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NUMBER OF ZEROS OF A CERTAIN CLASS

OF POLYNOMIALS IN A SPECIFIC REGION

N. A. RATHER, AIJAZ BHAT ∗ AND LIYAQAT ALI

Abstract. We obtain results giving bounds concerning the number of zeros of polynomials with
restricted coefficients in a specific region. Our results generalize and improve several well-known
results concerning the number of zeros of polynomials in certain regions.

1. Introduction

The study of zeros of complex polynomials is an old theme in analytic theory
of polynomials, has spawned a vast amount of research over the past millennium in-
cludes its applications both within and outside of mathematics. In addition to having
numerous applications, this study has been the inspiration for much theoretical research
(including being the initial motivation for modern algebra). Algebraic and analytic
methods for finding zeros of a polynomial, in general, can be quite complicated, so
it is desirable to put some restrictions on polynomials. This motivated the study of
identifying suitable regions in the complex plane containing the zeros of a polyno-
mial when their coefficients are restricted with special conditions. A classical result on
the location of zeros of a polynomial with restricted coefficients known as Eneström-
Kakeya theorem states that for a polynomial P(z) = ∑n

i=0 aizi , if the coefficients satisfy
0 < a0 � a1 � a2 . . . � an , then P(z) has all its zeros in |z| � 1 (see section 8.3 of
[6]). In literature (see [4], [7]) there exist several generalizations of Eneström-Kakeya
theorem. There is always a need for better and better results in this subject because
of its application in many areas including signal processing, communication theory,
cryptography, control theory, combinatorics and mathematical biology. In this paper,
by using standard techniques we shall obtain results of finding the number of zeros
of the polynomials with restricted coefficients in a specific region. The following re-
sult concerning the number of zeros of a polynomial in a closed disk can be found in
Titchmarsh’s Classic “The Theory of Functions” (see [8] page 171).

THEOREM A. Let F(z) be analytic in |z| � R. Let |F(z)| � M in |z| � R and
F(0) �= 0 . Then for 0 < δ < 1 , the number of zeros of F(z) in the disk |z| � Rδ does
not exceed

1

log 1
δ

log
M

|F(0)| .
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By putting a restriction on the coefficients of a polynomial similar to that of the
Eneström-Kakeya Theorem, Mohammad [3] used a special case of Theorem A to prove
the following result:

THEOREM B. Let P(z) = ∑n
j=0 a jz j be a polynomial of degree n with real coef-

ficients such that an � an−1 � an−2 � . . . � a1 � a0 > 0 , then the number of zeros of
P(z) in |z| � 1

2 does not exceed

1+
1

log2
log

an

a0
.

Dewan [1] generalized Theorem B to the polynomials with complex coefficients
and obtained the following results:

THEOREM C. Let P(z) = ∑n
j=0 a jz j be a polynomial of degree n with complex

coefficients such that for some real β , |argai−β |� α � π/2 , i = 0,1,2, . . . ,n and

|an| � |an−1| � . . . � |a2| � |a1| � |a0| > 0,

then the number of zeros of P(z) in |z| � 1
2 does not exceed

1
log2

log
|an|(1+ cosα + sinα)+2sinα ∑n−1

j=0 |a j|
|a0| .

THEOREM D. Let P(z) = ∑n
j=0 a jz j be a polynomial of degree n with complex

coefficients. If Re(ai) = αi, Im(ai) = βi, for i = 0,1,2, . . . ,n

αn � αn−1 . . . � α2 � α1 � α0 > 0,

then the number of zeros of P(z) in |z| � 1
2 does not exceed

1+
1

log2
log

αn + ∑n
i=0 |βi|

|a0| .

In this paper, we wish to weaken the hypothesis of the above results by considering
a larger class of polynomials and obtain results with a relaxed hypothesis that improves
the zero bounds in several ways. Besides, our results generalize several well-known
results concerning the number of zeros of polynomials. We prove the following results.

