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ON WEIGHTED β –ABSOLUTE CONVERGENCE

OF DOUBLE FOURIER SERIES

K. N. DARJI AND R. G. VYAS

Abstract. In this paper, we obtain a sufficient condition for the weighted β -absolute convergence
(0 < β < 2) of the double Fourier series of a function f of (φ ,ψ) - (Λ1,Λ2) -bounded variation.

1. Introduction

One of the most striking trends in analysis is the study of the Fourier coeffi-
cients properties of functions of various generalized bounded variations. Extending
a classical result of Zygmund, Schramm and Waterman [6] obtained sufficient condi-
tion for the absolute convergence of single Fourier series of functions of the classes
ΛBV (p)(T) (p � 1) and φΛBV (T) , where T = [0,2π ] is the torus. In 2007 [8], these
results of Schramm and Waterman were extended to β -absolute convergence of sin-
gle Fourier series. Gogoladze and Meskhia [3] obtained sufficient conditions for the
weighted β -absolute convergence of single Fourier series for different function spaces.
In 2008, Móricz and Veres [4] extended these results of Gogoladze and Meskhia from
single to multiple Fourier series. In 2013 [9], we have obtained sufficient conditions
for the β -absolute convergence of multiple Fourier series which includes a multidi-
mensional analogue of one dimensional result proved by Schramm and Waterman [6,
Theorem 1, p. 274]. In this paper, we obtain a sufficient condition for the weighted β -
absolute convergence of the double Fourier series of a function f of (φ ,ψ)-(Λ1,Λ2)-
bounded variation. Our sufficient condition gives generalized two dimensional ana-
logue of one dimensional result proved in [6, Theorem 2, p. 274] by Schramm and
Waterman, [8, Theorem 2, with nk = k , for all k , p. 770] and [12, Theorem 1, with
nk = k , for all k ].

In the sequel, L is a class of non-decreasing sequences Λ = {λn}∞
n=1 of positive

numbers such that limn→∞ Λn = ∞ , where Λn = ∑n
k=1 λ−1

k , and C represents a constant
vary time to time.
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2. Results for functions of one variable

For a 2π -periodic complex valued function f ∈ L1(T) , its Fourier series is defined
as

f (x) ∼ ∑
m∈Z

f̂ (m) eimx,

where the Fourier coefficients f̂ (m) are defined by

f̂ (m) =
1
2π

∫
T

f (x) e−imx dx.

A Fourier series of f is said to be β -absolute convergent if

∑
m∈Z

| f̂ (m)|β < ∞.

For β = 1, one gets the absolute convergence of the Fourier series of f .
For a given f ∈ Lp(T) (p � 1) , the p -integral modulus of continuity of f is

defined as
ω(p)( f ;δ ) = sup

0<h�δ
‖Th f − f‖p,

where Th f (x) = f (x+h) for all x and ‖.‖p denotes the Lp -norm over T .
For p = ∞ , we omit writing p , one gets ω( f ;δ ) , the modulus of continuity of f .
Given a convex function φ , defined on [0,∞) and strictly increasing from 0 to

∞ , and a sequence Λ ∈ L , a complex valued function f defined on T is said to be of
φ -Λ-bounded variation (that is, f ∈ φΛBV (T)) if

VΛφ ( f ,T) = sup
I

(
∑
k

φ(| f (Ik)|)
λk

)
< ∞,

where I is a finite collections of non-overlapping subintervals {Ik = [ak,bk]} in T

and f (Ik) = f (bk)− f (ak) .
Note that, for φ(x) = x and Λ = {1} one gets the class BV (T) ; for φ(x) = x one

gets the class ΛBV (T) ; and for φ(x) = xp (p � 1) one gets the class ΛBV (p)(T) .
It is customary to consider φ an N -function which is defined as follows.
A convex function φ defined on [0,∞) such that φ(0) = 0, φ(x)

x → 0 as x → 0+ ,

and φ(x)
x → ∞ as x → ∞, is called an N -function.

We note that an N -function is necessarily continuous and strictly increasing on
[0,∞) .

An N -function φ is said to be a Δ2 function if there is a constant d � 2 such that
φ(2x) � dφ(x) for all x � 0.

Following the definition in [3], a sequence γ = {γm : m ∈ N+} of nonnegative
numbers is said to belongs to the class Aα for some α � 1 if(

∑
m∈Dμ

γα
m

)1/α

� κ2μ(1−α)/α ∑
m∈Dμ−1

γm, μ ∈ N+, (2.1)
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where

D−1 := D0 = {1}, Dμ := {2μ−1 +1,2μ−1 +2, . . . ,2μ}, μ ∈ N+, (2.2)

and the constant κ does not depend on μ . Without loss of generality, we assume that
κ � 1.

