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APPLICATIONS OF BRIOT–BOUQUET

DIFFERENTIAL SUBORDINATION

NISHA BOHRA, SUSHIL KUMAR AND V. RAVICHANDRAN ∗

Abstract. Sharp estimates on β in Briot-Bouquet differential subordination

p(z)+βzp′(z)/p(z) ≺ h(z)

are obtained so that its solution p is subordinate to some specific Carathéodory functions. As
an application, the estimates on β are obtained so that the integral operator β−1 ∫ z

0 f 1/β (t)t−1dt
maps the class of starlike functions f satisfying z f ′(z)/ f (z) ≺ 1 + z to various subclasses of
class of starlike functions. Further, a sufficient condition is established for parabolic starlikeness.

1. Introduction

Let A be the class of analytic functions f in the open unit disk D := {z ∈ C :
|z| < 1} and normalized by the conditions f (0) = 0 and f ′(0) = 1. Let S be the
class of univalent functions in A . For f ,g ∈ A , f ≺ g if there is an analytic function
w : D→D with w(0) = 0 and |w(z)|< 1 such that f (z) = g(w(z)) for all z∈ D , where
≺ denotes the subordination. In particular, if g is univalent in D , then the following
equivalence condition holds:

f ≺ g ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

By making use of subordination, Ma and Minda[13] unified various subclasses of class
of starlike functions in which the quantity z f ′(z)/ f (z) is subordinate to a more gen-
eral superordinate function. For this purpose, they considered an analytic function ϕ
with positive real part in the unit disk D and normalized by ϕ(0) = 1 and ϕ ′(0) > 0.
The class of Ma-Minda starlike functions consists of functions f ∈ A satisfying the
subordination z f ′(z)/ f (z) ≺ ϕ(z) and is denoted by S ∗(ϕ). In 1993, Ronning [19]
introduced the class S ∗

P := S ∗(ϕPA R(z)) of the parabolic starlike functions, where
ϕPA R(z) = 1+(2/π2)(log((1−√

z)/(1+
√

z)))2 is the analytic function defined on
D . Analytically, it is noted that

f ∈ S ∗
P if and only if

∣∣∣∣z f ′(z)
f (z)

−1

∣∣∣∣< Re

(
z f ′(z)
f (z)

)
, z ∈ D.
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In [22], Sokól and Stankiewicz introduced and studied the class S ∗
L := S ∗(

√
1+ z)

which is the subclass of S ∗ consisting of functions f ∈ A such that for each z ∈
D , w = z f ′(z)/ f (z) lies in the region bounded by right half of the lemniscate of
Bernoulli given by |w2 −1| < 1. In 2015, Mendiratta et al. [16] established and stud-
ied the class S ∗

e := S ∗(ez) consisting of functions f ∈ A satisfying the condition
| log(z f ′(z)/ f (z))| < 1. In 2015, Raina and Sokół [18] studied a class S ∗

q := S ∗(ϕq)
where ϕq(z) := z +

√
1+ z2 . Further, Kumar and Ravichandran [10], introduced and

studied the geometric properties of the class S ∗
R = S ∗(ϕ0) associated with the ra-

tional function ϕ0(z) := 1 + (z/k)((k + z)/(k− z)), (k =
√

2 + 1). Recently, Cho et
al.[6] discussed various geometric estimates related to the class S ∗

s = S ∗(ϕs) where
ϕs(z) := 1+ sinz.

The class P consists of analytic functions p : D → C with positive real part in
D and normalized by the condition p(0) = 1. Let β , γ be real or complex scalars and
h be a univalent function defined on unit disk D . Miller and Mocanu [14] studied the
properties of Briot-Bouquet differential subordination

p(z)+
zp′(z)

β p(z)+ γ
≺ h(z)

which has been used in the theory of univalent functions. For particular values of the
scalars β , γ and the function h , many researchers have discussed the first order differ-
ential subordination. In 1989, Nunokawa et al. [17] proved that if 1+ zp′(z) ≺ 1+ z ,
then p(z)≺ 1+z . In [2, 3], Ali et al. obtained some sufficient conditions for normalized
analytic functions to be in some subclasses of Janowski starlike functions and lemnis-
cate starlike functions. Recently, authors [11] computed sharp bounds on parameters
involved in certain first order differential subordinations related to the functions with
positive real part. For details, see [1, 4, 7, 5, 8, 12, 21].