2. Main results

THEOREM 1. Let P(z) = ∑n
j=0 a jz j , a0 �= 0 be a polynomial of degree n with real

coefficients such that for some k j � 1 , j = 0,1,2,3, . . . ,r where 0 � r � n−1 ,

k0an � k1an−1 � k2an−2 � . . . � kr−1an−r+1 � kran−r � an−r−1 . . . � a1 � a0,

then for 0 < δ < 1 , the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
M
|a0| ,

where M = k0(|an|+an)+2∑r
j=1(k j −1)|an− j|−a0 + |a0| .
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Taking k j = 1, j = 0,1,2, . . . ,r in Theorem 1, we obtain the following result:

COROLLARY 1. Let P(z) = ∑n
j=0 a jz j , a0 �= 0 be a polynomial of degree n with

real coefficients such that an � an−1 � an−2 � . . . � a1 � a0 , then for 0 < δ < 1 , the
number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
|an|+an−a0 + |a0|

|a0| .

REMARK 1. On setting a0 > 0 and δ = 1/2, Corollary 1 reduces to Theorem B.

THEOREM 2. Let P(z) = ∑n
j=0 a jz j , a0 �= 0 be a polynomial of degree n with

complex coefficients such that for some real β , |argai−β |� α � π/2 , i = 0,1,2, . . . ,n
and k j � 1 , j = 0,1,2, . . . ,r where 0 � r � n−1 ,

k0|an| � k1|an−1| � . . . � kr−1|an−r+1| � kr|an−r| � |an−r−1| � . . . � |a2| � |a1| � |a0|,
(1)

then for 0 < δ < 1 , the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
K
|a0| ,

where

K = k0|an|(1+ cosα + sinα)+2sinα

{
r

∑
j=1

k j|an− j|+
n

∑
j=r+1

|an− j|
}

+2
r

∑
j=1

(k j −1)|an− j|.

REMARK 2. If we take k j = 1, j = 0,1,2, . . . ,r and δ = 1/2, Theorem 2 reduces
to Theorem C.

For α = β = 0, we obtain following result:

COROLLARY 2. Let P(z) = ∑n
j=0 a jz j be a polynomial of degree n with real co-

efficients such that for some k j � 1 , j = 0,1,2,3, . . . ,r where 0 � r � n−1 ,

k0an � k1an−1 � k2an−2 � . . . � kr−1an−r+1 � kran−r � an−r−1 . . . � a1 � a0 > 0,

then for 0 < δ < 1 , the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
2k0an +2∑r

j=1(k j −1)an− j

a0
.
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THEOREM 3. Let P(z) = ∑n
j=0 a jz j , a0 �= 0 be a polynomial of degree n with

complex coefficients. If Re(ai) = αi , Im(ai) = βi, for i = 0,1,2, . . . ,n and k j � 1 ,
j = 0,1,2, . . . ,r where 0 � r � n−1 ,

k0αn � k1αn−1 � . . . � kr−1αn−r+1 � krαn−r � αr−1 � . . . � α2 � α1 � α0, (2)

then for 0 < δ < 1 , the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
N
|a0| ,

where N = k0(|αn|+ αn)+2∑r
i=1(ki −1)|αn−i|+2∑n

i=0 |βi|−α0 + |α0|.

On setting βi = 0, Theorem 3 reduces to Theorem 1.
Taking k j = 1, j = 0,1,2, . . . ,r in Theorem 3, we obtain the following result:

COROLLARY 3. Let P(z) = ∑n
j=0 a jz j , a0 �= 0 be a polynomial of degree n with

complex coefficients. If Re(ai) = αi , Im(ai) = βi, for i = 0,1,2, . . . ,n and

αn � αn−1 . . . � α2 � α1 � α0,

then for 0 < δ < 1 , the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
|αn|+ αn +2∑n

i=0 |βi|−α0 + |α0|
|a0| .

REMARK 3. If we assume α0 > 0 and δ = 1/2, Corollary 3 reduces to Theo-
rem D.

3. Lemmas

For the proof of these theorems, we require the following lemma which is due to
Govil and Rahman [2].

