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UNIFORM NORM ESTIMATES OF BERNSTEIN-TYPE
FOR LACUNARY-TYPE COMPLEX POLYOMIALS

ABDULLAH MIR AND ADIL HUSSAIN*

Abstract. In this paper, we prove some inequalities for the uniform norm of the derivative and
polar derivative of lacunary-type complex polynomials having zeros in closed exterior of a circle
of arbitrary positive radius. The results obtained besides extend some classical Bernstein-type
inequalities also include several interesting generalizations and refinements of some known in-
equalities involving the polar derivative.

1. Introduction

n
Let P(z) := Y a,z" be a polynomial of degree 7 in the complex plane and P'(z)
v=0
be its derivative. The study of Bernstein-type inequalities that relate the norm of a

polynomial to that of its derivative and their various versions are a classical topic in
analysis. One basic result is that: for P(z) to be a polynomial of degree n, it is true that

max|P'(z)| < nmax|P(z)], (1)
[z[=1 [z[=1

where as concerning the maximum modulus of P(z) on the circle |z| = R > 1, we have
(for reference see [11], p. 346),

max |P(z)| < R"max |P(2)]. )
|zZ|=R lz]=1

Equality holds in (1) and (2) if and only if P(z) is a non-zero multiple of z”. The
above inequalities have been the starting point of a considerable literature in Approx-
imation theory. Several papers and research monographs have been written on poly-
nomial approximations (see, for example Marden [7], Rahman and Schmeisser [9], or
Milovanovié et al. [8]). For a polynomial P(z) of degree n, not vanishing in the interior
of the unit circle, we have the following version of (1):

n
max|P'(z)| < = max|P(z)|. 3)
Jz|=1 2 =1

The result is best possible and the equality in (3) holds for any polynomial which has
all its zeros on |z| = 1. As is well known, inequality (3) was conjectured by Erdds and
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later proved by Lax [6]. In 1985, Frappier et al. [3] proved that if P(z) is a polynomial
of degree n, then
P'(z)| < Pl
py Pl <n g, 1P

)l “)

Clearly (4) is a refinement of (1), since the max1mum of |P(z)| on |z] =1 may be
larger than maximum of |P(z)| taken over 21" roots of unity as one can see by taking
a simple example P(z) = 7" +ib, b > 0.

Following the approach of Frappier et al. [3], Aziz [1] showed that the bound in
(4) can be considerably improved. In fact, Aziz proved that if P(z) is a polynomial of
degree n, then

n
ﬂwflP’( )| < 5 (Ma+Maix) ®)
4
and for R > 1,
R"—1
‘IITa)li‘P(RZ) P(z)| < 5 (Mo, +Me i n), (6)
Z
where
- (o+2im)
My = max [P (57 )] (7)
1<i<n

for all real o.

By restricting the zeros of P(z), inequalities (5) and (6) were also improved by
Aziz [1] by establishing that if P(z) is a polynomial of degree n such that P(z) # 0 in
|z| < 1, then for every real o,

Nl—

n
max |P'(2)] < 5 (Mo +Msz) ®)
Z
and for every R > 1,
R'—1 5 2 \3
max |P(Rz) — P(2)| < (Mg, +Mgz)” ®)

|z[=1

where M, is defined in (7).
In 2012, Rather and Shah [10] extended (8) by proving that if P(z) is a polynomial
of degree n such that P(z) #0 in |z| <k, k > 1, then