Motivated by these works, we obtain sharp estimates on β such that the first order
differential subordination

p(z)+ β
zp′(z)
p(z)

≺ 1+ z

implies p(z) ≺ Q(z). where Q(z) = ez,
√

1+ z, ϕ0(z), ϕs(z) or ϕq(z) . For a starlike
function satisfying z f ′(z)/ f (z) ≺ 1 + z , we have shown that, for β � 0.291936, the
integral β−1 ∫ z

0 f 1/β (t)t−1dt belongs to the class S ∗
e . Similar bounds were obtained

for the integral to belong to the classes S ∗
L , S ∗

R and S ∗
s . Moreover, we estimate a

bound on β so that p ≺ ϕPAR whenever the subordination relation 1+ β zp′(z) ≺ ez

holds and this subordination relation provides a sufficient condition for parabolic star-
likeness. Our results are proved by applying the theory of differential subordination
developed by Miller and Mocanu and using some properties of confluent hypergeomet-
ric functions.
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2. Subordination and hypergeometric functions

The confluent (or Kummer) hypergeometric function Φ(a,c;z) is given by the
convergent power series

Φ(a,c;z) = 1F1(a,c;z) := 1+
a
c

z
1!

+
a(a+1)
c(c+1)

z2

2!
+ · · · , (1)

where a and c are complex numbers with c �= 0,−1,−2, . . . . The function Φ is ana-
lytic in C and satisfies the Kummer’s differential equation

zw′′(z)+ (c− z)w′(z)−aw(z) = 0.

Let (d)k denotes the Pohhammer symbol given by (d)k = Γ(d + k)/Γ(d) = d(d +
1) · · ·(d + k−1) and (d)0 = 1, then (1) can be written in the form

Φ(a,c;z) =
∞

∑
k=0

(a)k

(c)k

zk

k!
=

Γ(c)
Γ(a)

∞

∑
k=0

Γ(a+ k)
Γ(c+ k)

zk

k!
.

Also cΦ′(a,c;z) = aφ(a + 1,c+ 1;z) and the following integral representation of Φ
[15, p. 5] given by

Φ(a,c;z) =
Γ(c)

Γ(a)Γ(c−a)

∫ 1

0
ta−1(1− t)c−a−1etzdt =

∫ 1

0
etzdμ(t),

is well known, where dμ(t)=
Γ(c)

Γ(a)Γ(c−a)
ta−1(1−t)c−a−1dt is a probabilitymeasure

on [0,1] and Rec > Rea > 0.
Let c be a complex number such that Rec > 0, let n be a positive integer, and let

Cn = Cn(c) =
n

Rec
[|c|
√

1+2Rec/n+ Imc].

If R(z) is the univalent function defined in D by R(z) = 2Cnz/(1− z2) , then the open
door function is defined by

Rc,n(z) = R

(
z+b

1+bz

)
= 2Cn

(z+b)(1+bz)
(1+bz)2 − (z+b)2

,

where b = R−1(c). We note that if c > 0, then the open door function reduces to

Rc,n(z) = c
1+ z
1− z

+
2nz

1− z2 . (2)

We see that Rc,n is univalent in D , Rc,n(0) = c and Rc,n(D) = R(D) is the complex
plane with slits along the half-lines Rew = 0 and | Imw| � Cn .
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THEOREM 1. Let p be analytic function in D with p(0) = 1 . Let

p(z)+ β
zp′(z)
p(z)

≺ 1+ z, β > 0.

Then the following are true:

(a) If β � βe � 0.291936 , then p(z) ≺ ez .

(b) If β � βl � 1.76736 , then p(z) ≺√
1+ z.

(c) If β � βs � 0.322915 , then p(z) ≺ ϕs(z) .

(d) If β � βR � 4.3622 , then p(z) ≺ ϕ0(z) .

(e) If β � βL � 0.391235 , then p(z) ≺ ϕq(z) .

The bounds on β are sharp.

In order to prove this result, we need the following lemma due to Miller and Mo-
canu:

LEMMA 1. [15, Theorem 3.2j., p. 97] Let β , γ ∈ C with β �= 0 , and let n be
a positive integer. Let Rβa+γ,n be as given in (2) and let h be analytic in D , with
h(0) = a, Re(βa+ γ) > 0 and βh(z)+ γ ≺ Rβa+γ,n(z) . If q is the analytic solution of
Briot-Bouquet differential equation

q(z)+
nzq′(z)

βq(z)+ γ
= h(z)

and if h is convex or Q(z) = zq′(z)/(βq(z)+ γ) is starlike, then q and h are univalent.
Furthurmore, if p ∈ μ [a,n] satisfies

p(z)+
nzp′(z)

β p(z)+ γ
≺ h(z)

then p ≺ q, and q is the best (a,n)- dominant.

