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ON WEIGHTED B-ABSOLUTE CONVERGENCE
OF DOUBLE FOURIER SERIES

K. N. DARIT AND R. G. VYAS

Abstract. In this paper, we obtain a sufficient condition for the weighted [ -absolute convergence
(0 < B < 2) of the double Fourier series of a function f of (¢,y)-(A',A?)-bounded variation.

1. Introduction

One of the most striking trends in analysis is the study of the Fourier coeffi-
cients properties of functions of various generalized bounded variations. Extending
a classical result of Zygmund, Schramm and Waterman [6] obtained sufficient condi-
tion for the absolute convergence of single Fourier series of functions of the classes
ABV)(T) (p > 1) and ¢ ABV(T), where T = [0,27] is the torus. In 2007 [8], these
results of Schramm and Waterman were extended to [ -absolute convergence of sin-
gle Fourier series. Gogoladze and Meskhia [3] obtained sufficient conditions for the
weighted f3 -absolute convergence of single Fourier series for different function spaces.
In 2008, Moricz and Veres [4] extended these results of Gogoladze and Meskhia from
single to multiple Fourier series. In 2013 [9], we have obtained sufficient conditions
for the f-absolute convergence of multiple Fourier series which includes a multidi-
mensional analogue of one dimensional result proved by Schramm and Waterman [0,
Theorem 1, p. 274]. In this paper, we obtain a sufficient condition for the weighted 3 -
absolute convergence of the double Fourier series of a function f of (¢,w)-(A!,A?)-
bounded variation. Our sufficient condition gives generalized two dimensional ana-
logue of one dimensional result proved in [6, Theorem 2, p. 274] by Schramm and
Waterman, [8, Theorem 2, with n; = k, for all k, p. 770] and [12, Theorem 1, with
ng =k, for all k].

In the sequel, L is a class of non-decreasing sequences A = {A,};_, of positive
numbers such that lim, ... A, = e, where A, =7, Ak_ I and C represents a constant
vary time to time.
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2. Results for functions of one variable

For a 27 -periodic complex valued function f € L!(T), its Fourier series is defined

fx)~ 3, fm)e™,

meZ

as

where the Fourier coefficients f(m) are defined by

A 1 .

Fm) = 5= [ f) e
A Fourier series of f is said to be 3 -absolute convergent if

Y1 m)fP <.

mez

For 3 = 1, one gets the absolute convergence of the Fourier series of f.

For a given f € LP(T) (p > 1), the p-integral modulus of continuity of f is
defined as

o) (f;8) = sup | Tnf = £l ps
0<h<§

where Tj,f(x) = f(x+h) for all x and ||'||, denotes the L”-norm over T.
For p = e, we omit writing p, one gets o (f;0), the modulus of continuity of f.
Given a convex function ¢, defined on [0,c0) and strictly increasing from 0 to
oo, and a sequence A € L, a complex valued function f defined on T is said to be of
¢ - A-bounded variation (that is, f € 9 ABV(T)) if

Vi, (f,T) =sup (2 Q)(fT(ka))> o

I\ k

where .# is a finite collections of non-overlapping subintervals {I; = [a;,b;]} in T
and f(L) = f(b) — f(ax). _

Note that, for ¢(x) =x and A = {1} one gets the class BV(T); for ¢(x) =x one
gets the class ABV (T); and for ¢(x) =x” (p > 1) one gets the class ABV?)(T).

It is customary to consider ¢ an N -function which is defined as follows.

A convex function ¢ defined on [0,0) such that ¢(0) =0, @ —0asx— 04,

and @ — o0 a8 X — oo, is called an N -function.

We note that an N -function is necessarily continuous and strictly increasing on
[0,00).

An N -function ¢ is said to be a A function if there is a constant d > 2 such that
®(2x) < do(x) forall x > 0.