Nl—

max |P'(2)] € ———— (M2 + M2, —2m? (10)
2= 1‘ ()| 2(1+k2)( o o+ k)
and also extended (9) for every real o and R > 1,
R"—1 ) ) o4
max |P(Rz) — P(2)| € —— (M2 +M?%, _—2m?)?, (11)
ma P (R2) = P(2) € — 2o (M M~ 20)

where My, is defined in (7) and my = min| ;¢ [P(z)|.
As it is easy to see that inequalities (10) and (11) for k£ = 1 provides refinement to
inequalities (8) and (9). Recently Hans et al. [5] extended inequalities (10) and (11) to

the class of lacunary-type polynomials P(z) = ap+ Y, a,z”, 1 < g < n not vanishing
V=i

in |z| <k, k > 1 and obtained the following results.
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n
THEOREM A. If P(z) =ap+ Y ayz’, 1 < u < n is a polynomial of degree n
v=H
such that P(z) #0 in |z| <k, k > 1, then for every real o,

n 1
max [P (2)| € —— (M2 + M2, . —2m3) 7, (12)
ma 1| (2)] 2(ka)( atMoin i)

where My is defined in (7) and my. = miny_ |P(z).

THEOREM B. If P(z) = ap+ Z ayz’, 1 < u < nis a polynomial of degree n
such that P(z) #0 in |z| <k, k> 1 thenfor everyreal o and R>r > 1,

R"— 1" L
max |P(Rz) — P(rz)| < ——— (M2 + M2, —2m?)?, (13)
2= 1| ( ) ( )| 2(1—1—]{2”)( o o+ k)

where My, is defined in (7) and my. = miny_ |P(z)|.

The authors are curious to know how the inequalities in Theorems A and B and
other related inequalities mentioned above can be sharpened by using some of the co-

n
efficients of P(z) =ap+ Y, ayz’, i > 1. Indeed, this paper is mainly motivated by the
v=U

desire to establish some more refined bounds than given by (10)—(13).

2. Main results

THEOREM 1. If P(z) = ap+ Z ayz’, 1 < U < nisapolynomial of degree n such
=u

that P(z) #0 in |z| <k, k>1 wzth my = min,_ |P(z)|, then for every real o and
0< A <1, we have

1
max |P'(z)| < " (M2 + M2, . —2m22%)? (14)

- 20+ﬁw0

(5) a1 |
where My, is defined in (7) and (1) = k* 1 clotme

(%) [T

REMARK 1. It is important to mention that bound obtained from Theorem 1 is
optimal when A = 1. However, the parameter A plays a vital role for making Theorem
1 more general and to get different bounds from it by simply giving different values
to it from O to 1 and without changing the hypothesis of the Theorem. For example,
for A = 0 (without assuming that P(z) has a zero on |z| = k), we obtain the following
result.
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n
COROLLARY 1. If P(z) = ap+ Y ayz’, 1 < u < nis apolynomial of degree n
v=nt
such that P(z) #0 in |z| <k, k > 1, then for every real o,

n

Nl—

max|P'(2)| € —
2<1+w§(u>>

( ) “Z““kﬂ l+l
where My, is defined in (7) and wo(u) = k*+! W :
n ao

(Mg +M5iz)”

Setting A = 1 in (14), we obtain the following result which provides a refinement
to Theorem A.

COROLLARY 2. If P(z) = ap+ Y, avz’, 1 < u < n is a polynomial of degree n
v=nt

such that P(z) # 0 in |z| <k, k> 1 with m; = min|;_¢|P(z)],

1
max [P (2)] € — e (M2 4+ M2 —2m}) 2, (15)

- 2<1+w12(u))

. . 1 (%) \a‘a\yjmku 1+1
where My, is defined in (7) and (1) = kH+ W )

ol
REMARK 2. Itis easy to verify that the function

n 2 a2 22
—— (M2 4+ M2, —2m3)7,
2(1 +x2) ( o o+ k)
is a non-increasing function of x. If we combine this fact with inequality (21) (Lemma
1, for A = 1) according to which vy (u) > k", u > 1, we observe that right hand side of
(15) does not exceed the right hand side of (12). This shows that Corollary 2 sharpens
the bound in Theorem A.

REMARK 3. By the same argument as in remark 2, if we choose gt =A =1 in
(14), then right hand side of (14) does not exceed the right hand side of (10). Hence
inequality (14) for u = A = 1 sharpens the bound in (10).

