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SHARP ERROR BOUNDS FOR TURNING POINT EXPANSIONS

T. M. DUNSTER ∗ , A. GIL AND J. SEGURA

Abstract. Computable and sharp error bounds are derived for asymptotic expansions for linear
differential equations having a simple turning point. The expansions involve Airy functions and
slowly varying coefficient functions. The sharpness of the bounds is illustrated numerically with
an application to Bessel functions of large order.

1. Introduction

In this paper we obtain sharp error bounds for a recent form of asymptotic ex-
pansions involving Airy functions and slowly varying coefficient functions for linear
differential equations having a simple turning point. This is a sequel to the paper [6] in
which the aforementioned error bounds were obtained in terms of elementary functions.
By a manipulation of these bounds we obtain new bounds which are extremely close to
the exact errors. The method is based on the one used for bounds derived in [4] for the
Liouville-Green (LG) approximation.

The differential equations we study are of the form

d2w/dz2 =
{
u2 f (z)+g(z)

}
w, (1.1)

where u is a large parameter, real or complex, and z lies in a complex domain which
may be unbounded. The functions f (z) and g(z) are meromorphic in a certain domain
Z (precisely defined below), and are independent of u (although the latter restriction
can often be relaxed without undue difficulty). We further assume that f (z) has no
zeros in Z except for a simple zero at z = z0 , which is the turning point of the equation.

In the ensuing asymptotic expansions the following two variables have a prominent
role, these being given by

ξ = 2
3 ζ 3/2 = ±

∫ z

z0
f 1/2(t)dt. (1.2)

The variable ζ appears in the Airy function expansions which are valid at the turning
point, and is an analytic function of z at z = z0 . As a function of z the Liouville-Green
variable ξ has a branch point at the turning point. Any branch in (1.2) can be chosen
provided that ξ is continuous on the paths of integration in the error bounds.
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Commonly z0 is real and f (z) is real in a real interval containing this turning
point. If so, the sign in (1.2) is typically taken so that ζ f (z) > 0 in this interval.

Following [6] we define three sectors in the ζ plane by

T j =
{

ζ :
∣∣∣arg(u2/3ζe−2π i j/3

)∣∣∣ � 1
3 π

}
( j = 0,±1) . (1.3)

We further partition each of the sectors by defining T j = T j,k ∪ T j,l ( j,k, l ∈
{0,1,−1} , j �= k �= l �= j ), where T j,k is the closed subsector of angle π/3 and ad-
jacent to Tk ; for example T0,1 =

{
ζ : 0 � arg

(
u2/3ζ

)
� 1

3π
}

. We denote Tj (respec-
tively Tj,k ) to be the region in the z plane corresponding to the sector T j (respectively
T j,k ) in the ζ plane. See Figure 1 for some typical regions in the right half z plane for
the case z0 and u positive.

Next, let Z be the z domain containing z = z0 in which f (z) has no other zeros,
and in which f (z) and g(z) are meromorphic, with poles (if any) at finite points z = wj

( j = 1,2,3, . . .) such that
(i) f (z) has a pole of order m > 2, and g(z) is analytic or has a pole of order less

than 1
2m+1, or

(ii) f (z) and g(z) have a double pole, and (z−wj)
2 g(z) →− 1

4 as z → wj .
We call these admissible poles. For j = 0,±1 we then choose an arbitrary z( j) ∈

Tj ∩Z . These will be either at an admissible pole, or at infinity if f (z) and g(z) can be
expanded in convergent series in a neighborhood of z = ∞ of the form

f (z) = zm
∞

∑
s=0

fsz
−s, g(z) = zp

∞

∑
s=0

gsz
−s, (1.4)

where f0 �= 0, g0 �= 0, and either m and p are integers such that m > −2 and p <
1
2m−1, or m = p = −2 and g0 = − 1

4 . For details and generalizations of (1.4) see [8,
Chap. 10, Sects. 4 and 5].

For each j = 0,±1 the following LG region of validity Zj(u,z( j)) (abbreviated
Zj ) then comprises the z point set for which there is a progressive path L̂ j linking z
with z( j) in Z and having the properties (i) L̂ j consists of a finite chain of R2 arcs (as
defined in [8, Chap. 5, sec. 3.3]), and (ii) as v passes along L̂ j from z( j) to z , the
real part of (−1) juξ (v) is nonincreasing, where ξ (v) is given by (1.2) with z = v , and
with the chosen sign fixed throughout.

We assume throughout this paper the following.

HYPOTHESIS 1. For each z( j) ∈ Tj ∩Zj ( j = 0,±1) assume z(0) ∈ Z1 ∩Z−1 and
z(±1) ∈ Z0 ∩Z∓1 , i.e. for j,k = 0,±1 there is a path, consisting of a finite chain of R2

arcs, linking z( j) with z(k) in Z such as z passes along the path from z( j) to z(k) , the
real part of uξ is monotonic (with ξ varying continuously).

We now define certain terms which will appear in our expansions. Firstly

Φ(z) =
4 f (z) f ′′(z)−5 f ′2(z)

16 f 3(z)
+

g(z)
f (z)

, (1.5)
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Figure 1: Regions Tj,k in z plane for u positive

and then from [5] the set of coefficients

F̂1(z) = 1
2 Φ(z), F̂2(z) = − 1

4 f−1/2(z)Φ′(z), (1.6)

and

F̂s+1(z) = − 1
2 f−1/2(z)F̂ ′

s (z)− 1
2

s−1

∑
j=1

F̂j(z)F̂s− j(z) (s = 2,3,4, . . .) . (1.7)

Next define

Ê2s+1(z) =
∫

F̂2s+1(z) f 1/2(z)dz (s = 0,1,2, . . .) , (1.8)

where the integration constants must be chosen so that each (z− z0)
1/2 Ê2s+1(z) is

meromorphic (non-logarithmic) at the turning point.
Although (1.8) holds for 2s+1 replaced by 2s+2, the even ones do not require

an integration. Instead they can be determined via the formal expansion

∞

∑
s=1

Ê2s(z)
u2s ∼−1

2
ln

{
1+

∞

∑
s=0

F̂2s+1(z)
u2s+2

}
+

∞

∑
s=1

α2s

u2s , (1.9)

where each α2s can be arbitrarily chosen.
We next define two sequences {as}∞

s=1 and {ãs}∞
s=1 by a1 = a2 = 5

72 , ã1 = ã2 =
− 7

72 , with subsequent terms as and ãs (s = 2,3, . . .) satisfying the same recursion
formula

as+1 = 1
2 (s+1)as + 1

2

s−1

∑
j=1

a jas− j. (1.10)

Then let
Es(z) = Ês(z)+ (−1)sass

−1ξ−s, (1.11)
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and
Ẽs(z) = Ês(z)+ (−1)sãss

−1ξ−s. (1.12)

The coefficients as and ãs are the ones that appear in the exponential form of the
LG expansions for the Airy function and its derivative [6, Appendix A]. The follow-
ing theorem demonstrates that these LG expansions are Borel summable, that is, the
coefficients are O(Kss!) as s → ∞ for some K > 0. The proof is given in Appendix A.

THEOREM 1. as > 0 and ãs < 0 for all s , and moreover

5
36

(
1
2

)s
s! � as � 5

36

(
4453
6912

)s
s!, (1.13)

and
7
36

( 1
2

)s (s−1)! � |ãs| � 7
36

( 1
2

)s
s!. (1.14)

The plan of the paper is as follows. In Section 2 we obtain sharp error bounds
for z not too close to the turning point. In Section 3 we use a similar method, along
with Cauchy’s integral formula, to obtain comparable bounds in a domain containing
the turning point. This method involves majorizing the coefficients over a Cauchy in-
tegral contour. We overcome a problem of the coefficients having a large amplitude
and oscillation over these contours by employing a modification of Cauchy’s integral
formula for meromorphic functions. Finally in Section 4 we illustrate numerically the
sharpness of our new bounds by applying them to solutions of Bessel’s equation.

2. Error bounds away from the turning point

We begin by defining terms that appear in the error bounds. Let

ωn, j(u,z) = 2
∫ z

z( j)

∣∣∣F̂n(t) f 1/2(t)dt
∣∣∣

+
n−1

∑
s=1

1
|u|s

∫ z

z( j)

∣∣∣∣∣
n−1

∑
k=s

F̂k(t)F̂s+n−k−1(t) f 1/2(t)dt

∣∣∣∣∣, (2.1)

ϖn, j(u,z) = 4
n−2

∑
s=0

1
|u|s

∫ z

z( j)

∣∣∣F̂s+1(t) f 1/2(t)dt
∣∣∣, (2.2)

γn(u,ξ ) =
2anΛn+1

|ξ |n +
1

|u| |ξ |n+1

n−2

∑
s=0

Λn+s+2

|uξ |s
n−1

∑
k=s+1

akas+n−k, (2.3)

βn(u,ξ ) =
4
|ξ |

n−2

∑
s=0

as+1Λs+2

|uξ |s , (2.4)

γ̃n(u,ξ ) =
2 |ãn|Λn+1

|ξ |n +
1

|u| |ξ |n+1

n−2

∑
s=0

Λn+s+2

|uξ |s
n−1

∑
k=s+1

ãkãs+n−k, (2.5)
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β̃n(u,ξ ) =
4
|ξ |

n−2

∑
s=0

|ãs+1|Λs+2

|uξ |s , (2.6)

where

Λn =
π1/2Γ

(
1
2n− 1

2

)
2Γ

(
1
2n

) . (2.7)