Following the definition in [3], a sequence Yy = {%,: m € N.} of nonnegative
numbers is said to belongs to the class @7, for some o > 1 if

1/a
(2 y,ff) <xtl=a/e Ny, peN., .1

me 9y megy
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where
D y:i=D0={1}, Dy:={2""" 1207142 2"} peN,, (2.2)
and the constant k¥ does not depend on . Without loss of generality, we assume that
K>1.
Note that,

Aoy C gy, Where 1< oy <o < oo (2.3)

If a sequences ¥ = {%, = 0} is such that
max{y, :me Z,} <xmin{y,:me Jy_1}, peN,,

then y € 7, forevery o > 1. This inequality was introduced by Ul’yanov [7].
For convenience in writing, put

We prove the following results.

THEOREM 2.1. If ¢ €Ay, f € QABV(T), 1< p <2r, 1 <r<oo, and y=
{¥n} € ) (2_p) for some B € (0,2), then

N —p)s . r— B/2r

m>1 4=0 Agu

where %

+ L =1, x is from (2.1) corresponding to oo =2/(2 — B), C is a constant,

N

Tui= Y Yuforuw€eN, andT_y:=T:={p}.

meyy

Proof. Since f € ¢ ABV(T) is bounded, we have f € L*(T). For any u € N,

consider ) Go1)
LI JTY u-r
fj<x’2_ﬂ>_f<x+2ﬂ) f<x+ T )
Then, for each m € Z, we have
n im mm
f]( ) Zlf( ) J 2)2“ SIII(W).

By Parseval formula, we get

>,

meZ

Fmy sin ()| = (151,

Since
im|7

T
ST <5, Imley, (2.4)

<

AN
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we have

Sui=Y [fm)>=o0(fl), (2.5)

[m|€ Py

forall j=1,...,2".
Suppose r > 1. Since

2s—p(s—1 2—p)s+
2:<2_£>+£:w+£:w+27
r r S r S r

applying Holder’s inequality on the right side of the inequality (2.5), we have

Su=0 ((/Tlf.f (1) ) Sy )
~o(a 1n1y"),

where Qi = (a)(2_p)5+p (f; 2%)>h_p. Thus,

g1
S, =0 (Qz% /T’f, <x; 23”) ’p dx) . 2.6)

Since multiplying f by a positive constant changes () ( s 2%) by the same constant,

f is bounded, and ¢ € Ay, we may assume that || f|| < 3. Thus ||f;[| < 1 and hence
from equation (2.6), we get

Sp<CQy /T ) £ Q%)) dx, @2.7)

where constant C depends on f,r,s and p.
Since ¢ is convex on [0,e0) and ¢(0) =0, forany 0 < o < 1 and x > 0 we have

dlax)=¢(o-x+(1—a)-0) < ap(x)+ (1 — )9 (0) = o (x). (2.8)
Further, as ¢(2x) < d¢(x), for all x > 0, it follows that
¢ (ax) <d'°2 g (x) (2.9)
for all x > 0 and for all @ > 1. For, using induction on k we get
9(2%) <do(x),

for all x > 0 and for all kK € N. Next, if @ > 1 is any real number, choosing k£ € N such
that 281 < a < 2%, we get 0 < 2a_k < 1. Therefore for all x > 0 we have

o(ar) = ¢ (57-2%) < 51

% 0(2x) < ;a9 (x) < Ao (x) < AR o ().
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Since CQz% >0, if CQZLH < 1 then from equation (2.7) and equation (2.8) we get

(%) <o (T2 LIl o)
<CQz0 (%/T‘f, (x;z%)‘dx) (2.10)

Further when CQZ% > 1, in view of equation (2.7) and equation (2.9) we get

() <o (SF L3 e
<d10g2<C’QZ%>+1¢ <%/T|f, (x;%)'dx), @2.11)

where C' = % Now, in view of the formula x® = 2%1°%2* for x >0 and o € R, we
have