Setting u =k =1 in (14), we obtain the following result which generalizes as well
as refines (8).

COROLLARY 3. If P(z) = 2 a,z” is a polynomial of degree n such that P(z) # 0

in |z] <1 with m =min_; |P(z ) then for every real o0 and 0 < A < 1,

1
max |P'(z)| < 5 (M4 + M}, . —2m*A%) 7, (16)

n
[z[=1 2
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where My, is defined in (7).
REMARK 4. For A = 1, inequality (16) provides a refinement to (8) and for A =
0, it reduces to (8).

Next, we prove the following strengthening of (13).

n
THEOREM 2. If P(z) = ap+ Y, ayz’, 1 < u < n is a polynomial of degree n
v=p

such that P(z) # 0 in |z| <k, k > 1 with m = min;_|P(z)|, then for every real a,
R>r>1and 0<A <1,

R — 1
max |P(Rz) — P(rz)| < (Mg + Mgz —2mi2%)%,  (17)

- 2@+%w0

where My is defined in (7) and ), (1) is defined in Theorem 1.
If in (17), we take A = 1, we obtain the following result which provides a refine-
ment to inequality (13).
n
COROLLARY 4. If P(z) =ap+ Y, ayz’, 1 < u < nis apolynomial of degree n
v=p

such that P(z) # 0 in |z| <k, k> 1 with my = min,_|P(z)|, then for every real o
andfor R>r>1,

R — 1
max |P(Rz) — P(rz)| < ———— (M + M}, —2m})?

- 2(1+vfuw)

where My is defined in (7) and (W) is defined in Corollary 2.

REMARK 5. For A = u = r =1, inequality (17) provides a refinement to (11).

Setting 4 =k =1 in (17), we obtain the following result which generalizes as well
as refines (9).

COROLLARY 5. If P(z) = 2 ayz” is a polynomial of degree n such that P(z) ;é 0
—0

in |z| <1 with m = minp_; |P(z)| then for everyreal o, R>r > 1 andfor 0 < A <

R~ !
max |[P(Rz) — P(rz)| < (M2 + Mg, —2m* A7), (18)

lz|=1 2

where My, is defined in (7).
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REMARK 6. For A = r =1, inequality (18) provides a refinement to (9) and for
A =0 and r =1, it reduces to (9).

DEFINITION 1. For a polynomial P(z) of degree n, now we define the so-called
polar derivative of P(z) with respect to the point 3 as

DgP(z) : =nP(z) + (B — 2)P'(2).

The polynomial DgP(z) is of degree at most n — 1 and it generalizes the ordinary

derivative in the sense that
DgP(z
lim { B2t )}:P’(z),
p—= B
uniformly with respect to z for |z| <R, R > 0.

Over the last four decades many different authors produced a large number of
results pertaining to the polar derivative of polynomials. More information on this
topic can be found in the books of Milovanovi¢ et al. [8], Rahman and Schmeisser [9]
and Marden [7]. Finally, in this paper, as an application of Theorem 1, we establish the
following result for the polar derivative of polynomial.

n
THEOREM 3. If P(z) = ap+ Y, az’, 1 < u < n is a polynomial of degree n
v=p

such that P(z) # 0 in |z| <k, k > 1 with my = min|,_|P(z)|, then for every real a,
0 < A < 1 and for every complex number B with |B| > 1, we have

max [DpP(2)| < nimax |P(2)] + — e (M M2~ 2032, (1)
2<1+wﬁ(u>>

where My, is defined in (7) and ), (W) is defined in Theorem 1.

REMARK 7. If we divide both sides of (19) by |B| and let |B| — oo, we get (14).

3. Lemmas

In order to prove our main results, we need the following lemmas.