The paths of integration in (2.1) and (2.2) are taken along L̂ j .
We now define three solutions wj(u,z) ( j = 0,±1) of (1.1) having the unique

properties
wj(u,z) ∼ f−1/4(z)e−uξ (z → z( j)). (2.8)

We can assume there exist connection coefficients λ±1 such that the following
relation holds

λ−1w−1(u,z) = iw0(u,z)+ λ1w1(u,z). (2.9)

With λ±1 specified we then define the two constants

δn,±1(u) = λ±1 exp

⎧⎨
⎩

n−1

∑
s=1

(−1)sÊs

(
z(0)

)
− Ês

(
z(±1)

)
us

⎫⎬
⎭−1, (2.10)

and as shown in [6] these are O (u−n) as u → ∞ under Hypothesis 1.
If the connection coefficients λ±1 of (2.9) are not known explicitly, in the error

bounds that follow we instead can replace |δn,±1(u)| with the bound

|δn,±1(u)| � 2Ωn(u)
|u|n−Ωn(u)

, (2.11)

where

Ωn(u) =max
j,k

[
ωn, j

(
u,z(k)

)
exp

{
|u|−1 ϖn, j

(
u,z(k)

)
+ |u|−n ωn, j

(
u,z(k)

)}]
. (2.12)

Here the maximum is taken over j,k ∈ {0,±1} such that j �= k . In this case |u| must
be assumed to be sufficiently large so that the denominator of the RHS of (2.11) is
positive; note that Ωn(u) = O(1) as u → ∞ .

Next define

dn(u,z) = exp

{
n−1

∑
s=1

Re
Es(z)
us

}
en, j(u,z)

{
1+

en, j(u,z)
2|u|n

}2

+ exp

{
n−1

∑
s=1

(−1)s Re
Es(z)
us

}
en,k(u,z)

{
1+

en,k(u,z)
2|u|n

}2

, (2.13)

and

d̃n(u,z) = exp

{
n−1

∑
s=1

Re
Ẽs(z)
us

}
ẽn, j(u,z)

{
1+

ẽn, j(u,z)
2|u|n

}2

+ exp

{
n−1

∑
s=1

(−1)s Re
Ẽs(z)
us

}
ẽn,k(u,z)

{
1+

ẽn,k(u,z)
2 |u|n

}2

, (2.14)
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where

en, j(u,z) = |u|n ∣∣δn, j(u)
∣∣+ ωn, j(u,z)exp

{
|u|−1 ϖn, j(u,z)+ |u|−n ωn, j(u,z)

}
+ γn(u,ξ )exp

{
|u|−1 βn(u,ξ )+ |u|−n γn(u,ξ )

}
, (2.15)

and

ẽn, j(u,z) = |u|n ∣∣δn, j(u)
∣∣+ ωn, j(u,z)exp

{
|u|−1 ϖn, j(u,z)+ |u|−n ωn, j(u,z)

}
+ γ̃n(u,ξ )exp

{
|u|−1 β̃n(u,ξ )+ |u|−n γ̃n(u,ξ )

}
. (2.16)

In (2.14) and (2.13) j = ±1, k = 0 for z ∈ T0,±1 ∪ T±1,0 , and j = ±1, k = ∓1 for
z ∈ T±1,∓1 .

Our main result reads as follows. In this we use the standard notation for Airy
functions of complex argument Ail(z) = Ai(ze−2π il/3) ( l = 0,±1).

THEOREM 2. Assume Hypothesis 1, and let z∈ Zj∩Zk ( j,k ∈ {0,1,−1} , j �= k) .
Then for positive integers m and r the differential equation (1.1) has solutions

wm,l(u,z) = Ail
(
u2/3ζ

)
A2m+2(u,z)+Ai′l

(
u2/3ζ

)
B2m+1(u,z) (l = 0,±1), (2.17)

where

{
f (z)
ζ

}1/4

A2m+2(u,z) = exp

{
m

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
u2s+1

}

+
1
2

ε̃2m+2,r(u,z), (2.18)

u1/3{ζ f (z)}1/4 B2m+1(u,z) = exp

{
m

∑
s=1

E2s(z)
u2s

}
sinh

{
m−1

∑
s=0

E2s+1(z)
u2s+1

}

+
1
2

ε2m+1,r(u,z), (2.19)

with principal branches taken for the roots. For z �= z0 the error terms satisfy the
bounds

|ε̃2m+2,r(u,z)| � exp

{
2m+1

∑
s=1

Re
Ẽs(z)
us

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+2

Ẽs(z)
us

}
−1

∣∣∣∣∣
+ exp

{
2m+1

∑
s=1

(−1)sRe
Ẽs(z)
us

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+2

(−1)s Ẽs(z)
us

}
−1

∣∣∣∣∣+ d̃2m+2r+2(u,z)
|u|2m+2r+2 ,

(2.20)
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and

|ε2m+1,r(u,z)| � exp

{
2m

∑
s=1

Re
Es (z)

us

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+1

Es(z)
us

}
−1

∣∣∣∣∣
+ exp

{
2m

∑
s=1

(−1)sRe
Es(z)
us

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+1

(−1)s Es(z)
us

}
−1

∣∣∣∣∣+ d2m+2r+2(u,z)
|u|2m+2r+2 .

(2.21)

Proof. From [6, Thm. 3.4] replacing m by m + r we have the following three
solutions of (1.1)

Ail
(
u2/3ζ

)
A2m+2r+2(u,z)+Ai′l

(
u2/3ζ

)
B2m+2r+2(u,z) (l = 0,±1), (2.22)

where

{
f (z)
ζ

}1/4

A2m+2r+2(u,z) = exp

{
m+r

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m+r

∑
s=0

Ẽ2s+1(z)
u2s+1

}

+
1
2

ε̃2m+2r+2(u,z), (2.23)

and

u1/3{ζ f (z)}1/4 B2m+2r+2(u,z) = exp

{
m+r

∑
s=1

E2s(z)
u2s

}
sinh

{
m+r

∑
s=0

E2s+1(z)
u2s+1

}

+
1
2

ε2m+2r+2(u,z). (2.24)

The error terms ε̃2m+2r+2(u,z) and ε2m+2r+2(u,z) are bounded by [6, Eqs. (3.29)–
(3.32)] and in particular

|ε̃2m+2r+2(u,z)| � d̃2m+2r+2(u,z)
|u|2m+2r+2 , (2.25)

and

|ε2m+2r+2(u,z)| � d2m+2r+2(u,z)
|u|2m+2r+2 . (2.26)

Then we relabel A2m+2r+2(u,z) by A2m+2(u,z) , and then recast it in the form

{
f (z)
ζ

}1/4

A2m+2(u,z) = exp

{
m

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
u2s+1

}

+
1
2

ε̃2m+2,r(u,z), (2.27)
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Comparing this to (2.23) implies that

ε̃2m+2,r(u,z) = 2exp

{
m+r

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m+r

∑
s=0

Ẽ2s+1(z)
u2s+1

}

−2exp

{
m

∑
s=1

Ẽ2s(z)
u2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
u2s+1

}
+ ε̃2m+2r+2(u,z). (2.28)

Similarly on relabeling B2m+2r+2(u,z) by B2m+1(u,z) and following the same
procedure yields

u1/3{ζ f (z)}1/4 B2m+1(u,z) = exp

{
m

∑
s=1

E2s(z)
u2s

}
sinh

{
m−1

∑
s=0

E2s+1(z)
u2s+1

}

+
1
2

ε2m+1,r(u,z), (2.29)

where

ε2m+1,r(u,z) = 2exp

{
m+r

∑
s=1

E2s(z)
u2s

}
sinh

{
m+r

∑
s=0

E2s+1(z)
u2s+1

}

−2exp

{
m

∑
s=1

E2s(z)
u2s

}
sinh

{
m−1

∑
s=0

E2s+1(z)
u2s+1

}
+ ε2m+2r+2(u,z). (2.30)

Now we write (2.28) in the form

ε̃2m+2,r(u,z) = exp

{
2m+1

∑
s=1

Ẽs(z)
us

}[
exp

{
2m+2r+1

∑
s=2m+2

Ẽs(z)
us

}
−1

]

+ exp

{
2m+1

∑
s=1

(−1)s Ẽs(z)
us

}[
exp

{
2m+2r+1

∑
s=2m+2

(−1)s Ẽs(z)
us

}
−1

]
+ ε̃2m+2r+2(u,z).

(2.31)

On taking absolute values of both sides, and using the triangle inequality along with
(2.25) yields (2.20). The bound (2.21) follows similarly from (2.26) and (2.29). �

REMARK 1. For each of the terms in the new bounds that involve the difference
between 1 and an exponential having a small argument we can numerically make use
of the identity

ew−1 = w+ 1
2w2 +w3g(w), (2.32)

where

g(w) =
∞

∑
n=0

wn

(n+3)!
=

2ew−2−2w−w2

2w3 . (2.33)
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From its Maclaurin series we observe that g(w) is monotonically increasing for positive
w , and moreover

|g(w)| �
∞

∑
n=0

|w|n
(n+3)!