/N

logy C’QL>+1
20

log) Q 7
d 2

— d-d°=C .4 — 4. d°o=C . 2<1°g292%) (logy d)

log,d
— d.d"o=C . (2“”"292’{1) =C'Qle?, (2.12)

21

where C" = d -d'°®2€" . Now, using equation (2.12) in equation (2.11) and denoting the
constant C” by C itself, we get

(%) <ene(& L))
=calttago (5 Lo (7))
<CQx ¢< /‘f,( “))dx) 2.13)

because of the fact that legzd <1,as |[f]« < % and log,d —1 > 0. In either case,
i

2
from (2.10) and (2.13), in view of Jensen’s inequality for integral, we have

o(5x) <cag Lo (1 () o

Multiplying both the sides of the above inequality by % and then summing over j =1
]

¢(~29_n) (MH/Z 0 (11 (x '%de),

to 2#, we have
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where Apu = Zfi | 7%, Since f € ABV(T) implies

% ¢ (|fJ gic’%ﬂ) =0(1)
]

j=1

ol (2))

Since 1 = % + # , by Holder’s inequality, we have

Ryi= Y tulf(m)?

and hence

lm|e Zy
B/2 (2-B)/2
<| X fm)P > WP
lm|e 2y Iml€ Py
0 B/2r (2-B)/2
oo (2))" (5 2o
Agu |m|e 2y

Thus, for u > 1, in view of (2.1), with o =2/(2 — ), and (2.14), we get

QL [3/2r
Ry <CKk27HP2T, (q)l (A—2“>> :
21

If u =0, then from equation (2.14) it follows that

B/2r
Ro=n(f(-DP +|f()F)=0 (71 <¢‘1 (%)) ) :
A

Hence, for r > 1, the result follows from

Y tlfm)f =3 Ry
u=0

m|>1

For the case r =1, s = oo, simply note that

(g < (o(r3)) b (e 55)

and proceed as above from equation (2.6) onwards. [J

p _
,xeT,

COROLLARY 2.2. Under the hypothesis of Theorem 2.1, we have

(2.14)

< (@=p)s+p) (£ my2r—p\ \ P/
S g lfm)f <xCY m P2y, <¢1 ((w ? Zn(lf,m)) p>> |

|m|>1 m=1
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In the case when {,} = {1}, it follows from Corollary 2.2 that

S (2=p)s+p)( £ TY)2r— B/2r
S 1fm)P <kcY m P2 <¢_1<(w 1’+11;n(1f,m)) p)) |

[m|>1 m=1

This was proved in [8, Theorem 2, with n; =k, for all k, p. 770].

Similarly, Corollary 2.2 reduces to the result concerning the absolute convergence
of Fourier series of Schramm and Waterman [6, Theorem 2, p. 274] in the case when
{yn} = {1} and B = 1; and also reduces to the result proved in [12, Theorem 1, with
ng = k, for all k] in the case when {y,} ={1}, ¢(x) =x,r=1and p=1.

3. Results for functions of two variables

For a complex valued function f € L! (Tz), where f is 2m-periodic in each vari-
able, its double Fourier series is defined as

Emen lmernv

meZnel

where the Fourier coefficients f(m,n) are defined by

f(m,n) 42//fxy ’m”"vdxdy

A double Fourier series of f is said to be 3 -absolute convergent if

Y Y mn)f <o,

meZnel
where
S Y lfmnf =3 3 |1fmn)P+ Y 1fm0)f+ Y 70, —]70,0).
meZne’ [m|>1|n|>1 meZ nez
(3.1
In the special case, when m =0 or n =0, we write

f(m,0) = fi(m), where fi(x): =5 /f x,y) dy, x€T; (3.2)
and

f(07n):f2(n), where f>(y) = /fxy )dx, yeT. (3.3)

We may write
Y AmP =3 [fmo)f and Y |Sm)P =3 |f0.n)F
me7Z meZ, nez nez
Combining this with (3.1) gives

Y X mnlf =% 3 | fma)lf+ X AP+ Y 0P 70,0,

meZnel [m|=1|n|>1 meZ nez
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Thus, the double Fourier series of f is 3 -absolute convergent if

SN [fmn)f <o, Y |fi(m)|P <o and Y |f(n)]P < oo

[m|>1|n|>1 meZ nez

For B =1, one gets the absolute convergence of the double Fourier series of f.