Note that,
Aα2 ⊂ Aα1 , where 1 � α1 < α2 < ∞. (2.3)

If a sequences γ = {γm � 0} is such that

max{γm : m ∈ Dμ} � κ min{γm : m ∈ Dμ−1}, μ ∈ N+,

then γ ∈ Aα for every α � 1. This inequality was introduced by Ul’yanov [7].
For convenience in writing, put

γ−m := γm, m ∈ N+.

We prove the following results.

THEOREM 2.1. If φ ∈ Δ2 , f ∈ φΛBV (T) , 1 � p < 2r , 1 � r < ∞ , and γ =
{γm} ∈ A2/(2−β ) for some β ∈ (0,2) , then

∑
|m|�1

γm | f̂ (m)|β � κ C
∞

∑
μ=0

2−μβ/2 Γμ−1

(
φ−1

(
(ω((2−p)s+p)( f ; π

2μ ))2r−p

Λ2μ

))β/2r

,

where 1
r + 1

s = 1, κ is from (2.1) corresponding to α = 2/(2−β ) , C is a constant,

Γμ := ∑
m∈Dμ

γm f or μ ∈ N, and Γ−1 := Γ0 := {γ1}.

Proof. Since f ∈ φΛBV (T) is bounded, we have f ∈ L2(T) . For any μ ∈ N ,
consider

f j

(
x;

π
2μ

)
= f

(
x+

jπ
2μ

)
− f

(
x+

( j−1)π
2μ

)
.

Then, for each m ∈ Z , we have

f̂ j(m) = 2i f̂ (m) eim( j− 1
2 ) π

2μ sin
( mπ

2μ+1

)
.

By Parseval formula, we get

∑
m∈Z

∣∣∣ f̂ (m) sin
( mπ

2μ+1

)∣∣∣2 = O(‖ f j‖2
2).

Since
π
4

<
|m|π
2μ+1 � π

2
, |m| ∈ Dμ , (2.4)
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we have
Sμ := ∑

|m|∈Dμ

| f̂ (m)|2 = O(‖ f j‖2
2), (2.5)

for all j = 1, . . . ,2μ .
Suppose r > 1. Since

2 =
(
2− p

r

)
+

p
r

=
2s− p(s−1)

s
+

p
r

=
(2− p)s+ p

s
+

p
r
,

applying Hölder’s inequality on the right side of the inequality (2.5), we have

Sμ = O

((∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣(2−p)s+p
dx

)1/s

‖ f j‖p/r
p

)

= O

(
Ω1/r

π
2μ

‖ f j‖p/r
p

)
,

where Ω π
2μ

=
(

ω(2−p)s+p
(
f ; π

2μ
))2r−p

. Thus,

Sr
μ = O

(
Ω π

2μ

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣p dx

)
. (2.6)

Since multiplying f by a positive constant changes ω(p) ( f ; π
2μ
)

by the same constant,
f is bounded, and φ ∈ Δ2 , we may assume that ‖ f‖∞ � 1

2 . Thus ‖ f j‖∞ � 1 and hence
from equation (2.6), we get

Sr
μ � CΩ π

2μ

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣ dx, (2.7)

where constant C depends on f ,r,s and p .
Since φ is convex on [0,∞) and φ(0) = 0, for any 0 < α < 1 and x > 0 we have

φ(αx) = φ(α · x+(1−α) ·0) � αφ(x)+ (1−α)φ(0) = αφ(x). (2.8)

Further, as φ(2x) � dφ(x) , for all x � 0, it follows that

φ(ax) � dlog2 a+1φ(x) (2.9)

for all x � 0 and for all a � 1. For, using induction on k we get

φ(2kx) � dkφ(x),

for all x � 0 and for all k ∈ N . Next, if a � 1 is any real number, choosing k ∈ N such
that 2k−1 � a < 2k , we get 0 < a

2k < 1. Therefore for all x � 0 we have

φ(ax) = φ
( a

2k ·2kx
)

� a
2k φ(2kx) � a

2k dkφ(x) < dkφ(x) � dlog2 a+1φ(x).
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Since CΩ π
2μ

� 0, if CΩ π
2μ

< 1 then from equation (2.7) and equation (2.8) we get

φ
(

Sr
μ

2π

)
� φ

(
CΩ π

2μ

2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)

� CΩ π
2μ

φ
(

1
2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)
. (2.10)

Further when CΩ π
2μ

� 1, in view of equation (2.7) and equation (2.9) we get

φ
(

Sr
μ

2π

)
� φ

(
CΩ π

2μ

2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)