= g(|w|) . (2.34)

Hence for |w| � w0 we have |g(w)| � g(|w|) � g(w0) and therefore

|ew−1|� |w|+ 1
2 |w|2 + |w|3 |g(w)| � |w|+ 1

2 |w|2 + |w|3 g(w0) . (2.35)

For example if |w| � 1, we use g(1) = 0.218 · · · , and so we have

|ew −1|� |w|+ 1
2 |w|2 +(0.218 · · ·) |w|3 . (2.36)

REMARK 2. From (2.20) and (2.21) we observe that

ε̃2m+2,r(u,z) = O
(
u−2m−2) , (2.37)

and

ε2m+1,r(u,z) = O
(
u−2m−1) , (2.38)

as u → ∞ for z ∈ Zj ∩Zk , where the pair ( j,k) can take any value from (0,1) , (−1,0)
and (−1,1) . Note the bounds do not exist at the turning point, since Φ(z) has a pole at
that point (see (1.5)), and hence the integrals in (2.1) and (2.1) diverge there. Thus the
bounds hold uniformly in Zj ∩Zk with a neighborhood of z = z0 removed. In the next
section we obtain similar sharp bounds that are valid at the turning point.

REMARK 3. The choice of r controls the accuracy of the bounds, with a larger
value generally giving sharper values relative to the exact error. However if it is taken
too large the accuracy may deteriorate, since the series is asymptotic with finite accu-
racy possible.

In the unmodified case of [6] (r = 0) the bound on ε2m+2(u,z) , while of the correct
order of magnitude, can significantly overestimate the exact error. This is primarily
because it involves the suprema of functions having high amplitudes and oscillations.
This is typical for these type of error bounds. For ε̃2m+2,r(u,z) this is exacerbated by
the fact that the original bound in of [6] overestimates the exact error by a factor O(u) .
Of course these and other error bounds are still important as they rigorously establish
the veracity of the asymptotic approximations in question. See [7] for a discussion
on the importance of explicit error bounds, even if they are hard to compute, or are
computable but not sharp.

While the original bounds of [6] do still appear in the new bounds (the d and d̃
terms in (2.20) and (2.21)), they have been “tamed” by a reduction of a factor O(u−2r) .
In addition, as we shall demonstrate in Section 4, the terms preceding them in these
bounds are close in absolute value to the exact error.
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3. Error bounds close to the turning point

Let Γ be the circle {z : |z− z0| = r0} for r0 > 0 arbitrarily chosen but not too
small, and such that the loop lies in the intersection of Z0 , Z1 , and Z−1 . In addition,
let γ j,l be the union of part of the loop Γ that lies in Tj,l ( j, l ∈ {0,1,−1} , j �= l ) with
an arbitrarily chosen progressive path in Tj connecting Γ to z( j) (if possible a straight
line). There are six such paths, examples of two of which are shown in Figures 2 and
3. In these figures Rez � 0, u > 0, z0 > 0, z(0) is an admissible pole at the origin, and
z(1) is at infinity.

γ 0,−1

T0,−1

(0) (z0 )

Figure 2: Path γ0,−1 in the z plane.

γ 1,−1

T1,−1

z(1)

(0) (z0 )

Figure 3: Path γ1,−1 in the z plane.
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We now define

ωn(u) = 2max
j,l

{∫
γ j,l

∣∣∣F̂n(t) f 1/2(t)dt
∣∣∣}

+
n−1

∑
s=1

1
|u|s

n−1

∑
k=s

max
j,l

{∫
γ j,l

∣∣∣F̂k(t)F̂s+n−k−1(t) f 1/2(t)dt
∣∣∣} , (3.1)

and

ϖn(u) = 4
n−2

∑
s=0

1
|u|s max

j,l

{∫
γ j,l

∣∣∣F̂s+1(t) f 1/2(t)dt
∣∣∣} , (3.2)

where the maxima are taken over all six paths γ j,l

Next let
δn(u) = max

j=±1

∣∣δn, j(u)
∣∣ , (3.3)

ϒ = inf
z∈Γ

|ζ f (z)|1/4 , ϒ̃ = sup
z∈Γ

|ζ/ f (z)|1/4 , (3.4)

and
ρ = inf

z∈Γ
|ξ | . (3.5)

Let θ = argu , and further define

Ms = sup
z∈Γ

Re
{

e−isθ Es(z)
}

, Ns = sup
z∈Γ

Re
{

(−1)se−isθ Es(z)
}

, (3.6)

and

dn(u) =

[
exp

{
n−1

∑
s=1

Ms

|u|s
}

+ exp

{
n−1

∑
s=1

Ns

|u|s
}]

en(u)
{

1+
en(u)
2|u|n

}2

, (3.7)

where en(u) = O(1) as u → ∞ and is given by

en(u) = |u|n δn(u)+ ωn(u)exp
{
|u|−1 ϖn(u)+ |u|−n ωn(u)

}
+ γn(u,ρ)exp

{
|u|−1 βn(u,ρ)+ |u|−n γn(u,ρ)

}
. (3.8)

In addition, let M̃s and Ñs be given by (3.6), except with Es replaced by Ẽs . Next
let

d̃n(u) =

[
exp

{
n−1

∑
s=1

M̃s

|u|s
}

+ exp

{
n−1

∑
s=1

Ñs

|u|s
}]

ẽn(u)
{

1+
ẽn (u)
2|u|n

}2

, (3.9)

where ẽn(u) is given by (3.8) with γn(u,ρ) and βn(u,ρ) replaced by γ̃n(u,ρ) and
β̃n(u,ρ) , respectively (see (2.5) and (2.6)).

Let

l0(z) =
4r0K(k)

|z− z0|+ r0
, (3.10)
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where

k =
2
√

r0 |z− z0|
|z− z0|+ r0

, (3.11)

and K (k) is the complete elliptic integral of the first kind defined by [2, §19.2(ii)]

K (k) =

π/2∫
0

dτ√
1− k2 sin2 (τ)

=
1∫

0

dt√
(1− t2)(1− k2t2)

(0 � k < 1) . (3.12)

From [6] it was shown that

l0(z) =
∮
|t−z0|=r0

∣∣∣∣ dt
t− z

∣∣∣∣ . (3.13)

We now define certain functions that will also appear in our error bounds. These
are new, and did not appear in [6]. Let Gm,2s+1(z) (s = m,m+1,m+2, . . .) be defined
by the convergent expansion

1

{ f (z)ζ (z)}1/4

[
exp

{
2m

∑
s=1

Es(z)
us

}(
exp

{
2m+2r+1

∑
s=2m+1

Es(z)
us

}
−1

)

−exp

{
2m

∑
s=1

(−1)s Es(z)
us

}(
exp

{
2m+2r+1

∑
s=2m+1

(−1)s Es(z)
us

}
−1

)]
=

∞

∑
s=m

Gm,2s+1(z)
u2s+1 .

(3.14)

Thus from (2.30) and (3.14) we have

ε2m+1,r(u,z)

{ f (z)ζ (z)}1/4
=

∞

∑
s=m

Gm,2s+1(z)
u2s+1 +

ε2m+2r+2(u,z)

{ f (z)ζ (z)}1/4
. (3.15)

We remark that Gm,2s+1(z) depend on r for s � p + 1, where p is the largest
integer such that 2p+1 � 2m+ r , i.e. p =

⌊
m+ 1

2 (r−1)
⌋
. However we suppress this

dependence. The first term is independent of r for r � 1 and is given by

Gm,2m+1(z) =
2E2m+1(z)

{ f (z)ζ (z)}1/4
, (3.16)

and second term is independent of r for r � 3 and is given by

Gm,2m+3(z) =
1

{ f (z)ζ (z)}1/4
{2E2m+3(z)+2E1(z)E2m+2(z)

+2E2(z)E2m+1(z)+E 2
1 (z)E2m+1(z)

}
, (3.17)

and so on.
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Similarly G̃m,2s(z) (s = m,m+1,m+2, . . .) are defined by

{
ζ (z)
f (z)

}1/4
[
exp

{
2m+1

∑
s=1

Ẽs(z)
us

}(
exp

{
2m+2r+1

∑
s=2m+2

Ẽs(z)
us

}
−1

)

+exp

{
2m+1

∑
s=1

(−1)s Ẽs(z)
us

}(
exp

{
2m+2r+1

∑
s=2m+2

(−1)s Ẽs(z)
us

}
−1

)]
=

∞

∑
s=m+1

G̃m,2s(z)
u2s .

(3.18)

Thus from (2.31) and (3.18) we have{
ζ (z)
f (z)

}1/4

ε̃2m+2,r(u,z) =
∞

∑
s=m+1

G̃m,2s(z)
u2s +

{
ζ (z)
f (z)

}1/4

ε̃2m+2r+2(u,z). (3.19)

These coefficients depend on r for s � p̃+1, where p̃ is the largest integer such that
2 p̃ � 2m+ r , i.e. p̃ =

⌊
m+ 1

2r
⌋
. Again we suppress any r dependence. Here for r � 2

the first term is independent of r and is given by

G̃m,2m+2(z) = 2

{
ζ (z)
f (z)

}1/4

Ẽ2m+2(z), (3.20)

and for r � 4 the second term is independent of r and is given by

G̃m,2m+4(z) =
{

ζ (z)
f (z)

}1/4{
2Ẽ2m+4(z)+2Ẽ1(z)Ẽ2m+3(z)

+2Ẽ2(z)Ẽ2m+2(z)+ Ẽ 2
1 (z)Ẽ2m+2(z)

}
. (3.21)

Our main error bound theorem uses the following generalization of Cauchy’s in-
tegral formula for meromorphic functions. In particular, this will allow us to evaluate
certain contour integrals appearing in the error bounds in a numerically satisfactory
way. For a proof see [3, Thm. 9].