For a given f € L (Tz) (p = 1), the p-integral modulus of continuity of f is
defined as

sup
P (f:81,8) = pe(o.5,) I Thaf = Toxf = Tuof + £llps
ke(0,8:]

where (Tj,xf)(x,y) = f(x+h,y+k) for all x and |||, denotes the L”-norm over T .
For p = e, we omit writing p, one gets ®(f;0;,8,), the modulus of continuity

of f.
For I = [a,b] and J = [c,d], define

f(IX]) :f(bvd)_f(avd)_f(bvc)+f(a7c)'

A complex valued measurable function f defined on T is said to be of (0,v)-
(A, A%)-bounded variation (that is, f € (¢, w)(A',A2)BV (T")) if

N f I x Jj)

where A! = {41,}, A2 = {A,} € L; functions ¢ and y are convex and strictly
increasing on [0,0) with ¢(0) = w(0) =0; and .# and _# are finite collections of
non-overlapping subintervals {I;} and {J;} in T respectively.

Consider a function f : T> — R defined by f(x,y) = g(x) +h(y), where g and
h are any two arbitrary not necessarily bounded functions from T into R. Then
Viataz), (f, ) = 0. Thus, a function f with Viataz), ) (ﬁTz) < o need not be
bounded

If £ € (¢, y)(A!,A2)BV(T") is such that the marginal functions £(0,.) € $A2BV (T)
and f(.,0) € A'BV(T) then f is said to be of (¢, y)-(A',A?)*-bounded variation
(thatis, f € (¢, w)(A!,A2)*BV(T")).

Note that, for ¢ (x) = y(x) =x and A! = A> = {1} classes (¢, y)(A, A2)BV(T")
and (¢, w)(A',A?)*BV(T ) reduce to classes BVy (T 2) (the class of functions of boun-
ded varlatlon in the sense of Vitali (refer [5, p. 279] for the definition of BVy (T )))
and BVy (T ) (the class of functions of bounded variation in the sense of Hardy (re-
fer [5, p. 280] for the definition of BVjy(T ))) respectively; for y(x) = x classes
(0,w)(A',A2)BV(T") and (¢, y)(A!,A2)*BV (T") reduce to classes ¢(A!, A2)BV (T")
[10, Definition 1. p. 1153] and ¢(A!,A2)*BV(T") respectively; for y(x ) = x and
d(x) =xP (p = 1) classes (¢, y)(A!,A>)BV(T 2) and (¢, y)(Al, A2)*BV('JI‘ ) reduce
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to classes (A!,A2)BV(")(T") [11, Definition 1.2, p. 28] and (A, A2)*BV(")(T") re-
spectively; for ¢ (x) =x” (p>1) and y(x) =x7/? (g > p) classes (¢, y)(Al, Az)Bv(Tz)
and (¢, y)(A',A2)*BV(T") reduce to classes (A!,A2)BV(P4)(T") [2, Definition 2.1,
p. 362] and (Al,A2)*BV(1’f‘1)(T2) respectively; for ¢(x) = y(x) = x classes
(0,9)(A',A2)BV(T") and (¢, y)(A!,A2)*BV(T") reduce to classes (A!,A2)BV (T")
[1, Definition 2, p. 8] and (A!,A2)*BV(T") respectively.