� d
log2

(
C′Ω π

2μ

)
+1

φ
(

1
2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)
, (2.11)

where C′ = C
2π . Now, in view of the formula xα = 2α log2 x for x > 0 and α ∈ R, we

have

d
log2

(
C′Ω π

2μ

)
+1

= d ·dlog2C′ ·dlog2 Ω π
2μ = d ·dlog2C′ ·2

(
log2 Ω π

2μ

)
(log2 d)

= d ·dlog2C′ ·
(

2
log2 Ω π

2μ

)log2 d

= C′′Ωlog2 d
π
2μ

, (2.12)

where C′′ = d ·dlog2C′
. Now, using equation (2.12) in equation (2.11) and denoting the

constant C′′ by C itself, we get

φ
(

Sr
μ

2π

)
� CΩlog2 d

π
2μ

φ
(

1
2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)
= CΩlog2 d−1

π
2μ

Ω π
2μ

φ
(

1
2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)
� CΩ π

2μ
φ
(

1
2π

∫
T

∣∣∣ f j

(
x;

π
2μ

)∣∣∣dx

)
(2.13)

because of the fact that Ωlog2 d−1
π
2μ

� 1, as ‖ f‖∞ � 1
2 and log2 d−1 � 0. In either case,

from (2.10) and (2.13), in view of Jensen’s inequality for integral, we have

φ
(

Sr
μ

2π

)
� CΩ π

2μ

∫
T

φ
(∣∣∣ f j

(
x;

π
2μ

)∣∣∣)dx.

Multiplying both the sides of the above inequality by 1
λ j

and then summing over j = 1

to 2μ , we have

φ
(

Sr
μ

2π

)
= O

(
Ω π

2μ

Λ2μ

∫
T

2μ

∑
j=1

φ
(∣∣ f j

(
x; π

2μ
)∣∣)

λ j
dx

)
,
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where Λ2μ = ∑2μ
j=1

1
λ j

. Since f ∈ φΛBV (T) implies

2μ

∑
j=1

φ
(∣∣ f j

(
x; π

2μ
)∣∣)

λ j
= O(1)

and hence

Sμ = O

⎛⎝(φ−1

(
Ω π

2μ

Λ2μ

))1/r
⎞⎠ .

Since 1 = β
2 + 2−β

2 , by Hölder’s inequality, we have

Rμ := ∑
|m|∈Dμ

γm| f̂ (m)|β

�

⎛⎝ ∑
|m|∈Dμ

| f̂ (m)|2
⎞⎠β/2⎛⎝ ∑

|m|∈Dμ

γ2/(2−β )
m

⎞⎠(2−β )/2

� C

(
φ−1

(
Ω π

2μ

Λ2μ

))β/2r
⎛⎝ ∑

|m|∈Dμ

γ2/(2−β )
m

⎞⎠(2−β )/2

. (2.14)

Thus, for μ � 1, in view of (2.1), with α = 2/(2−β ) , and (2.14), we get

Rμ � Cκ2−μβ/2 Γμ−1

(
φ−1

(
Ω π

2μ

Λ2μ

))β/2r

.

If μ = 0, then from equation (2.14) it follows that

R0 = γ1(| f̂ (−1)|β + | f̂ (1)|β ) = O

⎛⎝γ1

(
φ−1

(
Ωπ
1

λ1

))β/2r
⎞⎠ .

Hence, for r > 1, the result follows from

∑
|m|�1

γm| f̂ (m)|β =
∞

∑
μ=0

Rμ .

For the case r = 1, s = ∞ , simply note that∣∣∣ f j

(
x;

π
2μ

)∣∣∣2 �
(

ω
(

f ;
π
2μ

))2−p ∣∣∣ f j

(
x;

π
2μ

)∣∣∣p , x ∈ T,

and proceed as above from equation (2.6) onwards. �

COROLLARY 2.2. Under the hypothesis of Theorem 2.1, we have

∑
|m|�1

γm | f̂ (m)|β � κ C
∞

∑
m=1

m−β/2 γm

(
φ−1

(
(ω((2−p)s+p)( f ; π

m))2r−p

Λm

))β/2r

.
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In the case when {γm} = {1} , it follows from Corollary 2.2 that

∑
|m|�1

| f̂ (m)|β � κ C
∞

∑
m=1

m−β/2

(
φ−1

(
(ω((2−p)s+p)( f ; π

m))2r−p

Λm

))β/2r

.

This was proved in [8, Theorem 2, with nk = k , for all k , p. 770].
Similarly, Corollary 2.2 reduces to the result concerning the absolute convergence

of Fourier series of Schramm and Waterman [6, Theorem 2, p. 274] in the case when
{γm} = {1} and β = 1; and also reduces to the result proved in [12, Theorem 1, with
nk = k , for all k ] in the case when {γm} = {1} , φ(x) = x , r = 1 and p = 1.

