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INTEGRATING THE TAILS OF TWO MACLAURIN SERIES

RUSSELL A. GORDON

Abstract. The values of four improper integrals containing the squares of the tails of the Maclau-
rin series for the sine and cosine functions are computed using standard residue theory for con-
tour integrals. Using a very different approach, we then provide solutions to some open questions
concerning two related improper integrals.

1. Introduction

In a recent paper ([3]), Stewart used Fourier transforms to evaluate some integrals
involving the squares of the tails of the Maclaurin series for sine and cosine. Our
goal for the first part of this paper is to establish these same results using some basic
concepts from residue theory for functions defined on the set C of complex numbers.
In particular, we seek to verify the following results (from [3]) for each nonnegative
integer n :

∫ ∞

0

1
x4n+6

(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx =

π/2
(4n+5)((2n+2)!)2 ; (1)

∫ ∞

0

1
x4n+4

(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx =

π/2
(4n+3)((2n+1)!)2 ; (2)

∫ ∞

0

1
x4n+4

(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx =

π/2
(4n+3)((2n+1)!)2 ; (3)

∫ ∞

0

1
x4n+2

(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx =

π/2
(4n+1)((2n)!)2 . (4)

To do so, we first summarize the necessary results from residue theory and then use
these results to evaluate the integrals. Some further details behind the theory are in-
cluded after the computations for those readers desiring a brief review of this aspect
of complex variables. After completing this portion of the paper, we answer the open
questions presented in [3].
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2. Alternative evaluation for improper integrals (1) to (4)

It is assumed that the reader is familiar with analytic functions, poles, and residues.
Let f be a function defined on C and assume that f is analytic except for a possible
simple pole at z = 0. We consider the positively oriented, closed integration path

γr,ρ = [−ρ ,−r]∪Sr∪ [r,ρ ]∪Cρ ,

where ρ > r > 0, and the paths Sr and Cρ are semicircles with radii r and ρ , respec-
tively, which lie in the upper half-plane. It follows that

0 =
∫

γr,ρ
f (z)dz =

∫ −r

−ρ
f (z)dz+

∫
Sr

f (z)dz+
∫ ρ

r
f (z)dz+

∫
Cρ

f (z)dz.

It is known that

lim
r→0+

∫
Sr

f (z)dz = −iπ Res( f ,0),

where i =
√−1 is the imaginary unit. Assuming that the integral over Cρ goes to 0 as

ρ goes to infinity, we find that

∫ ∞

−∞
f (x)dx = iπ Res( f ,0).

(We are using the Cauchy principal value of the improper integral for a function defined
on the real line.) These facts are sufficient to evaluate our four integrals.

Fix a nonnegative integer n . For our first set of calculations, we define the follow-
ing three functions for all real numbers x :

E(x) =
(
eix −

2n+1

∑
k=0

ik

k!
xk

)2
;

S(x) =
(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
;

C(x) =
(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
.

It is easy to verify that E(x) = C(x)−S(x)+ iS′(x) . For complex numbers z , we note
that E(z)/z4n+4 is analytic in the complex plane and that

Res
( E(z)

z4n+5 ,0
)

=
1

((2n+2)!)2 .

It follows that
∫ ∞

−∞

E(x)
x4n+4 dx = 0 and

∫ ∞

−∞

E(x)
x4n+5 dx =

iπ
((2n+2)!)2 .
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Equating real and imaginary parts for these integrals, we find that

∫ ∞

−∞

C(x)−S(x)
x4n+4 dx = 0 and

∫ ∞

−∞

S′(x)
x4n+5 dx =

π
((2n+2)!)2 .

Noting that the integrands for both integrals are even functions, it follows that

∫ ∞

0

C(x)
x4n+4 dx =

∫ ∞

0

S(x)
x4n+4 dx and

∫ ∞

0

S′(x)
x4n+5 dx =

π/2
((2n+2)!)2 .

The equality on the left explains why the integrals in equations (2) and (3) are equal.
Using integration by parts on the integral on the right, we have

π/2
((2n+2)!)2 =

∫ ∞

0

S′(x)
x4n+5 dx =

S(x)
x4n+5

∣∣∣∞

0
+(4n+5)

∫ ∞

0

S(x)
x4n+6 dx = (4n+5)

∫ ∞

0

S(x)
x4n+6 dx.

