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UNIFORM NORM ESTIMATES OF BERNSTEIN–TYPE

FOR LACUNARY–TYPE COMPLEX POLYOMIALS

ABDULLAH MIR AND ADIL HUSSAIN ∗

Abstract. In this paper, we prove some inequalities for the uniform norm of the derivative and
polar derivative of lacunary-type complex polynomials having zeros in closed exterior of a circle
of arbitrary positive radius. The results obtained besides extend some classical Bernstein-type
inequalities also include several interesting generalizations and refinements of some known in-
equalities involving the polar derivative.

1. Introduction

Let P(z) :=
n
∑

v=0
avzv be a polynomial of degree n in the complex plane and P′(z)

be its derivative. The study of Bernstein-type inequalities that relate the norm of a
polynomial to that of its derivative and their various versions are a classical topic in
analysis. One basic result is that: for P(z) to be a polynomial of degree n , it is true that

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|, (1)

where as concerning the maximum modulus of P(z) on the circle |z|= R � 1, we have
(for reference see [11], p. 346),

max
|z|=R

|P(z)| � Rn max
|z|=1

|P(z)|. (2)

Equality holds in (1) and (2) if and only if P(z) is a non-zero multiple of zn . The
above inequalities have been the starting point of a considerable literature in Approx-
imation theory. Several papers and research monographs have been written on poly-
nomial approximations (see, for example Marden [7], Rahman and Schmeisser [9], or
Milovanović et al. [8]). For a polynomial P(z) of degree n , not vanishing in the interior
of the unit circle, we have the following version of (1):

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (3)

The result is best possible and the equality in (3) holds for any polynomial which has
all its zeros on |z| = 1. As is well known, inequality (3) was conjectured by Erdös and
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later proved by Lax [6]. In 1985, Frappier et al. [3] proved that if P(z) is a polynomial
of degree n , then

max
|z|=1

|P′(z)| � n max
1�l�2n

|P(e
ilπ
n )|. (4)

Clearly (4) is a refinement of (1), since the maximum of |P(z)| on |z| = 1 may be
larger than maximum of |P(z)| taken over 2nth roots of unity as one can see by taking
a simple example P(z) = zn + ib , b > 0.

Following the approach of Frappier et al. [3], Aziz [1] showed that the bound in
(4) can be considerably improved. In fact, Aziz proved that if P(z) is a polynomial of
degree n , then

max
|z|=1

|P′(z)| � n
2

(Mα +Mα+π) (5)

and for R > 1,

max
|z|=1

|P(Rz)−P(z)| � Rn−1
2

(Mα +Mα+π) , (6)

where
Mα = max

1�l�n

∣∣∣P(
ei (α+2lπ)

n

)∣∣∣ (7)

for all real α .
By restricting the zeros of P(z) , inequalities (5) and (6) were also improved by

Aziz [1] by establishing that if P(z) is a polynomial of degree n such that P(z) �= 0 in
|z| < 1, then for every real α,

max
|z|=1

|P′(z)| � n
2

(
M2

α +M2
α+π

) 1
2 (8)

and for every R > 1,

max
|z|=1

|P(Rz)−P(z)|� Rn−1
2

(
M2

α +M2
α+π

) 1
2 , (9)

where Mα is defined in (7).
In 2012, Rather and Shah [10] extended (8) by proving that if P(z) is a polynomial

of degree n such that P(z) �= 0 in |z| < k, k � 1, then

max
|z|=1

|P′(z)| � n√
2(1+ k2)

(
M2

α +M2
α+π −2m2

k

) 1
2 (10)

and also extended (9) for every real α and R > 1,

max
|z|=1

|P(Rz)−P(z)| � Rn−1√
2(1+ k2)

(
M2

α +M2
α+π −2m2

k

) 1
2 , (11)

where Mα is defined in (7) and mk = min|z|=k |P(z)| .
As it is easy to see that inequalities (10) and (11) for k = 1 provides refinement to

inequalities (8) and (9). Recently Hans et al. [5] extended inequalities (10) and (11) to

the class of lacunary-type polynomials P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n not vanishing

in |z| < k, k � 1 and obtained the following results.
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THEOREM A. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1, then for every real α,

max
|z|=1

|P′(z)| � n√
2(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2 , (12)

where Mα is defined in (7) and mk = min|z|=k |P(z)|.