THEOREM 3. Let C be a positively orientated simple loop in the z plane, and
G(z) be a function that is analytic in the open region enclosed by the path and contin-
uous on its closure, except for a pole of arbitrary order p at an interior point z = z0 .
Let

{
g j
}∞

j=−∞ be the Laurent coefficients of G(z) at z = z0 , so that for some r0 > 0

G(z) =
∞

∑
j=−p

g j (z− z0)
j (0 < |z− z0| < r0) , (3.22)

and let G∗(z) denote the regular (or analytic) part of G(z) at z = z0 , given by

G∗(z) =
∞

∑
j=0

g j (z− z0)
j (0 � |z− z0| < r0) . (3.23)

Then for all z lying inside C ∮
C

G(t)
t− z

dt= 2π iG∗(z). (3.24)
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Each Gm,n(z) has a pole at z0 , and in accord with (3.23) we define G ∗
m,n(z) as its

regular part at that pole. Likewise let G̃ ∗
m,n(z) be the regular part of G̃m,n(z) at z0 .

We now state our main theorem.

THEOREM 4. Assume Hypothesis 1 and let z lie in the interior of the circle Γ .
Then for each positive integer m and r the differential equation (1.1) has solutions
(2.17) with

A2m+2(u,z) =
1

2π i

∮
|t−z0|=r0

exp

{
m

∑
s=1

Ẽ2s(t)
u2s

}

× cosh

{
m

∑
s=0

Ẽ2s+1(t)
u2s+1

}{
ζ (t)
f (t)

}1/4 dt
t− z

+
1
2

κ̃2m+2,r(u,z), (3.25)

where

|κ̃2m+2,r(u,z)| �
∞

∑
s=m+1

∣∣∣G̃ ∗
m,2s(z)

∣∣∣
|u|2s +

ϒ̃d̃2m+2r+2(u)l0(z)
2π |u|2m+2r+2 , (3.26)

and

B2m+1(u,z) =
1

2π iu1/3

∮
|t−z0|=r0

exp

{
m

∑
s=1

E2s(t)
u2s

}

× sinh

{
m−1

∑
s=0

E2s+1(t)
u2s+1

}
dt

{ f (t)ζ (t)}1/4 (t− z)
+

κ2m+1,r(u,z)
2u1/3

, (3.27)

where

|κ2m+1,r(u,z)| �
∞

∑
s=m

∣∣∣G ∗
m,2s+1(z)

∣∣∣
|u|2s+1 +

d2m+2r+2(u)l0(z)

2πϒ |u|2m+2r+2 . (3.28)

Proof. We have from (2.18) and (3.25)

κ̃2m+2,r(u,z) =
1

2π i

∮
|t−z0|=r0

{
ζ (t)
f (t)

}1/4 ε̃2m+2,r(u,t)dt
t− z

. (3.29)

Now from this and (3.19) we have

κ̃2m+2,r(u,z) =
1

2π i

∞

∑
s=m+1

1
u2s

∮
|t−z0|=r0

G̃m,2s(t)dt
t− z

+
1

2π i

∮
|t−z0|=r0

{
ζ (t)
f (t)

}1/4 ε̃2m+2r+2(u,t)dt
t− z

. (3.30)

Next from [6]

κ̃2m+2(u,z) =
1

2π i

∮
|t−z0|=r0

{
ζ (t)
f (t)

}1/4 ε̃2m+2(u,t)dt
t− z

. (3.31)
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Hence from (3.24), (3.30), and (3.31) with m replaced by m+ r we have

κ̃2m+2,r(u,z) =
∞

∑
s=m+1

G̃ ∗
m,2s(z)
u2s +κ̃2m+2r+2(u,z). (3.32)

Now from [6]

|κ̃2m+2r+2(u,z)| � ϒ̃d̃2m+2r+2(u)l0(z)

2π |u|2m+2r+2 , (3.33)

and (3.26) then follows from (3.32).
The bound (3.28) is proved similarly from the relation

κ2m+1,r(u,z) =
1

2π i

∞

∑
s=m

1
u2s+1

∮
|t−z0|=r0

Gm,2s+1(t)dt
t − z

+
1

2π i

∮
|t−z0|=r0

ε2m+2r+2(u,t)dt

{ f (t)ζ (t)}1/4 (t− z)
. � (3.34)

3.1. Error bounds for the series appearing in (3.26) and (3.28)

In evaluating the bounds from (3.26) and (3.28) one of course would just compute
the first few terms of the convergent series involving the G̃ ∗

m,2s(z) and G ∗
m,2s+1(z) coef-

ficients. For completeness we include here bounds for the remainders of such truncated
series, even though in practice we would not usually compute these.

This is an exercise involving Maclaurin series error bounds. In general, let G(w)
be analytic in an open set containing the disk {w : |w| � a} . We shall use the well-
known result that

G(w) =
n

∑
s=0

G(s)(0)
s!

ws +Rn+1 (w) , (3.35)

where for 0 � |w| < a

Rn+1 (w) =
wn+1

2π i

∮
|v|=a

G(v)dv
vn+1(v−w)

, (3.36)

and hence

|Rn+1 (w)| � sup
|w|=a

|G(w)| |w|n+1

an(a−|w|) (0 � |w| < a). (3.37)

Let us apply this to the series (3.14), with w = 1/u regarded as a small complex
variable. Fix z ∈ Γ and let

G2m+1(w,z) =
1

{ f (z)ζ (z)}1/4

[
2exp

{
m+r

∑
s=1

E2s(z)w2s

}
sinh

{
m+r

∑
s=0

E2s+1(z)w2s+1

}

−2exp

{
m

∑
s=1

E2s(z)w2s

}
sinh

{
m−1

∑
s=0

E2s+1(z)w2s+1

}]
. (3.38)



64 T. M. DUNSTER, A. GIL AND J. SEGURA

Then G2m+1(w,z) is entire in w , so that for 0 � |w| < ∞ it possesses the Maclaurin
expansion

G2m+1(w,z) =
∞

∑
s=m

Gm,2s+1(z)w2s+1. (3.39)

Note that in relation to (3.35) only odd powers of w appear, and of these the first m
terms are identically zero, but this obviously does not affect the validity of the bound
(3.37).

We now apply (3.35)–(3.37), and in these we can choose any positive value of a .
However, it must not be too small on account of the an term in the denominator in the
bound (3.37), but also must not be too large on account of the supremum appearing in
this bound.

Given these considerations our choice is given by a = 1/um , where

um = (E2m+2r+1)
1/(2m+2r+1) , (3.40)

in which
Es = sup

z∈Γ
|Es(z)| . (3.41)

Now let us apply (3.35)–(3.37). We truncate the series (3.39) at s = N for arbitrary
N � m , yielding

G2m+1(w,z) =
N

∑
s=m

Gm,2s+1(z)w2s+1 +Rm,2N+3(w,z), (3.42)

where for |w| < 1/um

Rm,2N+3(w,z) =
w2N+3

2π i

∮
|v|=wm

G2m+1(v,z)dv
v2N+3(v−w)

. (3.43)

Next for z ∈ Γ we have from (3.4), (3.38) and (3.41)

sup
|w|=1/um

|G2m+1(w,z)| � Gm, (3.44)

where

Gm =
2
ϒ

exp

{
m+r

∑
s=1

E2s

u2s
m

}
sinh

{
m+r

∑
s=0

E2s+1

u2s+1
m

}
+

2
ϒ

exp

{
m

∑
s=1

E2s

u2s
m

}
sinh

{
m−1

∑
s=0

E2s+1

u2s+1
m

}
.

(3.45)
Hence for |w| < 1/um we have from (3.43)

|Rm,2N+3(w,z)| � Gm (um|w|)2N+3

(1−um|w|) . (3.46)

Typically for large s we have Es ∼ kslss! for some positive constant l and slowly
varying ks which is O(1) (c.f. Theorem 1). If so, then by Stirling’s formula we find
for 1 � n � 2m+2r+1

En

un
m

=
(

n
2m+2r+1

)n

O(1) (m → ∞). (3.47)
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Hence all sums appearing in (3.45) are O (1) and hence so is Gm . Thus, for 0 � |w| �
δ/um where 0 < δ < 1

Rm,2N+3(w,z) = (E2m+2r+1)
(2N+3)/(2m+2r+1)O

(
w2N+3) (m → ∞). (3.48)

Note if N < m+ r then

Rm,2N+3(w,z) = E2m+2r+1O
(
w2N+3) (m → ∞). (3.49)

This is the reason for our choice (3.40).
Bringing everything together, from (3.14), (3.38), (3.43) and Theorem 3 we have

for integer N � m

1
2π i

∞

∑
s=m

1
u2s+1

∮
|t−z0|=r0

Gm,2s+1(t)dt
t− z

=
N

∑
s=m

G ∗
m,2s+1(z)
u2s+1 +

1
2π i

∮
|t−z0|=r0

Rm,2N+3(u−1, t)dt
t− z

. (3.50)

Hence on referring to (3.13), (3.28), (3.34) and (3.46) we have our main result that

|κ2m+1,r(u,z)| �
N

∑
s=m

∣∣∣G ∗
m,2s+1(z)

