

h (Tf◦g(r))
log[l] T−1

W(k)(TW(g)(r))+ exp[t] L(Mg(r))

�

ρL
g (m,n,t)+ε

λ (l,n,t)L
k (g)−ε

1+ exp[t] L(Mg(r))
log[l] T−1

W (k)(TW (g)(r))

+
1+ O(1)+log[q] Mg(r)·log(ρ(p,q,t)L

h ( f )+ε)
exp[t] L(Mg(r))

[1+
log[l] T−1

W (k)(TW(g)(r))

exp[t] L(Mg(r))
] ·m−1

Π
k=q

log[k] Mg(r)
.

i.e,
log[p+m−q] T−1

h (Tf◦g(r))
log[l] T−1

W (k)(TW (g)(r))+ exp[t] L(Mg(r))
�

ρL
g (m,n,t)+ε

λ (l,n,t)L
k (g)−ε

1+ exp[t] L(Mg(r))
log[l] T−1

W (k)(TW(g)(r))

+

1
m−1
Π

k=q
log[k] Mg(r)

+ O(1)

exp[t] L(Mg(r))·
m−1
Π

k=q
log[k] Mg(r)

+ log(ρ(p,q,t)L
h ( f )+ε)

exp[t] L(Mg(r))·
m−1
Π

k=q+1
log[k] Mg(r)

[1+
log[l] T−1

W(k)(TW (g)(r))

exp[t] L(Mg(r))
]

. (11)

Since exp[t] L(Mg(r)) = o{log[l] T−1
W(k)(TW (g)(r))} as r → ∞ and ε(> 0) is arbitrary we

obtain from (11) that

lim
r→∞

log[p+m−q] T−1
h (Tf◦g(r))

log[l] T−1
W(k)(TW (g)(r))+ exp[t] L(Mg(r))

�
ρL

g (m,n, t)

λ (l,n,t)L
k (g)

.

Thus the theorem is established. �

Now we state the following theorem without its proof as it can be carried out in
the line of Theorem 2:

THEOREM 3. Let f be a transcendental meromorphic function with ∑
a �=∞

δ (a; f )+

δ (∞; f ) = 2 , g be an entire function and h be a transcendental entire function having

the maximum deficiency sum with regular (a, p) growth such that 0 < λ (p,q,t)L
h ( f ) �

ρ (p,q,t)L
h ( f ) < ∞ and ρL

g (m,n,t) < ∞ where m > n = q. If h satisfy the Property (A),
then

lim
r→∞

log[p+m−q] T−1
h (Tf◦g(r))

log[p] T−1
W (h)(TW ( f )(r))+ exp[t] L(Mg(r))

�
ρL

g (m,n,t)

λ (p,q,t)L
h ( f )

,

when exp[t] L(Mg(r)) = o{log[p] T−1
W(h)(TW( f )(r))} as r → ∞ .

THEOREM 4. Let f be a transcendental meromorphic function with ∑
a �=∞

δ (a; f )+

δ (∞; f ) = 2 , g be an entire function and h be a transcendental entire function having



210 T. BISWAS AND C. BISWAS

the maximum deficiency sum with regular (a, p) growth such that ρ (p,q,t)L
h ( f ) < ∞ and

λ (p,q,t)L
h ( f ◦ g) = ∞ where a > 1 . Then

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[p] T−1
W(h)(TW ( f )(r))

= ∞.

Proof. If possible, let there exists a constant β such that for a sequence of values
of r tending to infinity we have

log[p] T−1
h (Tf◦g(r)) � β · log[p] T−1

W (h)(TW ( f )(r)). (12)

Again from the definition of ρ (p,q,t)L
W(h) (W ( f )) , it follows in view of Lemma 4 for

all sufficiently large values of r that

log[p] T−1
W(h)(TW( f )(r)) � (ρ (p,q,t)L

W(h) (W ( f ))+ ε)[log[q] r+ exp[t] L(r)]

i.e., log[p] T−1
W (h)(TW ( f )(r)) � (ρ (p,q,t)L

h ( f )+ ε)[log[q] r+ exp[t] L(r)]. (13)

Now combining (12) and (13) we obtain for a sequence of values of r tending to
infinity that

log[p] T−1
h (Tf◦g(r)) � β · (ρ (p,q,t)L

h ( f )+ ε)[log[q] r+ exp[t] L(r)]

i.e., λ (p,q,t)L
h ( f ◦ g) � β · (ρ (p,q,t)L

h ( f )+ ε),

which contradicts the condition λ (p,q,t)L
h ( f ◦g) = ∞ . So for all sufficiently large values

of r we get that

log[p] T−1
h (Tf (r)) � β · log[p] T−1

W(h)(TW ( f )(r)),

from which the theorem follows. �

In the line of Theorem 4, one can easily prove the following theorem and therefore
its proof is omitted.