Proof of Theorem 1. Consider the following Briot-Bouquet differential equation

p(z)+
β zp′(z)

p(z)
= 1+ z.

Using [15, Theorem 3.3d], its analytic solution is given by

qβ (z) = (Φ(1,1+1/β ,−z/β ))−1.

Clearly, the function h(z) = 1+ z is convex. As Reh(z) > 0,

1
β

h(z) ≺ 1
β

(
1+ z
1− z

)
+

2z
1− z2 = R1/β ,1(z).
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From Lemma 1, taking n = 1, γ = 0, and β → 1/β , we get p(z) ≺ qβ (z) . We now
obtain lower bounds on β for the subordination qβ (z) ≺ P(z) to hold for different
choices of P(z) . The transitivity will then imply p(z) ≺ P(z) for obtained values of
β .

We note that qβ ((−1,1))⊂ R and P((−1,1))⊂ R for all β > 0 and all choices
of P . Also qβ (−1) � qβ (1) . Hence the subordination qβ (z) ≺ P(z) implies

P(−1) � qβ (−1) � qβ (1) � P(1).

The lower bounds on β are obtained by solving this inequality. Though the converse
need not hold, we show that for obtained lower bounds on β , qβ (z)≺ P(z) for all our
choices of function P . We note that

(Φ(1,1+1/β ,1/β ))−1 =

(
∞

∑
n=0

1
(1+ β ) . . .(1+nβ )

)−1

and

(Φ(1,1+1/β ,−1/β ))−1 =

(
∞

∑
n=0

(−1)n

(1+ β ) . . .(1+nβ )

)−1

.

(a) For P(z) = ez , the inequalities e−1 � qβ (−1) and qβ (1) � e reduce to

f (β ) = (Φ(1,1+1/β ,1/β ))−1− 1
e

� 0

and
g(β ) = e− (Φ(1,1+1/β ,−1/β ))−1 � 0.

Here limβ↘0 f (β ) = −1/e and limβ↗∞ f (β ) = e− 1 > 0. Also f ′(β ) > 0 for
all β ∈ (0,∞) . Hence f is strictly increasing in (0,∞) . Let βe denotes the
unique zero of f in (0,∞) . Then f (β ) � 0 for every β � βe � 0.291936. Also
g(β ) > 0 for all β ∈ (0,∞) .

We now show that qβ (z) ≺ ez for β � βe � 0.291936. First we note that qβ (D)
is convex, symmetrical about real axis and qβ (D) ⊆ qβe(D) for β � βe . Hence
it suffices to prove that qβe(z) ≺ ez. But this is equivalent to showing that

| log(qβe(z))| � 1, z ∈ D

where log denotes the principal branch of logarithm function. In fact, proving
this for boundary points is enough. For z = eit , let F(t) = | log(qβe(e

it))|2 , −π �
t � π . We note that F(t) = F(−t) , so it is enough to consider the interval 0 �
t � π .

F(t) = (ln |qβe(e
it)|)2 +(arg(qβe(e

it))2

= (ln |Φ(1,1+1/βe,−eit/βe)|)2 +(arg(Φ(1,1+1/βe,−eit/βe))2.



22 N. BOHRA, S. KUMAR AND V. RAVICHANDRAN

0.5 1.0 1.5 2.0 2.5 3.0

�2

�1

1

2

Figure 1: Graph of F(t) .
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Figure 2: Image of unit disk D under the functions ez and qβ (z) for β = βe � 0.291936 and
for β = 0.5 respectively.

We see that F(t) is an increasing function of t and max0�t�π F(t) = F(π) = 1.
See Figure 1.

This proves that qβe(z)≺ ez and hence qβ (z)≺ ez for β � βe . Figure 2 illustrates
our proof.

(b) For P(z) =
√

1+ z , the inequalities 0 � qβ (−1) and qβ (1) �
√

2 reduce to

f (β ) = (Φ(1,1+1/β ,1/β ))−1 � 0

and
g(β ) =

√
2− (Φ(1,1+1/β ,−1/β ))−1 � 0.

Clearly, f (β )� 0 for β > 0. Also, we see that limβ↘0 g(β )< 0 and limβ↗∞ g(β )
=
√

2−1 > 0. Also g′(β ) > 0 for all β ∈ (0,∞) . Let βl denotes the unique zero
of g in (0,∞) . Then we show that qβ (z) ≺ P(z) for β � βl � 1.76736.