∣∣∣
|u|2s+1

+
(

um

|u|
)2N+3 Gml0(z)

2π (1−um|u|−1)
+

d2m+2r+2(u)l0(z)

2πϒ |u|2m+2r+2 . (3.51)

Similarly let
Ẽs = sup

z∈Γ

∣∣Ẽs(z)
∣∣ , (3.52)

ũm =
(
Ẽ2m+2r+1

)1/(2m+2r+1)
, (3.53)

and

G̃m = 2ϒ̃exp

{
m+r

∑
s=1

Ẽ2s

ũ2s
m

}
cosh

{
m+r

∑
s=0

Ẽ2s+1

ũ2s+1
m

}

+2ϒ̃exp

{
m

∑
s=1

Ẽ2s

ũ2s
m

}
cosh

{
m

∑
s=0

Ẽ2s+1

ũ2s+1
m

}
. (3.54)

Then for integer N � m+1

|κ̃2m+2,r(u,z)| �
N

∑
s=m+1

∣∣∣G̃ ∗
m,2s(z)

∣∣∣
|u|2s

+
(

ũm

|u|
)2N+2 G̃ml0(z)

2π (1− ũm|u|−1)
+

ϒ̃d̃2m+2r+2(u)l0(z)
2π |u|2m+2r+2 . (3.55)
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4. Bessel functions of large order

Following [6], in (1.1) we take u = ν , the functions f (z) and g(z) are given by

f (z) =
1− z2

z2 , g(z) = − 1
4z2 , (4.1)

and from (1.2)

ξ =
2
3

ζ 3/2 = ln

{
1+

(
1− z2

)1/2

z

}
− (

1− z2)1/2
. (4.2)

The coefficients (1.8) are given by

Ês(z) =
∫ ∞

z
t−1 (1− t2

)1/2
F̂(t)dt (s = 1,2,3, . . .) , (4.3)

where

F̂1(z) =
z2(z2 +4)
8(z2−1)3 , F̂2(z) =

z

2(1− z2)1/2
F̂ ′

1(z), (4.4)

and

F̂s+1(z) =
z

2(1− z2)1/2
F̂ ′

s (z)−
1
2

s−1

∑
j=1

F̂j(z)F̂s− j(z) (s = 2,3, . . .) . (4.5)

Let C2s+1 are the coefficients in the Stirling asymptotic series

Γ(ν) ∼ (2π)1/2 e−ννν−(1/2) exp

{
∞

∑
j=0

C2 j+1

ν2 j+1

}
(ν → ∞). (4.6)

with C2 j = 0 ( j = 1,2,3, . . .).
From [6] we have the exact expressions

A2m+2(ν,z) = π1/2eνν−ν+(5/6)Γ(ν)exp

{
−

m+r−1

∑
j=0

C2 j+1

ν2 j+1

}

× z1/2
{

eπ i/6Ai′−1

(
ν2/3ζ

)
Jν(νz)− 1

2 iAi′0
(

ν2/3ζ
)

H(1)
ν (νz)

}
, (4.7)

and

B2m+1(ν,z) = π1/2eνν−ν+(5/6)Γ(ν)exp

{
−

m+r−1

∑
j=0

C2 j+1

ν2 j+1

}

× z1/2
{

1
2 iAi0

(
ν2/3ζ

)
H(1)

ν (νz)−eπ i/6 Ai−1

(
ν2/3ζ

)
Jν(νz)

}
. (4.8)
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On applying Theorem 2 we have

A2m+2(ν,z) =
(

z2ζ
1− z2

)1/4

×
[
exp

{
m

∑
s=1

Ẽ2s(z)
ν2s

}
cosh

{
m

∑
s=0

Ẽ2s+1(z)
ν2s+1

}
+

1
2

ε̃2m+2,r(ν,z)

]
, (4.9)

and

B2m+1(ν,z) =
1

ν1/3

{
z2

ζ (1− z2)

}1/4

×
[
exp

{
m

∑
s=1

E2s(z)
ν2s

}
sinh

{
m−1

∑
s=0

E2s+1(z)
ν2s+1

}
+

1
2

ε2m+1,r(ν,z)

]
. (4.10)

In these

|ε̃2m+2,r(ν,z)| � exp

{
2m+1

∑
s=1

Re Ẽs(z)
νs

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+2

Ẽs(z)
νs

}
−1

∣∣∣∣∣
+ exp

{
2m+1

∑
s=1

(−1)s Re Ẽs(z)
νs

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+2

(−1)s Ẽs(z)
νs

}
−1

∣∣∣∣∣+ d̃2m+2r+2(ν,z)
ν2m+2r+2 ,

(4.11)

and

|ε2m+1,r(ν,z)| � exp

{
2m

∑
s=1

Re Es(z)
νs

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+1

Es(z)
νs

}
−1

∣∣∣∣∣
+ exp

{
2m

∑
s=1

(−1)s Re Es(z)
νs

}∣∣∣∣∣exp

{
2m+2r+1

∑
s=2m+1

(−1)s Es(z)
νs

}
−1

∣∣∣∣∣+ d2m+2r+2(ν,z)
ν2m+2r+2 ,

(4.12)

where for ν > 0 and z ∈ S0,−1∪S−1,0

d̃2m+2r+2(ν,z)

= exp

{
2m+2r+1

∑
s=1

Re Ẽs(z)
ν s

}
ẽ2m+2r+2,−1 (ν,z)

{
1+

ẽ2m+2r+2,−1(ν,z)
2ν2m+2r+2

}2

+ exp

{
2m+2r+1

∑
s=1

(−1)s Re Ẽs(z)
νs

}
ẽ2m+2r+2,0(ν,z)

{
1+

ẽ2m+2r+2,0(ν,z)
2ν2m+2r+2

}2

, (4.13)
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in which (for j = 0,−1)

ẽ2m+2r+2, j(ν,z) = ν2m+2r+2δ 2m+2r+2, j(ν)

+ ω2m+2r+2, j(ν,z)exp
{

ν−1ϖ2m+2r+2, j(ν,z)+ ν−2m−2r−2ω2m+2r+2, j(ν,z)
}

+ γ̃2m+2r+2 (ν,ξ )exp
{

ν−1β̃2m+2r+2 (ν,ξ )+ ν−2m−2r−2γ̃2m+2r+2(ν,ξ )
}

. (4.14)

Here δ2m+2r+2,0(ν) = 0,

δ2m+2r+2,±1(ν) =
(

1
2π

)1/2 eνΓ(ν)
νν−(1/2) exp

{
−

m+r

∑
j=0

C2 j+1

ν2 j+1

}
−1, (4.15)

ω2m+2r+2,0(ν,z) = 2
∫ z

0

∣∣∣∣∣ F̂2m+2r+2(t)
(
1− t2

)1/2

t
dt

∣∣∣∣∣
+

2m+2r+1

∑
s=1

1
νs

∫ z

0

∣∣∣∣∣
2m+2r+1

∑
k=s

F̂k(t)F̂s+2m+2r−k+1(t)
(
1− t2

)1/2

t
dt

∣∣∣∣∣, (4.16)

ϖ2m+2r+2,0(ν,z) = 4
2m+2r

∑
s=0

1
νs

∫ z

0

∣∣∣∣∣ F̂s+1(t)
(
1− t2

)1/2

t
dt

∣∣∣∣∣, (4.17)

and ω2m+2r+2,−1(ν,z) and ϖ2m+2r+2,−1(ν,z) are the same except the lower limits of
integration are i∞ instead of 0. The paths of integration can be taken as straight lines
in both cases, in the latter case vertical lines from z to infinity.

Similarly d2m+2r+2(ν,z) is given by (4.13) and (4.14), except Ẽs(z) , γ̃2m+2r+2(ν,ξ )
and β̃2m+2r+2(ν,ξ ) are replaced by Es(z) , γ2m+2r+2(ν,ξ ) and β2m+2r+2(ν,ξ ) , respec-
tively.

Near the turning point we apply Theorem 4, and from this we have

A2m+2(ν,z) =
1

2π i

∮
|t−z0|=r0

exp

{
m

∑
s=1

Ẽ2s(t)
ν2s

}

× cosh

{
m

∑
s=0

Ẽ2s+1(t)
ν2s+1

}{
t2ζ (t)
1− t2

}1/4
dt

t− z
+

1
2

κ̃2m+2,r(ν,z), (4.18)

where

|κ̃2m+2,r(ν,z)| �
∞

∑
s=m+1

∣∣∣G̃ ∗
m,2s(z)

∣∣∣
ν2s +

ϒ̃d̃2m+2r+2(ν)l0(z)
2πν2m+2r+2 , (4.19)

and

B2m+1(ν,z) =
1

2π iν1/3

∮
|t−z0|=r0

exp

{
m

∑
s=1

E2s(t)
ν2s

}

× sinh

{
m−1

∑
s=0

E2s+1(t)
ν2s+1

}{
t2

ζ (t)(1− t2)

}1/4
dt

t− z
+

κ2m+1,r(ν,z)
2ν1/3

, (4.20)
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where

|κ2m+1,r(ν,z)| �
∞

∑
s=m

∣∣∣G ∗
m,2s+1(z)

∣∣∣
ν2s+1 +

d2m+2r+2(ν)l0(z)
2πϒν2m+2r+2 . (4.21)

Here dn(ν) and d̃n(ν) are given by (3.7) and (3.9) with u replaced by ν .
On identifying with the standard Bessel functions we firstly have