THEOREM 5. Let g be a transcendental entire function with ∑
a �=∞

δ (a;g)+δ (∞;g)=

2 and k be a transcendental entire function having the maximum deficiency sum with
regular (l,m) growth where l > 1 . Also let f be a meromorphic function and h is an

entire function such that ρ (m,q,t)L
k (g) < ∞ and λ (p,q,t)L

h ( f ◦ g) = ∞ . Then

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[m] T−1
W(k)(TW(g)(r))

= ∞.
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THEOREM 6. Let f be a transcendental meromorphic function with ∑
a �=∞

δ (a; f )+

δ (∞; f ) = 2 , g be an entire function and h be a transcendental entire function having

the maximum deficiency sum with regular (a, p) growth such that 0 < λ (p,q,t)L
h ( f ) �

ρ (p,q,t)L
h ( f ) < ∞ and σL

g (m,n,t) < ∞ where m−1 � q, a > 1 . If h satisfy the Property
(A), then

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[p] T−1
W (h)(TW ( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

�
ρ (p,q,t)L

h ( f ) ·σL
g (m,n,t)

λ (p,q,t)L
h ( f )

,

when for some positive α < ρL
g (m,n,t),

exp[t] L(Mg(r)) = o([log[n−1] r · exp[t+1] L(r)]α ) as r → ∞ .

Proof. Since 0 < ρ (p,q,t)L
h ( f ) < ∞ and T−1

h (r) is an increasing function of r , it
follows from (1) for all sufficiently large values of r that

log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε)[log[q] Mg(r)+ exp[t] L(Mg(r))]+O(1)

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε)[log[m−1] Mg(r)+ exp[t] L(Mg(r))]+O(1)

i.e., log[p] T−1
h (Tf◦g(r)) � (ρ (p,q,t)L

h ( f )+ ε) ·
[(σL

g (m,n, t)+ ε)[log[n−1] r · exp[t+1] L(r)]ρ
L
g (m,n,t) + exp[t] L(Mg(r))]+O(1) . (14)

Also, we obtain in view of Lemma 4 for all sufficiently large values of r that

log[p] T−1
W (h)TW( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t))

� (λ (p,q,t)L
W(h) (W ( f ))− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

+(λ (p,q,t)L
W(h) (W ( f ))− ε)exp[t][L(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t))]

i.e., log[p] T−1
W (h)(TW ( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

� (λ (p,q,t)L
h ( f )− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

+(λ (p,q,t)L
h ( f )− ε)exp[t][L(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t))]

log[p] T−1
W (h)(TW ( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

� (λ (p,q,t)L
h ( f )− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t).
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Now from (14) and above it follows for all sufficiently large values of r that

log[p] T−1
h (Tf◦g(r))

log[p] T−1
W(h)(TW ( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

�
(ρ (p,q,t)L

h ( f )+ ε)[(σL
g (m,n,t)+ ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

(λ (p,q,t)L
h ( f )− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

+
exp[t] L(Mg(r))]

(λ (p,q,t)L
h ( f )− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

+
O(1)

(λ (p,q,t)L
h ( f )− ε)[log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)

(15)

As α < ρL
g (m,n, t) and exp[t] L(Mg(r)) = o([log[n−1] r · exp[t+1] L(r)]α ) as r → ∞ , we

obtain that

lim
r→∞

exp[t] L(Mg(r))

[log[n−1] r · exp[t+1] L(r)]ρ
L
g (m,n,t)

= 0 . (16)

Since ε(> 0) is arbitrary, it follows from (15) and (16) that

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[p] T−1
W (h)(TW ( f )(exp[q][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

�
ρ (p,q,t)L

h ( f ) ·σL
g (m,n,t)

λ (p,q,t)L
h ( f )

. �

In the line of Theorem 6, one can easily prove the following theorem and therefore
its proof is omitted.

THEOREM 7. Let g be a transcendental entire function with ∑
a �=∞

δ (a;g)+δ (∞;g)=

2 and k be a transcendental entire function having the maximum deficiency sum with
regular (m, l) growth where m > 1 . Also let f be a meromorphic function and h is an

entire function such that λ (l,n,t)L
k (g) > 0 , ρ (p,q,t)L

h ( f ) < ∞ and σL
g (m,n, t) < ∞ where

m−1 � q. If h satisfy the Property (A), then

lim
r→∞

log[p] T−1
h (Tf◦g(r))

log[l] T−1
W (k)(TW (g)(exp[n][log[n−1] r · exp[t+1] L(r)]ρ

L
g (m,n,t)))

�
ρ (p,q,t)L

h ( f ) ·σL
g (m,n,t)

λ (l,n,t)L
k (g)

,

when, for some positive α < ρL
g (m,n,t), exp[t] L(Mg(r))= o([log[n−1] r ·exp[t+1] L(r)]α )

as r → ∞ .
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