3. Results for functions of two variables

For a complex valued function f ∈ L1(T2) , where f is 2π -periodic in each vari-
able, its double Fourier series is defined as

f (x,y) ∼ ∑
m∈Z

∑
n∈Z

f̂ (m,n) ei(mx+ny),

where the Fourier coefficients f̂ (m,n) are defined by

f̂ (m,n) =
1

4π2

∫ ∫
T

2
f (x,y) e−i(mx+ny) dx dy.

A double Fourier series of f is said to be β -absolute convergent if

∑
m∈Z

∑
n∈Z

| f̂ (m,n)|β < ∞,

where

∑
m∈Z

∑
n∈Z

| f̂ (m,n)|β = ∑
|m|�1

∑
|n|�1

| f̂ (m,n)|β + ∑
m∈Z

| f̂ (m,0)|β + ∑
n∈Z

| f̂ (0,n)|β −| f̂ (0,0)|β .

(3.1)
In the special case, when m = 0 or n = 0, we write

f̂ (m,0) = f̂1(m), where f1(x) :=
1
2π

∫
T

f (x,y) dy, x ∈ T; (3.2)

and

f̂ (0,n) = f̂2(n), where f2(y) :=
1
2π

∫
T

f (x,y) dx, y ∈ T. (3.3)

We may write

∑
m∈Z

| f̂1(m)|β = ∑
m∈Z

| f̂ (m,0)|β and ∑
n∈Z

| f̂2(n)|β = ∑
n∈Z

| f̂ (0,n)|β .

Combining this with (3.1) gives

∑
m∈Z

∑
n∈Z

| f̂ (m,n)|β = ∑
|m|�1

∑
|n|�1

| f̂ (m,n)|β + ∑
m∈Z

| f̂1(m)|β + ∑
n∈Z

| f̂2(n)|β −| f̂ (0,0)|β .
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Thus, the double Fourier series of f is β -absolute convergent if

∑
|m|�1

∑
|n|�1

| f̂ (m,n)|β < ∞, ∑
m∈Z

| f̂1(m)|β < ∞ and ∑
n∈Z

| f̂2(n)|β < ∞.

For β = 1, one gets the absolute convergence of the double Fourier series of f .

For a given f ∈ Lp(T2) (p � 1) , the p -integral modulus of continuity of f is
defined as

ω(p)( f ;δ1,δ2) =
sup

h∈(0,δ1]
k∈(0,δ2]

‖Th,k f −T0,k f −Th,0 f + f‖p,

where (Th,k f )(x,y) = f (x+h,y+ k) for all x and ‖.‖p denotes the Lp -norm over T
2
.

For p = ∞ , we omit writing p , one gets ω( f ;δ1,δ2) , the modulus of continuity
of f .

For I = [a,b] and J = [c,d] , define

f (I× J) = f (b,d)− f (a,d)− f (b,c)+ f (a,c).

A complex valued measurable function f defined on T
2

is said to be of (φ ,ψ)-
(Λ1,Λ2)-bounded variation (that is, f ∈ (φ ,ψ)(Λ1,Λ2)BV (T2)) if

V(Λ1,Λ2)(φ ,ψ)
( f ,T

2) = sup
I ,J

(
∑
j

1
λ2, j

ψ

(
∑
k

φ(| f (Ik × J j)|)
λ1,k

))
< ∞,

where Λ1 = {λ1,n} , Λ2 = {λ2,n} ∈ L ; functions φ and ψ are convex and strictly
increasing on [0,∞) with φ(0) = ψ(0) = 0; and I and J are finite collections of
non-overlapping subintervals {Ik} and {Jj} in T respectively.

Consider a function f : T
2 → R defined by f (x,y) = g(x)+ h(y) , where g and

h are any two arbitrary not necessarily bounded functions from T into R . Then

V(Λ1,Λ2)(φ ,ψ)
( f ,T

2) = 0. Thus, a function f with V(Λ1,Λ2)(φ ,ψ)
( f ,T

2) < ∞ need not be

bounded.
If f ∈ (φ ,ψ)(Λ1,Λ2)BV (T2) is such that the marginal functions f (0, .)∈ φΛ2BV (T)

and f (.,0) ∈ φΛ1BV (T) then f is said to be of (φ ,ψ)-(Λ1,Λ2)∗ -bounded variation

(that is, f ∈ (φ ,ψ)(Λ1,Λ2)∗BV (T2)).
Note that, for φ(x) = ψ(x) = x and Λ1 = Λ2 = {1} classes (φ ,ψ)(Λ1,Λ2)BV (T2)

and (φ ,ψ)(Λ1,Λ2)∗BV(T2) reduce to classes BVV (T2) (the class of functions of boun-

ded variation in the sense of Vitali (refer [5, p. 279] for the definition of BVV (T2)))
and BVH(T2) (the class of functions of bounded variation in the sense of Hardy (re-

fer [5, p. 280] for the definition of BVH(T2))) respectively; for ψ(x) = x classes