THEOREM B. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1 , then for every real α and R � r � 1,

max
|z|=1

|P(Rz)−P(rz)| � Rn− rn√
2(1+ k2μ)

(
M2

α +M2
α+π −2m2

k

) 1
2 , (13)

where Mα is defined in (7) and mk = min|z|=k |P(z)|.
The authors are curious to know how the inequalities in Theorems A and B and

other related inequalities mentioned above can be sharpened by using some of the co-

efficients of P(z) = a0 +
n
∑

v=μ
avzv , μ � 1. Indeed, this paper is mainly motivated by the

desire to establish some more refined bounds than given by (10)–(13).

2. Main results

THEOREM 1. If P(z) = a0+
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n such

that P(z) �= 0 in |z| < k, k � 1 with mk = min|z|=k |P(z)| , then for every real α and
0 � λ � 1 , we have

max
|z|=1

|P′(z)| � n√
2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 , (14)

where Mα is defined in (7) and ψλ (μ) = kμ+1

{(
μ
n

) |aμ |
|a0|−λmk

kμ−1+1(
μ
n

) |aμ |
|a0|−λmk

kμ+1+1

}
.

REMARK 1. It is important to mention that bound obtained from Theorem 1 is
optimal when λ = 1. However, the parameter λ plays a vital role for making Theorem
1 more general and to get different bounds from it by simply giving different values
to it from 0 to 1 and without changing the hypothesis of the Theorem. For example,
for λ = 0 (without assuming that P(z) has a zero on |z| = k ), we obtain the following
result.



42 A. MIR AND A. HUSSAIN

COROLLARY 1. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1, then for every real α,

max
|z|=1

|P′(z)| � n√
2

(
1+ ψ2

0(μ)
) (

M2
α +M2

α+π
) 1

2 ,

where Mα is defined in (7) and ψ0(μ) = kμ+1

{(
μ
n

) |aμ |
|a0| k

μ−1+1(
μ
n

) |aμ |
|a0| k

μ+1+1

}
.

Setting λ = 1 in (14), we obtain the following result which provides a refinement
to Theorem A.

COROLLARY 2. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1 with mk = min|z|=k |P(z)| , then for every real α,

max
|z|=1

|P′(z)| � n√
2

(
1+ ψ2

1(μ)
) (

M2
α +M2

α+π −2m2
k

) 1
2 , (15)

where Mα is defined in (7) and ψ1(μ) = kμ+1

{(
μ
n

) |aμ |
|a0|−mkμ−1+1(

μ
n

) |aμ |
|a0|−mkμ+1+1

}
.

REMARK 2. It is easy to verify that the function

x → n√
2(1+ x2)

(
M2

α +M2
α+π −2m2

k

) 1
2 ,

is a non-increasing function of x . If we combine this fact with inequality (21) (Lemma
1, for λ = 1) according to which ψ1(μ) � kμ , μ � 1, we observe that right hand side of
(15) does not exceed the right hand side of (12). This shows that Corollary 2 sharpens
the bound in Theorem A.

REMARK 3. By the same argument as in remark 2, if we choose μ = λ = 1 in
(14), then right hand side of (14) does not exceed the right hand side of (10). Hence
inequality (14) for μ = λ = 1 sharpens the bound in (10).

Setting μ = k = 1 in (14), we obtain the following result which generalizes as well
as refines (8).

COROLLARY 3. If P(z) =
n
∑

v=0
avzv is a polynomial of degree n such that P(z) �= 0

in |z| < 1 with m = min|z|=1 |P(z)| , then for every real α and 0 � λ � 1,

max
|z|=1

|P′(z)| � n
2

(
M2

α +M2
α+π −2m2λ 2) 1

2 , (16)
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where Mα is defined in (7).