Jν(νz) = cm,0(ν)z−1/2
{

Ai
(

ν2/3ζ
)

A2m+2 (ν,z)+Ai′
(

ν2/3ζ
)

B2m+1(ν,z)
}

,

(4.22)
where

cm,0(ν) =
2π1/2νν−(5/6)

eνΓ(ν)

×
[
exp

{
−

m+r

∑
j=0

C2 j+1

ν2 j+1

}
+

1
2

ε̃2m+2,r(ν,0)− 1
2

ε2m+1,r (ν,0)

]−1

. (4.23)

Next for the Hankel function we have

H(1)
ν (νz) = cm,−1(ν)z−1/2

{
Ai−1

(
ν2/3ζ

)
A2m+2(ν,z)

+Ai′−1

(
ν2/3ζ

)
B2m+1(ν,z)

}
. (4.24)

To find cm,−1(ν) let z → i∞ and use

H(1)
ν (νz) ∼

(
2

πνz

)1/2

exp

{
iνz−1

2
νπ i−1

4
π i

}
, (4.25)

along with
ξ = iz− 1

2 π i+O
(
z−1) , (4.26)

Ai−1

(
ν2/3ζ

)
∼ e−π i/6eiνz− 1

2 νπ i

2π1/2ν1/6ζ 1/4
(νξ → +∞) , (4.27)

and

Ai′−1

(
ν2/3ζ

)
∼−e−π i/6ν1/6ζ 1/4eiνz− 1

2 νπ i

2π1/2
(νξ → +∞) . (4.28)

As a result we have as z → i∞

A2m+2(ν,z) ∼ (−ζ )1/4
{

1+
1
2

ε̃2m+2,r (ν, i∞)
}

, (4.29)

and

B2m+1(ν,z) ∼ 1

2ν1/3

(
− 1

ζ

)1/4

ε2m+1,r (ν, i∞) . (4.30)

Hence from (4.24)–(4.30) we find that

cm,−1(ν) =
23/2e−π i/3

ν1/3

[
1+

1
2

ε̃2m+2,r (ν, i∞)− 1
2

ε2m+1,r (ν, i∞)
]−1

. (4.31)
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4.1. Computations away from the turning point

In Tables 1, 2 the error bounds given in (4.11) and (4.12) are compared with the
true numerical errors obtained using (4.9) and (4.10) to approximate (4.7) and (4.8),
respectively. In the comparisons, the values of ν , m and r are fixed (ν = 100, m = 1,
r = 4). We use Maple with a large number of digits to evaluate (4.7) and (4.8). A
Gauss-Legendre quadrature with 30 nodes has been used to evaluate the integrals (4.16)
and (4.17) appearing in the error bounds; the same quadrature has been applied (over a
truncated interval) for the integrals for ω2m+2,−1 (ν,z) and ϖ2m+2,−1 (ν,z) .

z True error Error bound

0.01 0.3494419980168294 . . .×10−11 0.3494419980326348 . . .×10−11

0.05 0.1308990430988040 . . .×10−10 0.1308990431015310 . . .×10−10

0.15 0.5469585035500713 . . .×10−10 0.5469585035736077 . . .×10−10

0.2 0.1089259283092040 . . .×10−9 0.1089259283203728 . . .×10−9

0.25 0.2157034971499353 . . .×10−9 0.2157034972175942 . . .×10−9

0.3 0.4236344565383917 . . .×10−9 0.4236344570004239 . . .×10−9

0.35 0.8307697485641604 . . .×10−9 0.8307697519296490 . . .×10−9

0.4 0.1643886586474064 . . .×10−8 0.1643886612493694 . . .×10−8

Table 1: Comparison of the bound (4.11) with the true numerical error obtained using (4.9) to
approximate (4.7) for different values of z . In the calculations, the values of ν , m and r are
fixed (ν = 100 , m = 1 , r = 4) .

z True error Error bound

0.01 0.6400062383792656 . . .×10−8 0.6400062383792815 . . .×10−8

0.05 0.7935186942078208 . . .×10−8 0.7935186942078481 . . .×10−8

0.1 0.9091671462746869 . . .×10−8 0.9091671462747565 . . .×10−8

0.15 0.9835358907013243 . . .×10−8 0.9835358907015595 . . .×10−8

0.2 0.1040696060554677 . . .×10−7 0.1040696060555794 . . .×10−7

0.25 0.1097733448582064 . . .×10−7 0.1097733448588827 . . .×10−7

0.3, 0.1168879400116339 . . .×10−7 0.1168879400162518 . . .×10−7

0.35, 0.1268224650280313 . . .×10−7 0.1268224650616587 . . .×10−7

0.4, 0.1412373422298345 . . .×10−7 0.1412373424897128 . . .×10−7

Table 2: Comparison of the bound (4.12) with the true numerical error obtained using (4.10)
to approximate (4.8) for different values of z . In the calculations, the values of ν , m and r are
fixed (ν = 100 , m = 1 , r = 4) .

As an illustration of the high accuracy of the bounds, in Figure 4 we show the
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relative errors in the approximation of the true errors by the error bounds. The relative
error (er ) is given by

er =
∣∣∣∣1− True error

Error bound

∣∣∣∣ . (4.32)

z0 0.1 0.2 0.3 0.4

e r

10-11

10-10

10-9

10-8

10-7

e

A2m+2(ν,z)
ν=100, m=1, r=4

z0 0.1 0.2 0.3 0.4

e r

10-14

10-12

10-10

10-8

B2m+1(ν,z)
ν=100, m=1, r=4

Figure 4: Relative errors in the comparison of the error bounds given in (4.11) and (4.12) with
the true numerical errors obtained using (4.9) and (4.10), respectively, for fixed values of ν , m
and r .

A second test of the error bounds (4.11) and (4.12), is shown in Tables 3 and
4, respectively. As before, the bounds are compared with the true numerical errors
obtained using (4.9) and (4.10) to approximate (4.7) and (4.8). In the calculations, the
values of z , m and r are fixed (z = 0.2, m = 1, r = 4) and few values of ν have been
considered for comparison.
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ν True error Error bound er

10 0.108936723 . . .×10−5 0.129960479 . . .×10−5 0.16

20 0.680802433 . . .×10−7 0.680830461 . . .×10−7 0.41×10−4

30 0.134477719 . . .×10−7 0.134477933 . . .×10−7 0.16×10−5

40 0.425493976 . . .×10−8 0.425494044 . . .×10−8 0.15×10−5

50 0.174281968 . . .×10−8 0.174281973 . . .×10−8 0.26×10−7

Table 3: Comparison of the bound (4.11) with the true numerical error obtained using (4.9) to
approximate (4.7) for z = 0.2 , m = 1 and r = 4 and different values of ν . The relative errors
given in Eq. (4.32) are shown in the last column.

ν True error Error bound er

10 0.103831850 . . .×10−4 0.103949514 . . .×10−4 0.10×10−2

20 0.130014633 . . .×10−5 0.130014912 . . .×10−5 0.21×10−5

30 0.385352565 . . .×10−6 0.385352587 . . .×10−6 0.55×10−7

40 0.16258894713 . . .×10−6 0.16258894780 . . .×10−6 0.40×10−8

50 0.83249887531 . . .×10−7 0.83249887577 . . .×10−7 0.55×10−9

Table 4: Comparison of the bound (4.12) with the true numerical error obtained using (4.10)
to approximate (4.8) for z = 0.2 , m = 1 and r = 4 . The relative errors given in Eq. (4.32) are
shown in the last column.

4.2. Computations close to the turning point

The hardest part in computing dn(ν) and d̃n(ν) (given by (3.7) and (3.9) with u
replaced by ν ) are the terms ωn(ν) and ϖn(ν) , which are given by (3.1) and (3.2)
respectively, with u replaced by ν . We do not have to compute these to maximum
accuracy, rather simple bounds will suffice.

With this in mind we start by using the Cauchy-Schwarz inequality in (3.1), to
obtain∫

γ j,l

∣∣∣F̂k(t)F̂s+n−k−1(t) f 1/2(t)dt
∣∣∣

�
{∫

γ j,l

∣∣∣{F̂k(t)
}2

f 1/2(t)dt
∣∣∣}1/2{∫

γ j,l

∣∣∣{F̂s+n−k−1(t)
}2

f 1/2(t)dt
∣∣∣}1/2

. (4.33)

We require the maxima of these and the other integrals in (3.1) and (3.2) over all
six paths γ j,l , but we can simplify as follows. Firstly by Schwarz’s symmetry principle
we only need to consider ℑ(t) � 0. Next all points on the upper part of Γ (Γ+ say) can
be accessed by a progressive path which is part, or the whole, of a path that consists of
the union of

(i) a line from t = 0 to t = r0 , or from t = 1+ ir0 to t = 1+ i∞ , and
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(ii) a quarter circle t = 1 + r0eiφ from φ = 0 to φ = 1
2 π , or from φ = 1

2 π to
φ = π .