(Note that S(x) behaves like x4n+6 near 0 and like x4n+2 as x goes to infinity.) The
value of the integral in equation (1) then follows immediately.

Before moving on to our next set of calculations, we note that

∫ ∞

0

1
x4n+5

(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)
dx =

π/4
((2n+2)!)2 .

This equality is established by noting the form of S′(x) in the previous integral equation.
It is interesting to compare this result to the integral given in Theorem 7.

We now begin anew. Fix a nonnegative integer n . For this second set of calcula-
tions, we define the following three functions (note the slight changes in the functions
E and S ) for all real numbers x :

E(x) =
(
eix −

2n

∑
k=0

ik

k!
xk

)2
;

S(x) =
(
sinx−

n−1

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
;

C(x) =
(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
.

It is easy to verify that E(x) = C(x)−S(x)− iC′(x) . For complex numbers z , we note
that E(z)/z4n+2 is analytic in the complex plane and that

Res
( E(z)

z4n+3 ,0
)

=
−1

((2n+1)!)2 .

It follows that
∫ ∞

−∞

E(x)
x4n+2 dx = 0 and

∫ ∞

−∞

E(x)
x4n+3 dx =

−iπ
((2n+1)!)2 .
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Equating real and imaginary parts for these integrals, we find that

∫ ∞

−∞

C(x)−S(x)
x4n+2 dx = 0 and

∫ ∞

−∞

C′(x)
x4n+3 dx =

π
((2n+1)!)2 .

Noting that the integrands for both integrals are even functions, it follows that

∫ ∞

0

C(x)
x4n+2 dx =

∫ ∞

0

S(x)
x4n+2 dx and

∫ ∞

0

C′(x)
x4n+3 dx =

π/2
((2n+1)!)2 .

The equality on the left explains why the integrals in equations (1) and (4) are equal
when a shift from n to n+1 is made. Using integration by parts on the integral on the
right, we have

π/2
((2n+1)!)2 =

∫ ∞

0

C′(x)
x4n+3 dx =

C(x)
x4n+3

∣∣∣∞

0
+(4n+3)

∫ ∞

0

C(x)
x4n+4 dx = (4n+3)

∫ ∞

0

C(x)
x4n+4 dx.

(Note that C(x) behaves like x4n+4 near 0 and like x4n as x goes to infinity.) The
value of the integral in equation (3) then follows immediately. Referring to the first set
of calculations made earlier, we know that this integral value also gives equation (2).
We have thus verified the values of all four integrals.

As with our first set of computations, we observe that

∫ ∞

0

1
x4n+3

(
sinx−

n−1

∑
k=0

(−1)k

(2k+1)!
x2k+1

)(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)
dx =

−π/4
((2n+1)!)2

by noting the form of C′(x) in the previous integral equation. It is interesting to com-
pare this result to the integral given in Theorem 6.

We now include a few of the necessary ideas from residue theory. There are many
references for these facts, but we refer to the textbook [2] and include the key results
that are needed for the computations that were used above. Further details and proofs
of these results can be found in [2]. In Section 6.5 of [2], we have the following result
(referring to the contours defined at the beginning of this section):

THEOREM 1. If f has a simple pole at 0 , then lim
r→0+

∫
Sr

f (z)dz = −iπRes( f ,0) .

The other two results that are needed are recorded below (see Sections 6.4 and 6.3
of [2], respectively):

THEOREM 2. If m > 0 and P/Q is the ratio of two polynomials such that the

degree of Q is greater than the degree of P, then lim
ρ→∞

∫
Cρ

eimzP(z)
Q(z)

dz = 0 .

THEOREM 3. If P/Q is the ratio of two polynomials such that the degree of Q is

at least two more than the degree of P, then lim
ρ→∞

∫
Cρ

P(z)
Q(z)

dz = 0 .