REMARK 4. For λ = 1, inequality (16) provides a refinement to (8) and for λ =
0, it reduces to (8).

Next, we prove the following strengthening of (13).

THEOREM 2. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1 with mk = min|z|=k |P(z)| , then for every real α ,
R � r � 1 and 0 � λ � 1 ,

max
|z|=1

|P(Rz)−P(rz)| � Rn− rn√
2

(
1+ ψ2

λ (μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 , (17)

where Mα is defined in (7) and ψλ (μ) is defined in Theorem 1.

If in (17), we take λ = 1, we obtain the following result which provides a refine-
ment to inequality (13).

COROLLARY 4. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1 with mk = min|z|=k |P(z)| , then for every real α
and for R � r � 1 ,

max
|z|=1

|P(Rz)−P(rz)| � Rn− rn√
2

(
1+ ψ2

1(μ)
) (

M2
α +M2

α+π −2m2
k

) 1
2 ,

where Mα is defined in (7) and ψ1(μ) is defined in Corollary 2.

REMARK 5. For λ = μ = r = 1, inequality (17) provides a refinement to (11).

Setting μ = k = 1 in (17), we obtain the following result which generalizes as well
as refines (9).

COROLLARY 5. If P(z) =
n
∑

v=0
avzv is a polynomial of degree n such that P(z) �= 0

in |z|< 1 with m = min|z|=1 |P(z)| , then for every real α , R � r � 1 and for 0 � λ � 1,

max
|z|=1

|P(Rz)−P(rz)| � Rn− rn

2

(
M2

α +M2
α+π −2m2λ 2) 1

2 , (18)

where Mα is defined in (7).
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REMARK 6. For λ = r = 1, inequality (18) provides a refinement to (9) and for
λ = 0 and r = 1, it reduces to (9).

DEFINITION 1. For a polynomial P(z) of degree n , now we define the so-called
polar derivative of P(z) with respect to the point β as

Dβ P(z) : = nP(z)+ (β − z)P′(z).

The polynomial Dβ P(z) is of degree at most n− 1 and it generalizes the ordinary
derivative in the sense that

lim
β→∞

{
Dβ P(z)

β

}
= P′(z),

uniformly with respect to z for |z| � R, R > 0.

Over the last four decades many different authors produced a large number of
results pertaining to the polar derivative of polynomials. More information on this
topic can be found in the books of Milovanović et al. [8], Rahman and Schmeisser [9]
and Marden [7]. Finally, in this paper, as an application of Theorem 1, we establish the
following result for the polar derivative of polynomial.

THEOREM 3. If P(z) = a0 +
n
∑

v=μ
avzv , 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k, k � 1 with mk = min|z|=k |P(z)| , then for every real α ,
0 � λ � 1 and for every complex number β with |β | � 1 , we have

max
|z|=1

|Dβ P(z)| � nmax
|z|=1

|P(z)|+ n(|β |−1)√
2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 , (19)

where Mα is defined in (7) and ψλ (μ) is defined in Theorem 1.

REMARK 7. If we divide both sides of (19) by |β | and let |β | → ∞ , we get (14).

3. Lemmas

In order to prove our main results, we need the following lemmas.

LEMMA 1. [2] If P(z) = a0 +
n
∑

v=μ
avzv, 1 � μ � n is a polynomial of degree n

such that P(z) �= 0 in |z| < k , k � 1 , 0 � λ � 1 and for R � 1 ,

ψλ (μ)|P(Rz)−P(z)| � |Q(Rz)−Q(z)|− (Rn−1)λmk, (20)

kμ+1

{( μ
n

) |aμ |
|a0|−λmk

kμ−1 +1( μ
n

) |aμ |
|a0|−λmk

kμ+1 +1

}
= ψλ (μ) � kμ , μ � 1, (21)

where Q(z) = znP( 1
z ) and mk = min|z|=k |P(z)|.