(φ ,ψ)(Λ1,Λ2)BV (T2) and (φ ,ψ)(Λ1,Λ2)∗BV (T2) reduce to classes φ(Λ1,Λ2)BV (T2)
[10, Definition 1. p. 1153] and φ(Λ1,Λ2)∗BV (T2) respectively; for ψ(x) = x and

φ(x) = xp (p � 1) classes (φ ,ψ)(Λ1,Λ2)BV (T2) and (φ ,ψ)(Λ1,Λ2)∗BV (T2) reduce
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to classes (Λ1,Λ2)BV (p)(T
2
) [11, Definition 1.2, p. 28] and (Λ1,Λ2)∗BV (p)(T

2
) re-

spectively; for φ(x)= xp (p � 1) and ψ(x)= xq/p (q � p) classes (φ ,ψ)(Λ1,Λ2)BV (T2)
and (φ ,ψ)(Λ1,Λ2)∗BV (T2) reduce to classes (Λ1,Λ2)BV (p,q)(T2) [2, Definition 2.1,

p. 362] and (Λ1,Λ2)∗BV (p,q)(T2) respectively; for φ(x) = ψ(x) = x classes

(φ ,ψ)(Λ1,Λ2)BV (T
2
) and (φ ,ψ)(Λ1,Λ2)∗BV (T

2
) reduce to classes (Λ1,Λ2)BV (T

2
)

[1, Definition 2, p. 8] and (Λ1,Λ2)∗BV (T2) respectively.
Following the definition in [4], a double sequence γ = {γmn} : (m,n) ∈ N

2
+} of

nonnegative numbers belongs to the class Aα for some α � 1 if(
∑

m∈Dμ
∑

n∈Dν

γα
mn

)1/α

� κ2(μ+ν)(1−α)/α ∑
m∈Dμ−1

∑
n∈Dν−1

γmn (3.4)

for all μ ,ν � 0, where Dμ is as defined in (2.2) for μ � 0.
For instance, if μ � 1 and ν = 0, then inequality (3.4) is of the form(

∑
m∈Dμ

γα
m1

)1/α

� κ2μ(1−α)/α ∑
m∈Dμ−1

γm1.

It is easy to check that the inclusion (2.3) remain valid; and if a double sequence γ =
{γmn � 0} is such that

max{γmn : m ∈ Dμ , n ∈ Dν} � κ min{γmn : m ∈ Dμ−1, n ∈ Dν−1}, (μ ,ν) ∈ N
2,

where κ is a constant, then γ ∈ Aα for every α � 1.
For convenience in writing, put

γ−m,n = γm,−n = γ−m,−n = γm,n, (m,n) ∈ N
2
+.

We prove the following results.

THEOREM 3.1. If φ ,ψ ∈ Δ2 , f ∈ (φ ,ψ)(Λ1,Λ2)BV (T2)∩L∞(T2) , 1 � p < 2r ,
1 � r < ∞ , and γ = {γmn} ∈ A2/(2−β ) for some β ∈ (0,2) , then

∑
|m|�1

∑
|n|�1

γmn | f̂ (m,n)|β � κC
∞

∑
μ=0

∞

∑
ν=0

2−(μ+ν)β/2 Γμ−1,ν−1 (3.5)

×
(

φ−1

(
(ω((2−p)s+p)( f ; π

2μ , π
2ν ))2r−p

Λ1
2μ

ψ−1
(

1

Λ2
2ν

)))β/2r

,

where 1
r + 1

s = 1 , κ is from (3.4) corresponding to α = 2/(2−β ) ,

Γμν := ∑
m∈Dμ

∑
n∈Dν

γmn f or μ ,ν � −1, (3.6)

Γ−1,ν := Γ0ν , Γμ,−1 := Γμ0 f or μ ,ν � 0, and Γ−1,−1 := Γ00 = {γ11}. (3.7)
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Proof. For any μ ,ν ∈ N , consider

f jk

(
x,y;

π
2μ ,

π
2ν

)
= f

([
x+

( j−1)π
2μ ,x+

jπ
2μ

]
×
[
y+

(k−1)π
2ν ,y+

kπ
2ν

])
.

Then, for each m,n ∈ Z , we have

f̂ jk(m,n) = −4 f̂ (m,n) eim( j− 1
2 ) π

2μ ein(k− 1
2 ) π

2ν sin
( mπ

2μ+1

)
sin
( nπ

2ν+1

)
.

Since f ∈ L2(T2) , from Parseval formula, we get

∑
m∈Z

∑
n∈Z

∣∣∣ f̂ (m,n) sin
( mπ

2μ+1

)
sin
( nπ

2ν+1

)∣∣∣2 = O(‖ f jk‖2
2).