Following the definition in [4], a double sequence y = {¥u} : (m,n) € N2} of
nonnegative numbers belongs to the class 7, for some o > 1 if

/o
(Z > m) S ARSI Y Y (3.4)
mePy n€ Py megy | n€Yy_1

forall u,v >0, where 9, is as defined in (2.2) for u >0
For instance, if 4 > 1 and v = 0, then inequality (3.4) is of the form

/o
( > 731) < xarli-a)/e Y Y-
me 9y megy

It is easy to check that the inclusion (2.3) remain valid; and if a double sequence y =
{%un > 0} is such that

max{Ym: m€ Dy, n€ Dy} < KMin{Ypy: me Jy_1, n € Dy_1}, (u,v)eNz,

where x is a constant, then y € o7, forevery o > 1.
For convenience in writing, put

Y—mn = Ym,—n = Y—m,—n = Ymn, (m7n) S Ni

We prove the following results.

THEOREM 3.1. If ¢,y € Ay, f € (6, y)(A!,A2)BV(T ) nL>(T"), 1< p < 2r,
1< r <o, and Y= {Yun} € S (2—p) for some B € (0,2), then

ZEYmann <

[m|>1|n|>1

7—(u+v)B/2 | DT (3.5)

Mx
M s

ov

s ,_ B/2r
(@GPt (e E2ep
Ay A3,

where L +1 =1, K is from (3.4) corresponding to o0 =2/(2— ),

Tuvi= 2 D Y forp,vz=-—1, (3.6)

mePy n€Yy

0

=
Il

T_iy:=Toy, Ty_1:=Tyo foru,v=0, and T_y 1 :=Too={y}. (3.7



10 K. N. DARJIIAND R. G. VYAS

Proof. For any u,v € N, consider

f,-k( ,y,zﬁ ;,) :f<{x+ (jgul)ﬂ7x+j_”] X [y+ (k—1)rx knp

2u v Yoy

Then, for each m,n € Z, we have

[§)

fjk(’”:") = —4f(m,n) eim(jf%)%“ ei"(k_%)LV sin (—;ZfJ sin (—;}fl) .

Since f € L? (Tz), from Parseval formula, we get

S 3 [fonn) sin (357 ) sin (5557 = 00l

meZne’Z
In view of inequality (2.4) and an analogous inequality for |n| € 2, , we have

Swvi= %, ¥, |f(mn)? =0 fxl3),

(3.8)
[m|e Dy |n|e2y
forall j=1,....2% andforall k=1,...,2".
Suppose r > 1. Since
2—
PO il Dokl
s r
applying Holder’s inequality on the right side of the inequality (3.8), we have
(2-p)stp 1/s
Suv = (( [ Lol (g ) |7 avas) ||f,k”/’>
l r r
—o(ay 5 Il).
2r—
where Q% % = (a)(z‘p)”p (f: 4 21)> " Thus,
s’ "dxd 3.9
uv = 2H2V// 2I~l2V>) xay|. (3.9)

Since multiplying f by a positive constant changes P ( f

J,4) by the same con-
stant, f is bounded, and ¢ € A,, we may assume that || f|| < J. Thus || fj|- < 1 and
hence from equation (3.9), we get

: LA
Sy <CQ & //T2 Vg, ac )| dxay, (3.10)

where constant C depends on f,r,s and p
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Since CQ
we get

>0, if CQ < 1 then from equation (3.10) and equation (2.8)

Son 2V>‘dxdy>

dxdy) . (3.11)

A o
2 23V

o3 < CQH//
4n2) = 472

1

Qd’(m

> 1, in view of equation (3.10) and equation (2.9) we get

ST 2V>’dx‘iy>

Jk xy’

N

mon
(x’y’z—m—v)\

Further when CQ

T
PIEDYY

(Z) S;:l_v <¢ Cinlrl v //
an? ) U\ an2
dlog2<CQn>n>+1 (

~

dx dy) , (3.12)