The result of Theorem 2 is often called Jordan’s Lemma.
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The application of Theorem 1 in the integral computations needed above is clear.
To see how Theorems 2 and 3 come into play, we consider just one of the scenarios,
namely, the function

1
z4n+5

(
eiz−

2n+1

∑
k=0

ik

k!
zk

)2
=

e2iz

z4n+5 −2
2n+1

∑
k=0

ikeiz

k!z4n+5−k +
1

z4n+5

(2n+1

∑
k=0

ik

k!
zk

)2
;

the verifications for the other three complex integrands are similar. The terms involving
the exponential clearly satisfy the hypotheses of Theorem 2. For the last term, the
degree of the numerator is 4n+ 2 and the degree of the denominator is 4n+ 5 so the
conditions for Theorem 3 are met. Together, these facts justify the computations made
in the previous pages.

3. Solutions to some open problems

In the paper [3], Stewart made the conjectures that

∫ ∞

0

1
x4n+3

(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx =

24n+1

(4n+2)!
ln2−bn;

∫ ∞

0

1
x4n+5

(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx =

24n+3

(4n+4)!
ln2−βn;

for each nonnegative integer n , where bn is a nonnegative rational number and βn is a
positive rational number. Since the integrands in each of these cases are odd functions,
integrating over the entire real line is not of any help. In what follows, we will verify
the expressions for the coefficients for the ln2 terms and find (with proof) expressions
for the rational parts of the integrals. In our work, we make use of the well-known
cosine integral function (see [1])

Ci(x) = −
∫ ∞

x

cost
t

dt = γ + lnx−
∫ x

0

1− cost
t

dt for which Ci′(x) =
cosx

x
,

where γ is Euler’s constant. We note that

lim
a→0+

(
Ci(2a)−Ci(a)

)
= lim

a→0+

((
γ + ln(2a)−

∫ 2a

0

1− cost
t

dt
)

−
(

γ + lna−
∫ a

0

1− cost
t

dt
))

= ln2.

In addition, it is easy to verify that lim
x→∞

Ci(x) = 0.

We first prove two lemmas in which the following functions appear. For each
positive integer n , let

Un(x) =
n

∑
k=1

(−1)k+1(2k−1)!
x2k

and Vn(x) =
n

∑
k=1

(−1)k(2k−2)!
x2k−1 .
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We note in passing that V ′
n(x) = Un(x) , but we will not be using this result. The first

few explicit expressions for these functions are

U1(x) =
1
x2 ;

U2(x) =
1
x2 −

6
x4 ;

U3(x) =
1
x2 −

6
x4 +

120
x6 ;

V1(x) = −1
x
;

V2(x) = −1
x

+
2
x3 ;

V3(x) = −1
x

+
2
x3 − 24

x5 .

For ease of writing, we omit the constant of integration for the indefinite integrals that
appear in our work.

LEMMA 4. For each positive integer n, we have
∫

cosx
x2n+1 dx =

(−1)n

(2n)!

(
Un(x)cosx+Vn(x)sinx+Ci(x)

)
;

∫
sinx
x2n+2 dx =

(−1)n

(2n+1)!

(
Un(x)cosx+Vn+1(x)sinx+Ci(x)

)
.

Proof. For the integral involving cosx , we proceed by induction. For n = 1, we
use integration by parts twice to obtain

∫
cosx
x3 dx = −cosx

2x2 +
∫

sinx
−2x2 dx

= −cosx
2x2 +

sinx
2x

−
∫

cosx
2x

dx

=
(−1)1

2!

(
U1(x)cosx+V1(x)sinx+Ci(x)

)
,

the correct form for n = 1. Similarly, integration by parts yields
∫

cosx
x2n+3 dx = − cosx

(2n+2)x2n+2 +
∫

sinx
−(2n+2)x2n+2 dx

= − cosx
(2n+2)x2n+2 +

sinx
(2n+2)(2n+1)x2n+1 −

1
(2n+2)(2n+1)

∫
cosx
x2n+1 dx.

Assuming that the cosine equation given in the lemma holds for some positive integer
n , the coefficient of cosx in this new integral satisfies

− 1
(2n+2)(2n+1)

· (−1)n

(2n)!

n

∑
k=1

(−1)k+1(2k−1)!
x2k − 1

(2n+2)x2n+2

=
(−1)n+1

(2n+2)!

n

∑
k=1

(−1)k+1(2k−1)!
x2k − (2n+1)!