LEMMA 1. [2]1 If P(2) = ao+ Y avz’, 1 < u < n is a polynomial of degree n
V=
suchthat P(z) #0in |z) <k, k=1, 0< A <1 andfor R> 1

vy, (1)|P(Rz) — P(2)| < [Q(Rz) — O(2)| — (R" — 1) Amy, (20)
u |y JH— l+1
pen{ G )'“0‘ A =y () =k > 1, @D
)
apl—

where Q(z) = P(%) and my = minj;_ [P(z)|.
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LEMMA 2. [4] If P(2) is a polynomial of degree n, then for |z] =1,

P()+10'(2)] < nI‘IEXIP( 2,

where Q(z) =7"P(3).

LEMMA 3. [1] If P(2) is a polynomial of degree n, then for |z] =1,

20—

2
n
PP +1Q QP < 5 (M2 +M2,).

where Q(z) =7 (%) and My, is defined in (7).
4. Proofs of main results

Proof of Theorem 1. Since P(z) =ao+ Y, ayz’, 1 < u < n is a polynomial of
V=1

degree n such that P(z) # 0 in |z] < k, k > 1. Therefore on dividing both sides of
inequality (20) of Lemma 1 by R — 1 and taking R — 1, we have for |z| = 1,

v ()P (2)] < [Q'(2)| — nmyd.,

which implies ,

(wiP@+ma ) <i2@P @2)
Also )

(WA ()IP'(2)] +nmk7t> > 3 (WP ()P +n’mi 2>, (23)

From (22) and (23), we have for |z| =1,

V2 (WIP Q)P +n2mia <10/ ()P
By using Lemma 3, we have

I’l

Vi (WP )P + P (2) P +nmid? < <5 (Mg + Mz r)
which implies for |z] =1,
2
n
(14300 ) P QI < 5 2+ 02 )~ a2
Equivalently,
/ n 2 2 %
max |[P'(z)| < (M2 + M —2miA?)? (24)

- 20+%w0
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which is the desired result and hence completes the proof of Theorem 1. [

Proof of Theorem 2. On applying inequality (2) to the polynomial P’(z) which is
of degree n— 1 and using (14), we obtain for { > 1 and 0 < 6 < 2,
P'(§e)| < §" 1 P(e))]

< cn—l n
X

20+ﬁw0

Hence foreach 8, 0 < 0 <2m and R > r > 1, we have

R

1
(ML +M%, . —2miA%)? . (25)

P(Re"®) — P(re®) = dclxgeﬁ) ¢

R
_ /P/(Ceie)eiedg.

r

This implies,
R

[P(RE) ~ P(re)| < [P (Ee?)IdC.

which on using (25), gives

. . L
|P(Re™®) — P(re'®)| < " (M2 + M2, —2mIA )Z/c" ldg.
20+ﬁw0 ’
Consequently,

R — " 1
‘nfai(\P(Rz) P(rz)| < (M3 + My —2miA?) 2.
Z

2@+%w0

This completes the proof of Theorem 2. [

Proof of Theorem 3. 1f Q(z) = z"P(%), then it can be easily seen that

InP(z) —zP'(2)| = |0 (z)| for |z =1.
Now for § € C, with |B] > 1
IDgP(z)| = [nP(z) + (B —2)P'(2)]

[nP(z) + BP'(z) — zP'(z)|
< |nP(z) — 2P (2)| + B[ |P'(z)|.
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Therefore we have for |z| =1,
IDpP(2)| <|Q'(2)| +[BIIP'(2)]
which on using Lemma 2 gives for |z] = 1,
IDpP(z)| < n|P(2)| + (|B] = DIP'(2)]- (26)
Combining inequalities (24) and (26), we obtain for |z| =1,
n((Bl—1)

1
(M2 4 M2, —2m2A%)
2<1 + wﬁ(u))

IDgP(z)| < n|P(z)| +

This immediately leads to the desired result and hence completes the proof of Theorem
3. O
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