In view of inequality (2.4) and an analogous inequality for |n| ∈ Dν , we have

Sμν := ∑
|m|∈Dμ

∑
|n|∈Dν

| f̂ (m,n)|2 = O(‖ f jk‖2
2), (3.8)

for all j = 1, . . . ,2μ and for all k = 1, . . . ,2ν .

Suppose r > 1. Since

2 =
(2− p)s+ p

s
+

p
r
,

applying Hölder’s inequality on the right side of the inequality (3.8), we have

Sμν = O

((∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣(2−p)s+p
dx dy

)1/s

‖ f jk‖p/r
p

)

= O

(
Ω1/r

π
2μ , π

2ν
‖ f jk‖p/r

p

)
,

where Ω π
2μ , π

2ν
=
(

ω(2−p)s+p
(
f ; π

2μ , π
2ν
))2r−p

. Thus,

Sr
μν = O

(
Ω π

2μ , π
2ν

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣p dx dy

)
. (3.9)

Since multiplying f by a positive constant changes ω(p)
(
f ; π

2μ , π
2ν
)

by the same con-
stant, f is bounded, and φ ∈ Δ2 , we may assume that ‖ f‖∞ � 1

4 . Thus ‖ f jk‖∞ � 1 and
hence from equation (3.9), we get

Sr
μν � CΩ π

2μ , π
2ν

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy, (3.10)

where constant C depends on f ,r,s and p .



ON WEIGHTED β -ABSOLUTE CONVERGENCE OF DOUBLE FOURIER SERIES 11

Since CΩ π
2μ , π

2ν
� 0, if CΩ π

2μ , π
2ν

< 1 then from equation (3.10) and equation (2.8)
we get

φ
(

Sr
μν

4π2

)
� φ

(
CΩ π

2μ , π
2ν

4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)

� CΩ π
2μ , π

2ν
φ
(

1
4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)
. (3.11)

Further when CΩ π
2μ , π

2ν
� 1, in view of equation (3.10) and equation (2.9) we get

φ
(

Sr
μν

4π2

)
� φ

(
CΩ π

2μ , π
2ν

4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)

� d
log2

(
C′Ω π

2μ , π
2ν

)
+1

φ
(

1
4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)
, (3.12)

where C′ = C
4π2 . Since d

log2

(
C′Ω π

2μ , π
2ν

)
+1

= C′′Ωlog2 d
π
2μ , π

2ν
, where C′′ = d · dlog2C′

, and

denoting the constant C′′ by C itself, in view of equation (3.12), we get

φ
(

Sr
μν

4π2

)
� CΩlog2 d

π
2μ , π

2ν
φ
(

1
4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)
= CΩlog2 d−1

π
2μ , π

2ν
Ω π

2μ , π
2ν

φ
(

1
4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)
� CΩ π

2μ , π
2ν

φ
(

1
4π2

∫ ∫
T

2

∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣ dx dy

)
(3.13)

because of the fact that Ωlog2 d−1
π
2μ , π

2ν
� 1, as ‖ f‖∞ � 1

4 and log2 d−1 � 0. In either case,

from (3.11) and (3.13), in view of Jensen’s inequality for integral, we have

φ
(

Sr
μν

4π2

)
� C

Ω π
2μ , π

2ν

4π2

∫ ∫
T

2
φ
(∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣)dx dy.

Multiplying both the sides of the above inequality by 1
λ1, j

and then summing over j = 1

to 2μ , we have

Λ1
2μ

Ω π
2μ , π

2ν

φ
(

Sr
μν

4π2

)
= O

(
1

4π2

∫ ∫
T

2

2μ

∑
j=1

φ
(∣∣ f jk

(
x,y; π

2μ , π
2ν
)∣∣)

λ1, j
dx dy

)
,

where Λ1
2μ = ∑2μ

j=1
1

λ1, j
.

Again, using Jensen’s inequality for integrals, we have

ψ

(
Λ1

2μ

Ω π
2μ , π

2ν

φ
(

Sr
μν

4π2

))
= O

(
1

4π2

∫ ∫
T

2
ψ

(
2μ

∑
j=1

φ
(∣∣ f jk

(
x,y; π

2μ , π
2ν
)∣∣)

λ1, j

)
dx dy

)
.
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Multiplying both the sides of the above inequality by 1
λ2,k

and then summing over k = 1

to 2ν , we have

Λ2
2ν ψ

(
Λ1

2μ

Ω π
2μ , π

2ν

φ
(

Sr
μν

4π2

))

= O

(
1

4π2

∫ ∫
T

2

2ν

∑
k=1

1
λ2,k

ψ

(
2μ

∑
j=1

φ
(∣∣ f jk

(
x,y; π

2μ , π
2ν
)∣∣)