(2n+2)!x2n+2

=
(−1)n+1

(2n+2)!

n+1

∑
k=1

(−1)k+1(2k−1)!
x2k =

(−1)n+1

(2n+2)!
Un+1(x),
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the coefficient of sinx satisfies

− 1
(2n+2)(2n+1)

· (−1)n

(2n)!

n

∑
k=1

(−1)k(2k−2)!
x2k−1 +

1
(2n+2)(2n+1)x2n+1

=
(−1)n+1

(2n+2)!

n

∑
k=1

(−1)k(2k−2)!
x2k−1 +

(2n)!
(2n+2)!x2n+1

=
(−1)n+1

(2n+2)!

n+1

∑
k=1

(−1)k(2k−2)!
x2k−1 =

(−1)n+1

(2n+2)!
Vn+1(x),

and the coefficient of Ci(x) satisfies

− 1
(2n+2)(2n+1)

· (−1)n

(2n)!
=

(−1)n+1

(2n+2)!
;

all of which are the correct forms for n+1. The cosine result now follows by induction.
The integral involving sinx then follows from this cosine result. Using the fact

that

−1
(2n+1)x2n+1 +

(−1)n

(2n+1)!
Vn(x) =

(−1)n

(2n+1)!

( (−1)n+1(2n)!
x2n+1 +Vn(x)

)

=
(−1)n

(2n+1)!
Vn+1(x)

and integration by parts, we find that
∫

sinx
x2n+2 dx =

−sinx
(2n+1)x2n+1 +

1
2n+1

∫
cosx
x2n+1 dx

=
−sinx

(2n+1)x2n+1 +
1

2n+1
· (−1)n

(2n)!

(
Un(x)cosx+Vn(x)sinx+Ci(x)

)

=
(−1)n

(2n+1)!

(
Un(x)cosx+Vn+1(x)sinx+Ci(x)

)
.

This completes the proof. �

For what follows, we make use of the terms hk =
k
∑
j=1

1/ j and ok =
k
∑
j=1

1/(2 j−1)

for each positive integer k ; the hk terms are known as harmonic numbers. Note that

ok =
k

∑
j=1

1
2 j−1

=
2k

∑
j=1

1
j
− 1

2

k

∑
j=1

1
j
= h2k − 1

2
hk

for all k . It follows that ok + 1
2hk = h2k and ok+1 + 1

2hk = h2k+1 for all k .

LEMMA 5. Let n be a positive integer.

(a) For each integer k that satisfies 1 � k � 2n+ 1 , the coefficient for the constant
term in the Laurent series for the function Uk(x)cosx is − 1

2hk .
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(b) For each integer k that satisfies 1 � k � 2n+ 2 , the coefficient for the constant
term in the Laurent series for the function Vk(x)sinx is −ok .

(c) For each integer k that satisfies 1 � k � 2n+ 1 , the coefficient for the constant
term in the Laurent series for the function Uk(x)cosx+Vk(x)sinx is −h2k .

(d) For each integer k that satisfies 1 � k � 2n+ 1 , the coefficient for the constant
term in the Laurent series for the function Uk(x)cosx+Vk+1(x)sinx is −h2k+1 .

Proof. For appropriate values of n and k , the constant term in the Laurent series
for the function Uk(x)cosx satisfies

( k

∑
j=1

(−1) j+1(2 j−1)!
x2 j

)(2n+1

∑
m=0

(−1)m

(2m)!
x2m

)
=

k

∑
j=1

(−1) j+1(2 j−1)!(−1) j

(2 j)!

= −1
2

k

∑
j=1

1
j

= −1
2

hk.

Note that we have just used a finite portion of the Maclaurin series for cosx as the
terms involving higher powers generate polynomial terms in the product. Similarly, the
constant term for Vk(x)sinx satisfies

( k

∑
j=1

(−1) j(2 j−2)!
x2 j−1

)(2n+1

∑
m=0

(−1)m

(2m+1)!
x2m+1

)
=

k

∑
j=1

(−1) j(2 j−2)!(−1) j−1

(2 j−1)!