LEMMA 1. If for some real β ,

|arga j −β |� α � π/2, a j �= 0

and for some positive real numbers t1 and t2 , t1|a j| � t2|a j−1|, then

|t1a j − t2a j−1| � (t1|a j|− t2|a j−1|)cosα +(t1|a j|+ t2|a j−1|)sinα.
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4. Proof of the theorems

Proof of Theorem 1. Consider the polynomial

F(z) = (1− z)P(z)

= −anz
n+1 +(an−an−1)zn + . . .+(an−r−an−r−1)zn−r + . . .+(a1−a2)z+a0

= −anz
n+1 +(k0an− k1an−1− (k0−1)an +(k1−1)an−1)zn

+(k1an−1− k2an−2− (k1−1)an−1 +(k2−1)an−2)zn−1

+ . . .+(kr−1an−r+1− kran−r − (kr−1−1)an−r+1 +(kr −1)an−r)zn−r−1

+(kran−r −an−r−1− (kr −1)an−r)zn−r +(an−r−1−an−r−2)zn−r−1

+ . . .+(a2−a1)z2 +(a1−a0)z+a0.

|F(z)| = |−anz
n+1− (k0−1)anz

n +(k0an− k1an−1)zn +(k1−1)an−1z
n

+(k1an−1− k2an−2)zn−1− (k1−1)an−1z
n−1 +(k2−1)an−2z

n−1 + . . .+

+(kr−1an−r+1− kran−r)zn−r+1− (kr−1−1)an−r+1z
n−r+1 +(kr −1)an−rz

n−r+1

+(kran−r −an−r−1)zn−r − (kr −1)an−rz
n−r +(an−r−1−an−r−2)zn−r−1

+ . . .+(a2−a1)z2 +(a1−a0)z+a0|.
By using hypothesis, we have for |z| � 1,

|F(z)| � |an|+(k0−1)|an|+ k0an− k1an−1 +(k1−1)|an−1|+ k1an−1− k2an−2

+(k1−1)|an−1|+(k2−1)|an−2|+ . . .+ kr−1an−r+1− kran−r

+(kr−1−1)|an−r+1|+(kr −1)|an−r|+ kran−r −an−r−1 +(kr −1)|an−r|
+an−r−1−an−r−2 + . . .+a2−a1 +a1−a0 + |a0|

= |an|+(k0−1)|an|+ k0an +2
r

∑
j=1

(k j −1)|an− j|−a0 + |a0|

= k0(|an|+an)+2
r

∑
j=1

(k j −1)|an− j|−a0 + |a0|

= M(say).

Since F(z) is analytic in |z|� 1 with F(0) = a0 �= 0 and |F(z)|� M , then by Theorem
A, the number of zeros of F(z) in |z| � δ does not exceed

1

log 1
δ

log
M

|F(0)| .

Now as the number of zeros of P(z) in |z|� δ is equal to the number of zeros of F(z) in
|z| � δ , therefore it follows that the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
M
|a0| .
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This proves theorem 1. �

Proof of Theorem 2. Consider

G(z) = (1− z)P(z)

= −anz
n+1 +(an−an−1)zn + . . .+(an−r−an−r−1)zn−r + . . .+(a1−a2)z+a0

= −anz
n+1 +(k0an− k1an−1− (k0−1)an +(k1−1)an−1)zn

+(k1an−1− k2an−2− (k1−1)an−1 +(k2−1)an−2)zn−1

+ . . .+(kr−1an−r+1− kran−r − (kr−1−1)an−r+1 +(kr −1)an−r)zn−r+1

+(kran−r −an−r−1− (kr −1)an−r)zn−r +(an−r−1−an−r−2)zn−r−1

+ . . .+(a2−a1)z2 +(a1−a0)z+a0.

|G(z)| = |−anz
n+1− (k0−1)anz

n +(k0an− k1an−1)zn +(k1−1)an−1z
n

+(k1an−1− k2an−2)zn−1− (k1−1)an−1z
n−1 +(k2−1)an−1z

n−1 + . . .+

+(kr−1an−r+1− kran−r)zn−r+1 − (kr−1−1)an−r+1z
n−r+1 +(kr −1)an−rz

n−r+1

+(kran−r −an−r−1)zn−r − (kr −1)an−rz
n−r +(an−r−1−anr−2)zn−r−1

+ . . .+(a2−a1)z2 +(a1−a0)z+a0|.