λ1, j

)
dx dy

)
,

where Λ2
2ν = ∑2ν

k=1
1

λ2,k
. Since f ∈ (φ ,ψ)(Λ1,Λ2)BV (T2) implies

2ν

∑
k=1

1
λ2,k

ψ

(
2μ

∑
j=1

φ
(∣∣ f jk

(
x,y; π

2μ , π
2ν
)∣∣)

λ1, j

)
= O(1)

and hence

Sμν = O

⎛⎝(φ−1

(
Ω π

2μ , π
2ν

Λ1
2μ

ψ−1
(

1

Λ2
2ν

)))1/r
⎞⎠ .

Since 1 = β
2 + 2−β

2 , by Hölder’s inequality, we have

Rμν := ∑
|m|∈Dμ

∑
|n|∈Dν

γmn| f̂ (m,n)|β

�

⎛⎝ ∑
|m|∈Dμ

∑
|n|∈Dν

| f̂ (m,n)|2
⎞⎠β/2⎛⎝ ∑

|m|∈Dμ
∑

|n|∈Dν

γ2/(2−β )
mn

⎞⎠(2−β )/2

� C

(
φ−1

(
Ω π

2μ , π
2ν

Λ1
2μ

ψ−1
(

1

Λ2
2ν

)))β/2r
⎛⎝ ∑

|m|∈Dμ
∑

|n|∈Dν

γ2/(2−β )
mn

⎞⎠(2−β )/2

.

(3.14)

Thus, for max{μ ,ν} � 1, in view of (3.4), with α = 2/(2−β ) , and (3.14), we get

Rμν � Cκ2−(μ+ν)β/2 Γμ−1,ν−1

(
φ−1

(
Ω π

2μ , π
2ν

Λ1
2μ

ψ−1
(

1

Λ2
2ν

)))β/2r

.

If μ = ν = 0, then from equation (3.14) it follows that

R00 = γ11(| f̂ (1,1)|β + | f̂ (−1,1)|β + | f̂ (1,−1)|β + | f̂ (−1,−1)|β )

= O

⎛⎝γ11

(
φ−1

(
Ωπ ,π

1
λ1,1

ψ−1

(
1
1

λ2,1

)))β/2r
⎞⎠ .
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Hence, for r > 1, the result follows from

∑
|m|�1

∑
|n|�1

γmn| f̂ (m,n)|β =
∞

∑
μ=0

∞

∑
ν=0

Rμν .

For the case r = 1, s = ∞ , simply note that∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣2 �
(

ω
(

f ;
π
2μ ,

π
2ν

))2−p ∣∣∣ f jk

(
x,y;

π
2μ ,

π
2ν

)∣∣∣p , (x,y) ∈ T
2
,

and proceed as above from equation (3.9) onwards. �

LEMMA 3.2. If f ∈ (φ ,ψ)(Λ1,Λ2)∗BV (T2) , then f is bounded on T
2
.

Proof. For any f ∈ (φ ,ψ)(Λ1,Λ2)∗BV (T2) ,

| f (x,y)| � | f ([0,x]× [0,y])|+ | f (0,y)− f (0,0)|+ | f (x,0)− f (0,0)|+ | f (0,0)|
� φ−1(λ1,1ψ−1(λ2,1V(Λ1,Λ2)(φ ,ψ)

( f ,T
2)))+ φ−1(λ2,1VΛ2

φ
( f (0, .),T))

+φ−1(λ1,1VΛ1
φ
( f (.,0),T))+ | f (0,0)|

implies f is bounded on T
2
. �

COROLLARY 3.3. If φ ,ψ ∈ Δ2 and a measurable f ∈ (φ ,ψ)(Λ1,Λ2)∗BV(T2),
then (3.5) holds true, where p,r,s,γ, β , κ , α and Γ are as in Theorem 3.1.

Proof. It follows from Lemma 3.2 and Theorem 3.1. �

COROLLARY 3.4. Under the hypothesis of Theorem 3.1, we have

∑
|m|�1

∑
|n|�1

γmn | f̂ (m,n)|β

� κC
∞

∑
m=1

∞

∑
n=1

(mn)−β/2 γmn

(
φ−1

(
(ω((2−p)s+p)( f ; π

m , π
n ))2r−p

Λ1
m

ψ−1
(

1
Λ2

n

)))β/2r

.