= −
k

∑
j=1

1
2 j−1

= −ok.

Adding the results for parts (a) and (b) then gives parts (c) and (d). We note in passing
that it is easily shown that the constant terms that appear in the Laurent series for the
functions Uk(x)cosx+Vk(x)sinx and Uk(2x)cos(2x)+Vk(2x)sin(2x) are equal. �

THEOREM 6. The value of the integral
∫ ∞

0

1
x4n+3

(
cosx−

n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx is

2
(4n+2)!

(
24n ln2−24nh4n+2 +

2n+1

∑
k=n+1

(
4n+2

2k

)
h2k

)

for each nonnegative integer n.

Proof. Fix a nonnegative integer n . Since the integrand behaves like 1/x3 for
large values of x and like x for values of x near 0, the improper integral is guaranteed
to exist. Letting A(x) represent an antiderivative of the integrand (where the constant
of integration is 0), we want to compute

lim
b→∞

A(b)− lim
a→0+

A(a) = − lim
a→0+

A(a).
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We first obtain the following three antiderivatives:

∫
cos2 x
x4n+3 dx,

∫ −2cosx
x4n+3

n

∑
k=0

(−1)k

(2k)!
x2k dx,

∫
1

x4n+3

( n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx.

For the first integral, we have

∫
cos2 x
x4n+3 dx =

1
2

∫
1+ cos(2x)

x4n+3 dx =
−1

2(4n+2)x4n+2 +
∫

cos(2x)
2x4n+3 dx

and, using Lemma 4, we obtain

∫
cos(2x)
2x4n+3 dx =

∫
cost

2(t/2)4n+3 ·
dt
2

= 24n+1
∫

cost
t4n+3 dt

= 24n+1 · (−1)2n+1

(4n+2)!

(
U2n+1(t)cost +V2n+1(t)sin t +Ci(t)

)

=
−24n+1

(4n+2)!

(
U2n+1(2x)cos(2x)+V2n+1(2x)sin(2x)+Ci(2x)

)
.

Combining the first part of the cos2 x integral with the third integral, we have

−1
2(4n+2)x4n+2 +

∫
1

x4n+3

( n

∑
k=0

(−1)k

(2k)!
x2k

)2
dx =

Pn(x)
x4n+2 ,

where Pn(x) is a polynomial of degree 4n . For the middle integral, we find that

∫
cosx
x4n+3

n

∑
k=0

(−1)k

(2k)!
x2k dx =

n

∑
k=0

(−1)k

(2k)!

∫
cosx

x4n−2k+3 dx

=
n

∑
k=0

(−1)k

(2k)!
· (−1)2n−k+1

(4n−2k+2)!

(
U2n−k+1(x)cosx+V2n−k+1(x)sinx+Ci(x)

)

=
−1

(4n+2)!

n

∑
k=0

(
4n+2

2(2n− k+1)

)(
U2n−k+1(x)cosx+V2n−k+1(x)sinx+Ci(x)

)

=
−1

(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)(
Uk(x)cosx+Vk(x)sinx+Ci(x)

)
.

It follows that A(x) has the form

A(x) =
−24n+1

(4n+2)!

(
U2n+1(2x)cos(2x)+V2n+1(2x)sin(2x)+Ci(2x)

)
+

Pn(x)
x4n+2

+
2

(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)(
Uk(x)cosx+Vk(x)sinx+Ci(x)

)
.
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It is easy to see that lim
b→∞

A(b) = 0. Using basic properties of binomial coefficients, we

note that

2
(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)
=

1
(4n+2)!

2n+1

∑
k=0

(
4n+2

2k

)
=

24n+1

(4n+2)!
,

which allows us to express A(x) as

A(x) =
−24n+1

(4n+2)!

(
U2n+1(2x)cos(2x)+V2n+1(2x)sin(2x)

)
+

Pn(x)
x4n+2

+
24n+1

(4n+2)!

(
Ci(x)−Ci(2x)

)

+
2

(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)(
Uk(x)cosx+Vk(x)sinx

)
.