For |z| � 1, we have

|G(z)| � |an|+(k0−1)|an|+ |k0an− k1an−1|+(k1−1)|an−1|+ |k1an−1− k2an−2|
+(k1−1)|an−1|+(k2−1)|an−2|+ . . .+ |kr−1an−r+1− kran−r|
+(kr−1−1)|an−r+1|+(kr −1)|an−r|+ |kran−r −an−r−1|+(kr−1)|an−r|
+ |an−r−1−anr−2|+ . . .+ |a2−a1|+ |a1−a0|+ |a0|.

In view (1), applying lemma 1, we have for |z| � 1,

|G(z)| � k0|an|(1+ cosα + sinα)+2sinα

{
r

∑
j=1

k j|an− j|+
n

∑
j=r+1

|an− j|
}

+2
r

∑
j=1

(k j −1)|an− j|− |a0|(cosα + sinα −1)

� k0|an|(1+ cosα + sinα)+2sinα

{
r

∑
j=1

k j|an− j|+
n

∑
j=r+1

|an− j|
}

+2
r

∑
j=1

(k j −1)|an− j|

= K(say).
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Since G(z) is analytic in |z|� 1 with G(0) = a0 �= 0 and |G(z)|� K , then by Theorem
A, the number of zeros of G(z) in |z| � δ does not exceed

1

log 1
δ

log
K

|G(0)| .

Now as the number of zeros of P(z) in |z|� δ is equal to the number of zeros of G(z) in
|z| � δ , therefore it follows that the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
K
|a0| .

This completes the proof of Theorem 2. �

Proof of Theorem 3. Consider

T (z) = (1− z)P(z)

= anz
n+1 +

n

∑
i=1

(ai−ai−1)zi +a0.

We have for |z| � 1,

|T (z)| � |an|+
n

∑
i=1

|ai −ai−1|+ |a0|

� |αn|+ |βn|+
n

∑
i=1

{|αi −αi−1|+ |βi−βi−1|}+ |α0|+ |β0|

� |αn|+ |βn|+
n

∑
i=1

|αi −αi−1|+
n

∑
i=1

|βi−βi−1|+ |α0|+ |β0|

� |αn|+ |βn|+
n−1

∑
i=0

|αn−i −αn−i−1|+
n

∑
i=1

(|βi|+ |βi−1|)+ |α0|+ |β0|

= |αn|+
r

∑
i=0

|kiαn−i − ki+1αn−i−1 − (ki−1)αn−i +(ki+1−1)αn−i−1|

+
n−1

∑
i=r+1

|αn−i−αn−i−1|+2
n

∑
i=0

|βi|+ |α0|, kr+1 = 1

� |αn|+
r

∑
i=0

|kiαn−i − ki+1αn−i−1|+
r

∑
i=0

|(ki −1)αn−i|+
r

∑
i=0

|(ki+1 −1)αn−i−1|

+
n−1

∑
i=r+1

|αn−i−αn−i−1|+2
n

∑
i=0

|βi|+ |α0|, kr+1 = 1.
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By using the hypothesis, we get

|T (z)| = |αn|+
r

∑
i=0

(kiαn−i − ki+1αn−i−1)+ (k0−1)|αn|+2
r

∑
i=1

(ki −1)|αn−i|

+
n−1

∑
i=r+1

(αn−i −αn−i−1)+2
n

∑
i=0

|βi|+ |α0|, kr+1 = 1

= |αn|+ k0αn +(k0−1)|αn|+2
r

∑
i=1

(ki −1)|αn−i|−α0

+2
n

∑
i=0

|βi|+ |α0|

= k0(|αn|+ αn)+2
r

∑
i=1

(ki −1)|αn−i|+2
n

∑
i=0

|βi|−α0 + |α0|

= N(say).

Since T (z) is analytic in |z|� 1 with T (0) = a0 �= 0 and |T (z)|� N , then by Theorem
A, the number of zeros of T(z) in |z| � δ does not exceed

1

log 1
δ

log
N

|T (0)| .

Now as the number of zeros of P(z) in |z|� δ is equal to the number of zeros of T(z) in
|z| � δ , therefore it follows that the number of zeros of P(z) in |z| � δ does not exceed

1

log 1
δ

log
N
|a0| .

This completes the proof of Theorem 3. �
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