472 28’ 2V> ‘

X log, (C/QL L>+l loe, d ’
where C' = %. Since d foav =C"Q %", , where C" =d - d"°2C | and
SV

denoting the constant C” by C itself, in view of equation (3.12), we get

Sr
W) < cqlond ‘ dxd
¢ (47r2> Eriakid 47t2 ,y, 287 2V> Ty
logzd 1 . L Lvr ’
ngy 5 QZ# T (4]‘[2//’]1‘2 ) 2“72\/) d.xdy)
T T
(H//TZ (2, 20)| dxdy) (3.13)

because of the fact that Q924 ' < 1, as || £l < § and logyd — 1 > 0. In either case,
priab

< CQ

<|?|

T
By

from (3.11) and (3.13), in view of Jensen’s inequality for integral, we have

S, T T
uv y ~
¢ (47t2> jn; // )ffk o 2#’2_V>‘)dxaly'

Multiplying both the sides of the above inequality by ﬁ and then summing over j =1
5]

to 2#, we have

A%H Shv _ ’f/k xy727/[1’2l)|)
Q ﬁ’(m) 4n2// Z A dedy |,

T
e

1
where A,y —Z, ULIJ
Again, using Jensen’s inequality for integrals, we have

(o (3) o (B0 )

Ea
I
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Multiplying both the sides of the above inequality by }é—k and then summing over £ = 1

to 2V, we have

< 0 (i (vyi . ) )
(47‘52//J1‘ /bk (,21 A wedy |

where A, = Y2, ﬁ Since f € (¢, )(A!,A2)BV(T") implies

2;% (22 0 (£ (xﬁ; 75 3) )) =0(1)

( 1<Q—— YRR
sw=o (o7 (“EFv (5)
Al A3,

Since 1 = g + % , by Holder’s inequality, we have

and hence

Ryy = 2 2 ’)/mn|f(m,n)‘ﬁ
|m|e Py Inle Dy
B/2 (2-p)/2

2 2 2/(2=B)

<[ X 3 Ifmn) Y X
|m|e Py |n|e Dy |m|e Py Inle Dy
o B/2r (2-B)/2

<clot [ (] 2/(2—B)
scle AV A X 2 Ym

24 2V [m|e Dy |n|le 2y

(3.14)

Thus, for max{u,v} > 1, in view of (3.4), with ¢ =2/(2 — ), and (3.14), we get

Qr n 1 ke
Ruv < Cx2~ VB2 Iy-1v-1 (‘Z’l ( 2H172v Wil ( 2 ))) :
Ao Ay

If u =v =0, then from equation (3.14) it follows that

Roo = m(If(LDP+1f (=L DP +|F(L, -1 +|f(~1,-1)F)

B/2r
Q 1
A1 o1
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Hence, for r > 1, the result follows from

S S tmlfnn)f = 3 ERuv

[m|>1|n|>1 n=0v=

For the case r = 1, s = oo, simply note that

i (e o) < (0 (g e)) " i (e )|

and proceed as above from equation (3.9) onwards. [

(x,y) €T,

LEMMA 3.2. If f € (¢, W)(Al,Az)*BV(Tz), then f is bounded on T".

Proof. Forany f € (¢,w)(A!,A2)*BV(T),
|f eyl < [F([0,x] x [0,y +1£(0,y) — £(0,0)[ + | £ (x,0) — £(0,0)| +[£(0,0)]
07 Gy GaaViar iy, (5T 07 (Ve (70,,T))
+¢_l(AI,IVA$ (f(70)7T)) + ‘f(070)‘

NN

implies f is bounded on T-. [

COROLLARY 3.3. If ¢,y € Ay and a measurable f & (¢,y/)(A17A2)*BV(T2)7
then (3.5) holds true, where p,r,s,y, B, K, oo and T are as in Theorem 3.1.