(3.15)

Proof. In case when μ ,ν � 1, from (3.4) and (3.6), we get

2−(μ+ν)β/2 Γμ−1,ν−1

(
φ−1

(
(ω((2−p)s+p)( f ; π

2μ , π
2ν ))2r−p

Λ1
2μ

ψ−1
(

1

Λ2
2ν

)))β/2r

� ∑
m∈Dμ−1

∑
n∈Dν−1

(mn)−β/2γmn

(
φ−1

(
(ω((2−p)s+p)( f ; π

m , π
n ))2r−p

Λ1
m

ψ−1
(

1
Λ2

n

)))β/2r

.
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In case μ � 1 and ν = 0, from (2.2) and (3.7) it follows that

2−μβ/2 Γμ−1,−1

(
φ−1

(
(ω((2−p)s+p)( f ; π

2μ ,π))2r−p

Λ1
2μ

ψ−1

(
1
1

λ2,1

)))β/2r

� ∑
m∈Dμ−1

m−β/2γm1

(
φ−1

(
(ω((2−p)s+p)( f ; π

m ,π))2r−p

Λ1
m

ψ−1

(
1
1

λ2,1

)))β/2r

.

In case μ = 0 and ν � 1, an analogous inequality holds; while in case μ = ν = 0, we
have

Γ−1,−1

(
φ−1

(
(ω((2−p)s+p)( f ;π ,π))2r−p

1
λ1,1

ψ−1

(
1
1

λ2,1

)))β/2r

= γ11

(
φ−1

(
(ω((2−p)s+p)( f ;π ,π))2r−p

1
λ1,1

ψ−1

(
1
1

λ2,1

)))β/2r

.

Hence, the corollary follows from Theorem 3.1. �

COROLLARY 3.5. Under the hypothesis of Corollary 3.3, the inequality (3.15)
holds true.

Proof. It follows from Lemma 3.2 and Corollary 3.4. �
Taking ψ(x) = x in the Corollary 3.4 and Corollary 3.5, we have the following

corollaries.

COROLLARY 3.6. If φ ∈ Δ2 and f ∈ φ(Λ1,Λ2)BV (T2)∩L∞(T2) , then

∑
|m|�1

∑
|n|�1

γmn | f̂ (m,n)|β

� κC
∞

∑
m=1

∞

∑
n=1

(mn)−β/2 γmn

(
φ−1

(
(ω((2−p)s+p)( f ; π

m , π
n ))2r−p

Λ1
mΛ2

n

))β/2r

, (3.16)

where p,r,s,γ, β , κ and α are as in Theorem 3.1.

COROLLARY 3.7. If φ ∈Δ2 and a measurable f ∈ φ(Λ1,Λ2)∗BV (T2), then (3.16)
holds true, where p,r,s,γ, β , κ and α are as in Theorem 3.1.

In the case when {γmn} = {1} , ψ(x) = φ(x) = x , r = 1 and p = 1, Corollary 3.4
and Corollary 3.5 were proved in [9, Theorem 3.3 and Corollary 3.4 (i)].

Combining Corollary 2.2 and Corollary 3.4, or Corollary 2.2 and Corollary 3.6,
we can easily find sufficient conditions imposed on f , f1 and f2 for the convergence
of the double series

∑
m∈Z

∑
n∈Z

γmn| f̂ (m,n)|β .
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For {γmn}= {γm}= {γn}= {1} , combining Corollary 2.2 and Corollary 3.4, we obtain
the following corollary.

COROLLARY 3.8. If φ ,ψ ∈ Δ2 , a measurable f ∈ (φ ,ψ)(Λ1,Λ2)∗BV (T2), 1 �
p < 2r , 1 � r < ∞ , β ∈ (0,2) ,

∞

∑
m=1

∞

∑
n=1

(mn)−β/2

(
φ−1

(
(ω((2−p)s+p)( f ; π

m , π
n ))2r−p

Λ1
m

ψ−1
(

1
Λ2

n

)))β/2r

< ∞,

∞

∑
m=1

m−β/2

(
φ−1

(
(ω((2−p)s+p)( f1; π

m))2r−p

Λ1
m

))β/2r

< ∞,

and
∞

∑
n=1

n−β/2

(
φ−1

(
(ω((2−p)s+p)( f2; π

n ))2r−p

Λ2
n

))β/2r

< ∞,

where f1 and f2 are as defined in (3.2) and (3.3), respectively, and 1
r + 1

s = 1 , then the
double Fourier series of f is β -absolute convergent.

Corollary 3.8 gives two dimensional analogue of one dimensional result proved in
[8, Theorem 2, with nk = k , for all k , p. 770] in the case when ψ(x) = x . Similarly,
Corollary 3.8 gives two dimensional analogue of one dimensional result of Schramm
and Waterman [6, Theorem 2, p. 274] in the case when ψ(x) = x and β = 1; and also
gives two dimensional analogue of one dimensional result proved in [12, Theorem 1,
with nk = k , for all k ] in the case when φ(x) = ψ(x) = x , r = 1 and p = 1.
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