UNIFORM NORM ESTIMATES OF BERNSTEIN-TYPE 45

LEMMA 2. [4] If P(z) is a polynomial of degree n, then for |z| = 1,

|P′(z)|+ |Q′(z)| � nmax
|z|=1

|P(z)|,

where Q(z) = znP( 1
z ) .

LEMMA 3. [1] If P(z) is a polynomial of degree n, then for |z| = 1,

|P′(z)|2 + |Q′(z)|2 � n2

2

(
M2

α +M2
α+π

)
,

where Q(z) = znP( 1
z ) and Mα is defined in (7).

4. Proofs of main results

Proof of Theorem 1. Since P(z) = a0 +
n
∑

v=μ
avzv, 1 � μ � n is a polynomial of

degree n such that P(z) �= 0 in |z| < k, k � 1. Therefore on dividing both sides of
inequality (20) of Lemma 1 by R−1 and taking R → 1, we have for |z| = 1,

ψλ (μ)|P′(z)| � |Q′(z)|−nmkλ ,

which implies (
ψλ (μ)|P′(z)|+nmkλ

)2

� |Q′(z)|2. (22)

Also (
ψλ (μ)|P′(z)|+nmkλ

)2

� ψ2
λ (μ)|P′(z)|2 +n2m2

kλ 2. (23)

From (22) and (23), we have for |z| = 1,

ψ2
λ (μ)|P′(z)|2 +n2m2

kλ 2 � |Q′(z)|2.
By using Lemma 3, we have

ψ2
λ (μ)|P′(z)|2 + |P′(z)|2 +n2m2

kλ 2 � n2

2

(
M2

α +M2
α+π

)
,

which implies for |z| = 1,(
1+ ψ2

λ (μ)
)
|P′(z)|2 � n2

2
(M2

α +M2
α+π)−n2m2

kλ 2.

Equivalently,

max
|z|=1

|P′(z)| � n√
2

(
1+ ψ2

λ (μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 , (24)
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which is the desired result and hence completes the proof of Theorem 1. �

Proof of Theorem 2. On applying inequality (2) to the polynomial P′(z) which is
of degree n−1 and using (14), we obtain for ζ � 1 and 0 � θ < 2π ,

|P′(ζeiθ )| � ζ n−1|P′(eiθ )|
� ζ n−1 n√

2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 . (25)

Hence for each θ , 0 � θ < 2π and R � r � 1, we have

P(Reiθ )−P(reiθ ) =
R∫

r

d
dζ

P(ζeiθ )dζ

=
R∫

r

P′(ζeiθ )eiθ dζ .

This implies, ∣∣P(Reiθ )−P(reiθ )
∣∣ �

R∫
r

|P′(ζeiθ )|dζ ,

which on using (25), gives

∣∣P(Reiθ )−P(reiθ )
∣∣ � n√

2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2

R∫
r

ζ n−1dζ .

Consequently,

max
|z|=1

|P(Rz)−P(rz)| � Rn− rn√
2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 .

This completes the proof of Theorem 2. �

Proof of Theorem 3. If Q(z) = znP( 1
z ) , then it can be easily seen that

|nP(z)− zP′(z)| = |Q′
(z)| for |z| = 1.

Now for β ∈ C , with |β | � 1

|Dβ P(z)| = |nP(z)+ (β − z)P′(z)|
= |nP(z)+ βP′(z)− zP′(z)|
� |nP(z)− zP′(z)|+ |β ||P′(z)|.
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Therefore we have for |z| = 1,

|Dβ P(z)| � |Q′(z)|+ |β ||P′(z)|

which on using Lemma 2 gives for |z| = 1,

|Dβ P(z)| � n|P(z)|+(|β |−1)|P′(z)|. (26)

Combining inequalities (24) and (26), we obtain for |z| = 1,

|Dβ P(z)| � n|P(z)|+ n(|β |−1)√
2

(
1+ ψ2

λ(μ)
) (

M2
α +M2

α+π −2m2
kλ 2) 1

2 .

This immediately leads to the desired result and hence completes the proof of Theorem
3. �
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