Therefore for each k = 1,2,3, . . . and m = 1,2∫
γ j,l

∣∣∣{F̂k(t)
}m

f 1/2(t)dt
∣∣∣ � Fm,k, (4.34)

where (using the obvious parametrization for each sub-path)

Fm,k = max

{∫ 1−r0

0

∣∣∣{F̂k(t)
}m

f 1/2(t)
∣∣∣dt,

∫ ∞

r0

∣∣∣{F̂k(1+ is)
}m

f 1/2 (1+ is)
∣∣∣ds

}

+ r0 max

{∫ π/2

0

∣∣∣{F̂k
(
1+ r0e

iφ)}m
f 1/2 (1+ r0e

iφ)∣∣∣dφ ,

∫ π

π/2

∣∣∣{F̂k
(
1+ r0e

iφ)}m
f 1/2 (1+ r0e

iφ)∣∣∣dφ
}

. (4.35)

Thus from (3.1), (3.2) and (4.33)

ωn(ν) � ωωωωωn(ν) := 2F1,n +
n−1

∑
s=1

1
νs

n−1

∑
k=s

{
F2,k

}1/2{
F2,s+n−k−1

}1/2
, (4.36)

and

ϖn(ν) � ϖϖϖϖϖn(ν) := 4
n−2

∑
s=0

F1,s+1

νs . (4.37)

Next we make the interval of integration finite for the second integral of (4.35) by
the following simple change of variable

∫ ∞

r0

∣∣∣{F̂k(1+ is)
}m

f 1/2 (1+ is)
∣∣∣ds

=
∫ 1/r0

0

∣∣∣{F̂k
(
1+ it−1)}m

f 1/2 (1+ it−1)∣∣∣t−2dt. (4.38)

Here integrand of the second integral is O
(
tmk+m−2

)
as t → 0, and hence is straight-

forward to compute numerically.
We take the optimal choice r0 = 1. Then the first integral in (4.35) vanishes, and

(for example) for k = 10 and m = 1 we find for the other three

∫ 1

0

∣∣∣F̂10
(
1+ it−1) f 1/2 (1+ it−1)∣∣∣t−2dt = 445.18 · · ·, (4.39)

∫ π/2

0

∣∣∣F̂10
(
1+ eiφ) f 1/2 (1+ eiφ)∣∣∣dφ =3.10 · · ·×104, (4.40)

∫ π

π/2

∣∣∣F̂10
(
1+ eiφ) f 1/2 (1+ eiφ)∣∣∣dφ = 1.79 · · ·×103, (4.41)

and hence from (4.35) and (4.38) F1,10 = 3.15 · · ·×104 .
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Similarly, for m = 2 we obtain

∫ 1

0

∣∣∣{F̂10
(
1+ it−1)}2

f 1/2 (1+ it−1)∣∣∣ t−2dt = 1.14 · · ·×106 (4.42)

∫ π/2

0

∣∣∣{F̂10
(
1+ eiφ)}2

f 1/2 (1+ eiφ)∣∣∣dφ = 8.06 · · ·×108 (4.43)

∫ π

π/2

∣∣∣{F̂10
(
1+ eiφ)}2

f 1/2 (1+ eiφ)∣∣∣dφ = 5.17 · · ·×106 (4.44)

and hence from (4.35) and (4.38) {F2,10}1/2 = 2.84 · · ·×104 .
Note in computing some of these integrals by trapezoidal approximation in Maple

it is quicker to include in one or both of the limits a decimal number (0.5π instead of
π/2, etc.). This prevents Maple attempting to find exact values at the nodes (which can
result in a very slow computation).

For other terms needing to be computed in (3.7) and the bound (4.21) we obtain
(again for r0 = 1)

ϒ = inf
z∈Γ+

|ζ f (z)|1/4 = 0.935 · · · , (4.45)

and
ρ = inf

z∈Γ+
|ξ | = 0.685 · · · , (4.46)

where we used Γ+ in place of Γ , again by virtue of Schwarz’s symmetry principle.
To simplify further we replace Ms , Ns in (3.6) by a common upper bound Es

given by (3.41) (but again these suprema need only be taken over Γ+ ). These, along
with Fm,k , are one-time computations and can be stored.

We then have from (3.7)

dn(ν) � dddddn(ν) := 2exp

{
n−1

∑
s=1

Es

νs

}
eeeeen(ν)

{
1+

eeeeen(ν)
2νn

}2

, (4.47)

where

eeeeen(ν) = νnδn(ν)+ ωωωωωn(ν)exp
{

ν−1ϖϖϖϖϖn(ν)+ ν−nωωωωωn(ν)
}

+ γn(ν,ρ)exp
{

ν−1βn(ν,ρ)+ ν−nγn(ν,ρ)
}

. (4.48)

Note that in the bound (4.21) n = 2m+2r+2, and in (4.48) we then use

δ2m+2r+2(ν) =
(

1
2π

)1/2 eνΓ(ν)
νν−(1/2) exp

{
−

m+r

∑
j=0

C2 j+1

ν2 j+1

}
−1, (4.49)

since δ2m+2r+2,−1(ν) = δ2m+2r+2,1(ν) . To compute this number in a stable manner a
few terms of an asymptotic expansion are used (see Remark 1).
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α, ν True error Error bound er

0, 50 0.23466561 . . .×10−9 0.23479628 . . .×10−9 0.55×10−3

0, 100 0.14668477 . . .×10−10 0.14669749 . . .×10−10 0.86×10−4

π/6, 50 0.23620960 . . .×10−9 0.23634124 . . .×10−9 0.55×10−3

π/6, 100 0.14764999 . . .×10−10 0.14766286 . . .×10−10 0.87×10−4

π/3, 50 0.24012769 . . .×10−9 0.24026186 . . .×10−9 0.56×10−3

π/3, 100 0.15009938 . . .×10−10 0.15011265 . . .×10−10 0.88×10−4

π/2, 50 0.24448477 . . .×10−9 0.24462190 . . .×10−9 0.56×10−3

π/2, 100 0.15282325 . . .×10−10 0.15283698 . . .×10−10 0.89×10−4

2π/3, 50 0.24709299 . . .×10−9 0.24723207 . . .×10−9 0.56×10−3

2π/3, 100 0.15445384 . . .×10−10 0.15446788 . . .×10−10 0.90×10−4

5π/6, 50 0.24736359 . . .×10−9 0.24750308 . . .×10−9 0.56×10−3

5π/6, 100 0.15462306 . . .×10−10 0.15463717 . . .×10−10 0.91×10−4

π , 50 0.24700694 . . .×10−9 0.24714629 . . .×10−9 0.56×10−3

π , 100 0.15440013 . . .×10−10 0.15441421 . . .×10−10 0.91×10−4

Table 5: Comparison of the bound given in (4.19) with the true numerical error obtained using
(4.18) to approximate (4.7). The relative errors given in Eq. (4.32) are shown in the last column.

α, ν True error Error bound er

0, 50 0.15449776 . . .×10−7 0.15455270 . . .×10−7 0.35×10−3

0, 100 0.19314772 . . .×10−8 0.19316474 . . .×10−8 0.88×10−4

π/6, 50 0.15663409 . . .×10−7 0.15669006 . . .×10−7 0.36×10−3

π/6, 100 0.19581861 . . .×10−8 0.19583595 . . .×10−8 0.89×10−4

π/3, 50 0.16258667 . . .×10−7 0.16264555 . . .×10−7 0.36×10−3

π/3, 100 0.20326069 . . .×10−8 0.20327894 . . .×10−8 0.89×10−4

π/2, 50 0.17094997 . . .×10−7 0.17101298 . . .×10−7 0.37×10−3

π/2, 100 0.21371675 . . .×10−8 0.21373629 . . .×10−8 0.91×10−4

2π/3, 50 0.17947572 . . .×10−7 0.17954297 . . .×10−7 0.37×10−3

2π/3, 100 0.22437593 . . .×10−8 0.22439679 . . .×10−8 0.93×10−4

5π/6, 50 0.18571359 . . .×10−7 0.18578395 . . .×10−7 0.38×10−3

5π/6, 100 0.23217472 . . .×10−8 0.23219656 . . .×10−8 0.94×10−4

π , 50 0.18797216 . . .×10−7 0.18804363 . . .×10−7 0.38×10−3

π , 100 0.23499846 . . .×10−8 0.23502064 . . .×10−8 0.94×10−4

Table 6: Comparison of the bound given in (4.21) with the true numerical error obtained using
(4.20) to approximate (4.8). The relative errors given in Eq. (4.32) are shown in the last column.
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The term d̃2m+2r+2(ν) is similarly bounded, and in this and (4.19) we use ωωωωωn(ν)
and ϖϖϖϖϖn(ν) as above, M̃s , Ñs � Ẽs where Ẽs is given by (3.53) (with Γ replaced by
Γ+ ), and

ϒ̃ = sup
z∈Γ+

|ζ/ f (z)|1/4 = 1.079 · · · . (4.50)

In Table 5 we show the accuracy of the error bounds given in (4.19) for m = 1,
r = 4 and two values of ν (ν = 50, 100). The values of the argument z considered are
z = 1+0.1eiα , for different values of α .

In Table 6, results for the accuracy of the error bounds given in (4.21) are shown.
For computing the integrals in (4.18), (4.20) and the coefficients G ∗

m,n(z) and G̃ ∗
m,n(z) ,

we use a circular path of integration enclosing the turning point with parametrization
t(θ )= zc +Reiθ ; we use θ ∈ (0, 2π) with zc = 1.5 and R = 1.3. The resulting integrals
are well approximated using the trapezoidal rule with 500 points over the contour. See
[1] for details of the efficacy of this numerical method for evaluating Cauchy integrals.