Again as done in part (a), it suffices to show that qβl
(z) ≺√

1+ z . This is equiv-
alent to showing that

|(qβl
(z))2 −1|� 1,z ∈ D. (3)

We prove it for boundary points. For z = eit , qβl
(z)= (Φ(1,1+1/βl,−eit/βl))−1 ,

hence inequality (3) is equivalent to showing that

(2ReΦ(1,1+1/βl,−eit/βl)2 −1) � 0.
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We define
G(t) = ReΦ(1,1+1/βl,−eit/βl)2, t ∈ [0,π ].

We see that G(t) is an increasing function with min0�t�π G(t) = G(0) = 1/2.
See Figure 3.

0.5 1.0 1.5 2.0 2.5 3.0

�3

�2

�1

1

2

3

Figure 3: Graph of G(t) .

(c) For P(z) = ϕs(z) , the inequalities 1− sin1 � qβ (−1) and qβ (1) � 1 + sin1
reduce to

f (β ) = (Φ(1,1+1/β ,1/β ))−1−1+ sin1 � 0

and
g(β ) = 1+ sin1− (Φ(1,1+1/β ,−1/β ))−1 � 0.

Here we see that both f (β ) and g(β ) have unique root in (0,∞) . In fact,
f (β ) � 0 for β � β1 � 0.04435 and g(β ) � 0 for β � β2 � 0.322915. Let
βs = max{β1,β2} = β2 .We show that qβ (z) ≺ 1+ sinz for β � βs . As done in
previous parts, it suffices to show that qβs(z) ≺ 1 + sinz . This is equivalent to
showing that |arcsin(qβs(z)−1)|� 1, z ∈ D . We define

H(t) = |arcsin(qβs(e
it)−1)|, t ∈ [0,π ].

Then H(t) is decreasing function of t with maximum value 1 attained at t = 0.
See Figure 4.
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Figure 4: Graph of H(t) .
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(d) For P(z) = ϕ0(z) , consider the inequalities ϕ0(−1) � qβ (−1) and qβ (1) �
ϕ0(1) . Let

f (β ) = (Φ(1,1+1/β ,1/β ))−1−2(
√

2−1) � 0

and
g(β ) = 2− (Φ(1,1+1/β ,−1/β ))−1 � 0.

Since limβ↘0 f (β )=−2(
√

2−1)< 0, limβ↗∞ f (β )= 3−2
√

2 > 0 and f ′(β )>
0 for all β ∈ (0,∞) , f (β ) has a unique zero in (0,∞) say βR � 4.3622. Also
we see that g(β ) � 0 for β > 0. We show that

qβ (z) ≺ ϕ0(z) for β � βR.

Again it suffices to show that qβR
(z) ≺ ϕ0(z) . This is equivalent to showing that

k
2

∣∣−qβR
(z)+ |qβR

(z)−2|∣∣� 1, z ∈ D,

where k =
√

2+1. It is enough to show for boundary points. We define

M(t) =
∣∣−qβR

(eit)+ |qβR
(eit)−2|∣∣ , t ∈ [0,π ].

Then we see that max0�t�1 M(t) = M(0) = 0.405592 which is less than 2/k =
0.828427. See Figure 5.
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Figure 5: Graph of M(t) .

(e) For P(z) = ϕq(z) , the inequalities −1 +
√

2 � qβ (−1) and qβ (1) � 1 +
√

2
reduce to

f (β ) = (Φ(1,1+1/β ,1/β ))−1 +1−
√

2 � 0

and
g(β ) = 1+

√
2− (Φ(1,1+1/β ,−1/β ))−1 � 0.

Here we see that g(β ) � 0 for β > 0 and f (β ) have unique root in (0,∞) . In
fact, f (β ) � 0 for

β � βL � 0.391235.
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We show that qβ (z) ≺ ϕq(z) for β � βL . It suffices to show that∣∣∣∣∣ (qβL
(z))2 −1

2qβL
(z)

∣∣∣∣∣� 1, z ∈ D.

We define

N(t) =
∣∣∣∣1−Φ(1,1+1/βL,−eit/βL)2

2Φ(1,1+1/βL,−eit/βL)

∣∣∣∣ , t ∈ [0,π ].

Then it can be seen that N(t) is an increasing function of t with max0�t�π N(t) =
1. See Figure 6.
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Figure 6: Graph of N(t) .

�

The Briot-Bouquet differential equations and the integral operator F defined by

F(z) =
1
β

∫ z

0
f 1/β (t)t−1dt. (4)

are closely related. If we set p(z) = zF ′(z)/F(z) , then

p(z)+
β zp′(z)

p(z)
=

z f ′(z)
f (z)

.

Using this relation we have the following corollary:

COROLLARY 1. Let F be as defined in (4) . If z f ′(z)/ f (z) ≺ 1 + z, then the
following hold:

(a) If β � βe � 0.291936 , then zF ′(z)/F(z) ≺ ez .