Proof. Tt follows from Lemma 3.2 and Theorem 3.1. [J

COROLLARY 3.4. Under the hypothesis of Theorem 3.1, we have

2 z Yinn ‘f(m7”)|ﬁ

[m|=1|n|>1

D) _ B/2r
o B B (w((2 p)s+17)( ;%,%))% P 1
<xC Y 3 () P2y, <q> ! ( = v (%))

' (3.15)

Proof. In case when u,v > 1, from (3.4) and (3.6), we get

. - B/ar
o~ (u+v)B/2 1 -1 (oGPPI, Froaw) ]
u—1lv—1 ¢ 1 L4 2
Ay Asy

(2=p)s+p)( £ & E\\2r—p B/2r
DYDY (mn)ﬁ/2ymn<¢1<(w ifvm’n)) - (%))) |

mEQH*I nePy_y
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Incase u > 1 and v =0, from (2.2) and (3.7) it follows that

w((2=p)s+p) I )P 1 B/2r
27Ty <¢‘1<( A({ Iy
2 A1

. B/2r
B (0GP (f; T om)rr 1

< Y om B2y | <¢ 1( Al y! o .
megy m A1

Incase 4 =0 and v > 1, an analogous inequality holds; while in case g =v =0, we

have i
((2=p)s+tp) 2r—p 1 r
()

At Toa
(2=p)s+p) ; 2r—p 1 B/2r
(e )

Hence, the corollary follows from Theorem 3.1. [

COROLLARY 3.5. Under the hypothesis of Corollary 3.3, the inequality (3.15)
holds true.

Proof. 1t follows from Lemma 3.2 and Corollary 3.4. [

Taking y(x) = x in the Corollary 3.4 and Corollary 3.5, we have the following
corollaries.

COROLLARY 3.6. If ¢ € Ay and f € ¢(A',A2)BV (T°) N L=(T"), then

Z 2 Yinn ‘f(m7”)|ﬁ

[m|=1|n|>1

(=P)s+p)(f, & T)\2r—p Brar
KCZ 2 mn) P2 <¢ 1<( Al(iz’" ) ., (3.16)

m=1n=

where p,r,s,Y, B, K and o are as in Theorem 3.1.

COROLLARY 3.7. If ¢ € Ay and a measurable f € ¢(A17A2)*BV(T2)7 then (3.16)
holds true, where p,r,s,y, B, K and o are as in Theorem 3.1.

In the case when {¥%u} = {1}, w(x) =¢(x) =x, r=1 and p =1, Corollary 3.4
and Corollary 3.5 were proved in [9, Theorem 3.3 and Corollary 3.4 (i)].

Combining Corollary 2.2 and Corollary 3.4, or Corollary 2.2 and Corollary 3.6,
we can easily find sufficient conditions imposed on f, f; and f, for the convergence

of the double series
Z 2 ’)/mn|f(m,n)|ﬁ

meZner
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For { Y} ={¥m}={w}={1}, combining Corollary 2.2 and Corollary 3.4, we obtain
the following corollary.

COROLLARY 3.8. If ¢,y € Ay, a measurable f € (¢,y)(A',A2)*BV(T"), 1<
p<2r, 1<r<e, f€(0,2),

s _ B/2r
o o B B (w((2 p)s+p)(f;%’%))2r P 1
Z,lz,l(m") b2 o ! AL v ! A_% < oo,
‘ B/2r
= B (w((2fp)s+p)(f1;%))2rfp
X e A <
and 872
= L, [((@@Pstr) (g myy2rp "
2t e x <

where fi and f, are as defined in (3.2) and (3.3), respectively, and %—i—% =1, then the
double Fourier series of f is B -absolute convergent.

Corollary 3.8 gives two dimensional analogue of one dimensional result proved in
[8, Theorem 2, with ny = k, for all k, p. 770] in the case when y(x) = x. Similarly,
Corollary 3.8 gives two dimensional analogue of one dimensional result of Schramm
and Waterman [6, Theorem 2, p. 274] in the case when y(x) =x and 8 = 1; and also
gives two dimensional analogue of one dimensional result proved in [12, Theorem 1,
with ny =k, for all k] in the case when ¢(x) = y(x)=x, r=1and p=1.
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