Rz True Error Bound er

10−3, (4.19) 0.15170987 . . .×10−10 0.15172344 . . .×10−10 0.89×10−4

10−3, (4.21) 0.21359742 . . .×10−8 0.21361694 . . .×10−8 0.91×10−4

10−2, (4.19) 0.15206221 . . .×10−10 0.15207584 . . .×10−10 0.89×10−4

10−2, (4.21) 0.21549252 . . .×10−8 0.21551227 . . .×10−8 0.92×10−4

0.1, (4.19) 0.15440013 . . .×10−10 0.15441421 . . .×10−10 0.91×10−4

0.1, (4.21) 0.23499846 . . .×10−8 0.23502064 . . .×10−8 0.94×10−4

0.2, (4.19) 0.15357545 . . .×10−10 0.15358950 . . .×10−10 0.91×10−4

0.2, (4.21) 0.25747685 . . .×10−8 0.25750187 . . .×10−8 0.97×10−4

0.3, (4.19) 0.14740882 . . .×10−10 0.14742194 . . .×10−10 0.89×10−4

0.3, (4.21) 0.27983939 . . .×10−8 0.27986717 . . .×10−8 0.99×10−4

0.4, (4.19) 0.13356389 . . .×10−10 0.13357483 . . .×10−10 0.82×10−4

0.4, (4.21) 0.30030770 . . .×10−8 0.30033781 . . .×10−8 0.10×10−3

0.5, (4.19) 0.10925753 . . .×10−10 0.10926467 . . .×10−10 0.65×10−4

0.5, (4.21) 0.31580277 . . .×10−8 0.31583420 . . .×10−8 0.99×10−4

Table 7: Comparison of the bounds given in (4.19) and (4.21) with the true numerical errors
obtained using (4.18) and (4.20) to approximate (4.7) and (4.8), respectively. The values of the
argument z are varied (z = 1−Rz ). ν , m and r are fixed in the calculations (ν = 100 , m = 1 ,
r = 4) . The relative errors in the comparisons given in Eq. (4.32) are shown in the last column.

Another test of the accuracy of the bounds is shown in Table 7. The comparison of
the bounds with the true numerical errors is shown for different values of z . The values
of ν , m and r are fixed in the calculations (ν = 100, m = 1, r = 4).
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A. Proof of Theorem 1

We begin with the following.

PROPOSITION 1. Let

Sn =
n−1

∑
j=1

j!(n− j)!
(n−1)!

= n
n−1

∑
j=1

(
n
j

)−1

. (A.1)

Then

Sn � 2n
n+2

{
1+

32
n+3

}
+

3n(n+1)
2

(
3
4

)n

(n = 2,3,4, . . .) , (A.2)

and moreover

Sn = 2+O

(
1
n

)
(n → ∞) . (A.3)

REMARK 4. From (A.3) we observe that the bound (A.2) is asymptotically sharp
for large n .

Proof. Converting the factorials in (A.1) to the gamma function we obtain (see
also [9])

Sn = n(n+1)
n−1

∑
j=1

Γ( j +1)Γ(n− j +1)
Γ(n+2)

= n(n+1)
n−1

∑
j=1

B( j +1,n− j +1) , (A.4)

where B(p,q) is the Beta function

B(p,q) =
Γ(p)Γ(q)
Γ(p+q)

=
∫ 1

0
t p−1(1− t)q−1dt (ℜ(p) > 0, ℜ(q) > 0). (A.5)

Therefore

Sn = n(n+1)
n−1

∑
j=1

∫ 1

0
t j(1− t)n− jdt = n(n+1)

∫ 1

0
(1− t)n

n−1

∑
j=1

(
t

1− t

) j

dt

= n(n+1)
∫ 1

0

1
1−2t

{t(1− t)n− tn(1− t)}dt

= 2n(n+1)
∫ 1/2

0

1
1−2t

{t(1− t)n− tn(1− t)}dt, (A.6)

the last integral coming from symmetry of the integrand about t = 1
2 . It follows that

Sn = 2n(n+1)
∫ 1/4

0

t(1− t)n

1−2t
dt +Rn, (A.7)
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where

Rn = 2n(n+1)
∫ 1/2

1/4

1
1−2t

{t(1− t)n− tn(1− t)}dt

−2n(n+1)
∫ 1/4

0

tn(1− t)
1−2t

dt. (A.8)

Next by the maximum modulus theorem and the triangle inequality

sup
t∈( 1

4 , 1
2 )

∣∣∣∣ 1
1−2t

{t(1− t)n− tn(1− t)}
∣∣∣∣

� sup
|z−(1/2)|=1/4

1

2
∣∣z− 1

2

∣∣ |z(1− z)n− zn(1− z)|

� sup
|z−(1/2)|=1/4

2{|z| |1− z|n + |z|n |1− z|} � 4

(
3
4

)n+1

, (A.9)

since |z| and |1− z| both have suprema of 3
4 on this circle. Thus from (A.8)

Rn � 8n(n+1)
(

3
4

)n+1∫ 1/2

1/4
dt =

3n(n+1)
2

(
3
4

)n

, (A.10)

and hence from (A.7)

Sn � 2n(n+1)
∫ 1/4

0

t(1− t)n

1−2t
dt +

3n(n+1)
2

(
3
4

)n

. (A.11)

We now integrate by parts three times, and retain only positive terms, and deduce
that

∫ 1/4

0

t(1− t)n

1−2t
dt � 1

(n+1)(n+2)

+
4

(n+1)(n+2)(n+3)

{
1+6

∫ 1/4

0

(1− t)n+3

(1−2t)4
dt

}
. (A.12)

The integral on the RHS is O(n−1) for large n , but the following simple bound will
suffice: ∫ 1/4

0

(1− t)n+3

(1−2t)4 dt �
∫ 1/4

0

1
(1−2t)4dt =

7
6
. (A.13)

The desired bound (A.2) follows from (A.11)–(A.13). Finally, the discarded negative
terms in establishing (A.12) are O(n−1) and hence (A.3) follows. �

Let us establish (1.13). To this end define as = 5
362−scs . Then c1 = 1 and c2 = 2,

with subsequent terms given by

cs+1 = (s+1)cs +
5
36

s−1

∑
j=1

c jcs− j. (A.14)
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To get to (1.13) wish to prove for some A � 1 that

s! � cs � Ass!. (A.15)

The lower bound is simple to establish by induction (starting with c1 = 1!), since it is
obvious from c1 and c2 both being positive, and the recursion (A.14), that cs � 0 for
all s . Hence assuming cs � s! we have from (A.14)

cs+1 � (s+1)cs � (s+1)s! = (s+1)!. (A.16)

Next assume the upper bound in (A.15) holds for c j ( j = 1,2,3, . . . ,s). Then from
(A.14)

cs+1 � As(s+1)!+
5
36

As
s−1

∑
j=1

j!(s− j)!. (A.17)

Now from (A.1)
5

36(s−1)!

s−1

∑
j=1

j!(s− j)! � Ks, (A.18)

where

Ks =
5s

18(s+2)

{
1+

32
s+3

}
+

5
24

s(s+1)
(

3
4

)s

. (A.19)

Thus from (A.17) we have

cs+1 � As(s+1)!+AsKs(s−1)!. (A.20)

So in order for (A.15) to be true for s replaced by s+1 it is sufficient for

As(s+1)!+AsKs(s−1)! � As+1(s+1)!, (A.21)

for all s , or equivalently

A � 1+
Ks

s(s+1)
. (A.22)

Now since c1 = 1 and c2 = 2 we see that (A.15) certainly holds for any A � 1. Thus
(A.22) holds for all other values of s if we choose

A = 1+
K2

2(2+1)
=

4453
3456

, (A.23)

since the RHS of (A.22) is a decreasing function of s . Our asserted upper bound of
(1.13) is then established by inserting this value of A into (A.15) and recalling that
as = 5

362−scs .
Next we consider proving (1.14), and to do so we let ãs = −2−s 7

36 c̃s . We wish to
show that (s− 1)! � c̃s � s! , which is clearly true for the first two terms since c̃1 = 1
and c̃2 = 2. Now from (A.15) we have

c̃s+1 = (s+1) c̃s− 7
36

s−1

∑
j=1

c̃ j c̃s− j. (A.24)
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Again we proceed by using induction. Assume the hypotheses are true for c̃ j ( j =
1,2,3, . . . ,s). Then c̃s � s! and c̃ j c̃s− j � ( j− 1)!(s− j− 1)! > 0 ( j = 1,2, . . .s− 1),
and hence

c̃s+1 � (s+1)s!− 7
36

s−1

∑
j=1

c̃ j c̃s− j < (s+1)! (A.25)

as required for the upper bound.
It remains to prove the lower bound of (1.14). Now it can be verified numerically

that c̃s � (s− 1)! for s = 1,2,3, . . . ,24. Consider any s � 24 and assume for j =
1,2,3, . . . ,s that c̃ j � ( j−1)! (and hence of course c̃ j � 0). Since we have established
that c̃s � s! for all s it follows from (A.24) and the induction hypothesis that

c̃s+1 � (s+1)(s−1)!− 7
36

s−1

∑
j=1

c̃ j c̃s− j

� s!+(s−1)!− 7
36

s−1

∑
j=1

j!(s− j)! �s!+(s−1)!− 7
36

(s−1)!Ss. (A.26)

From (A.2) it is straightforward to show by explicit computation of that bound that

7
36Ss < 1 for s � 24, (A.27)

and thus from (A.26) c̃s+1 � s! for s � 24, as desired.
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