(b) If β � βL � 1.76736 , then zF ′(z)/F(z) ≺√
1+ z.

(c) If β � βS � 0.322915 , then zF ′(z)/F(z) ≺ ϕs(z) .

(d) If β � βR � 4.3622 , then zF ′(z)/F(z) ≺ ϕ0(z) .
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The bounds on β are sharp.

In [20], authors obtained a condition on β so that p≺ ϕPAR whenever 1+β zp′(z)
is subordinate to

√
1+ z . To determine the estimate on β so that p ≺ ϕPAR whenever

1+ β zp′(z) ≺ ez , following lemmas are needed.

LEMMA 2. [9, Lemma 4, p. 3] Let z be a complex number. Then,

| log(1+ z)|� 1 if and only if |z| � e−1.

LEMMA 3. [15, Theorem 3.4h, p. 132] Let q be analytic in D and let ψ and
ν be analytic in a domain U containing q(D) with ψ(w) �= 0 when w ∈ q(D) . Set
Q(z) := zq′(z)ψ(q(z)) and h(z) := ν(q(z))+Q(z) . Suppose that

(i) either h is convex, or Q is starlike univalent in D and

(ii) Re(zh′(z)/Q(z)) > 0 for z ∈ D .

If p is analytic in D , with p(0) = q(0) , p(D) ⊆ U and ν(p(z)) + zp′(z)ψ(p(z)) ≺
ν(q(z))+ zq′(z)ψ(q(z)), then p(z) ≺ q(z) , and q is best dominant.

THEOREM 2. Let the function p ∈ P satisfying following subordination relation

1+ β zp′(z) ≺ ez for β � π(e−1).

Then
p(z) ≺ ϕPAR(z).

Proof. Let the function q : D → C be defined by q(z) = ϕPAR(z) that is univa-
lent. Let ν(w) = 1 and ψ(w) = β be two functions. Since the function q is convex
univalent, then the function

Q(z) = zq′(z)ψ(q(z)) = β zq′(z) = β
4
√

z
π2(1− z)

log
1+

√
z

1−√
z

is starlike in D . The function h is defined on D as

h(z) := ν(qβ (z))+Q(z) = 1+ β
4
√

z
π2(1− z)

log
1+

√
z

1−√
z

satisfies the inequality Re(zh′(z)/Q(z)) > 0 in D . Note that the function h is univalent.
Using Lemma 3, we note that 1+β zp′(z) ≺ 1+β zq′(z) implies p ≺ q. We set ρ(z) =
ez so that ρ(D) = {w ∈ C : | logw| � 1} . Therefore the required subordination ρ ≺ h
holds if ∂h(D) ⊂ C\ρ(D) or | logh(z)| > 1 or∣∣∣∣log

(
1+ β

4
√

z
π2(1− z)

log
1+

√
z

1−√
z

)∣∣∣∣> 1
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holds. In view of Lemma 2, the last inequality is equivalent to

∣∣∣∣β 4
√

z
π2(1− z)

log
1+

√
z

1−√
z

∣∣∣∣
2

> (e−1)2. (5)

For z = eiθ and θ ∈ [−π , π ] , consider

∣∣∣∣∣β 4eiθ/2

π2(1− eiθ)
log

1+ eiθ/2

1− eiθ/2

∣∣∣∣∣
2

=
∣∣∣∣β 2i

π2 csc(θ/2) log(icot(θ/4))
∣∣∣∣
2

=
β 2

π2 csc2(θ/2)+
4β 2

π4 csc2(θ/2)(log(cot(θ/4)))2

=:β 2g(θ ), (6)

where

g(θ ) =
1

π2 csc2(θ/2)
(

1+
4

π2 (log(cot(θ/4)))2
)

.

Using second derivative test, we note that the function g has minimum value at θ = π .
Therefore, inequality (6) becomes

∣∣∣∣∣β 4eiθ/2

π2 log
1+ eiθ/2

1− eiθ/2

∣∣∣∣∣
2

= β 2g(θ ) � β 2g(π) =
β 2

π2 (7)

In view of inequalities (5) and (7), we conclude that the desired subordination for β �
π(e−1) . �

As an application of Theorem 2, we have following sufficient condition for the
parabolic starlike function:

COROLLARY 2. Let β � π(e−1) . If the function f ∈ S satisfies following sub-
ordination relation

1+ β
z f ′(z)
f (z)

(
(z f ′(z))′

f ′(z)
− z f ′(z)

f (z)

)
≺ ez

then f ∈ S ∗
P .
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