The terms in the definite integral involving ln2 depend solely on the parts of A(x) that
contain the Ci function terms. This value is given by

24n+1

(4n+2)!
(
Ci(x)−Ci(2x)

)∣∣∣∞

0
= 0+

24n+1

(4n+2)!
lim

a→0+

(
Ci(2a)−Ci(a)

)
=

24n+1

(4n+2)!
ln2.

This verifies the part of Theorem 6 giving the coefficient of ln2.
Omitting the Ci terms from the expression for A(x) , we can represent each of the

remaining terms as a Laurent series about the origin. Since the limit at 0 is known
to exist, all of the terms with negative exponents must cancel and the desired limit at
0 is the constant term. Returning to the expression for A(x) and using Lemma 5, the
constants corresponding to the first and last terms are

24n+1

(4n+2)!
h4n+2 and

−2
(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)
h2k,

respectively. Adding these two results and multiplying by −1 yields

2
(4n+2)!

2n+1

∑
k=n+1

(
4n+2

2k

)
h2k − 24n+1

(4n+2)!
h4n+2

as the value of the rational part for − lim
a→0+

A(a) . Noting that

24n h4n+2−
2n+1

∑
k=n+1

(
4n+2

2k

)
h2k =

2n+1

∑
k=n+1

(
4n+2

2k

)
h4n+2−

2n+1

∑
k=n+1

(
4n+2

2k

)
h2k,

we see that the rational part of the integral is negative for all n � 1. �
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THEOREM 7. The value of the integral
∫ ∞

0

1
x4n+5

(
sinx−

n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx

is

2
(4n+4)!

(
24n+2 ln2−24n+2h4n+4 +

2n+1

∑
k=n+1

(
4n+4
2k+1

)
h2k+1

)

for each nonnegative integer n.

Proof. The proof is similar to the proof of Theorem 6, but we include the details
for completeness. Fix a nonnegative integer n . Since the integrand behaves like 1/x3

for large values of x and like x for values of x near 0, the improper integral is guar-
anteed to exist. Letting B(x) represent an antiderivative of the integrand (where the
constant of integration is 0), we want to compute

lim
b→∞

B(b)− lim
a→0+

B(a) = − lim
a→0+

B(a).

We first obtain the following three antiderivatives:

∫
sin2 x
x4n+5 dx,

∫ −2sinx
x4n+5

n

∑
k=0

(−1)k

(2k+1)!
x2k+1 dx,

∫
1

x4n+5

( n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx.

For the first integral, we have

∫
sin2 x
x4n+5 dx =

1
2

∫
1− cos(2x)

x4n+5 dx =
−1

2(4n+4)x4n+4 −
∫

cos(2x)
2x4n+5 dx

and, using Lemma 4, we obtain

−
∫

cos(2x)
2x4n+5 dx = −

∫
cost

2(t/2)4n+5 ·
dt
2

= −24n+3
∫

cost
t4n+5 dt

= −24n+3 · (−1)2n+2

(4n+4)!

(
U2n+2(t)cos t +V2n+2(t)sin t +Ci(t)

)

=
−24n+3

(4n+4)!

(
U2n+2(2x)cos(2x)+V2n+2(2x)sin(2x)+Ci(2x)

)
.

Combining the first part of the sin2 x integral with the third integral, we have

−1
2(4n+4)x4n+4 +

∫
1

x4n+5

( n

∑
k=0

(−1)k

(2k+1)!
x2k+1

)2
dx =

Qn(x)
x4n+4 ,
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where Qn(x) is a polynomial of degree 4n+2. For the middle integral, we find that

∫
sinx
x4n+5

n

∑
k=0

(−1)k

(2k+1)!
x2k+1 dx =

n

∑
k=0

(−1)k

(2k+1)!

∫
sinx

x4n−2k+4 dx

=
n

∑
k=0

(−1)k

(2k+1)!
· (−1)2n−k+1

(4n−2k+3)!

(
U2n−k+1(x)cosx+V2n−k+2(x)sinx+Ci(x)

)

=
−1

(4n+4)!

n

∑
k=0

(
4n+4

2(2n− k+1)+1

)(
U2n−k+1(x)cosx+V2n−k+2(x)sinx+Ci(x)

)

=
−1

(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)(
Uk(x)cosx+Vk+1(x)sinx+Ci(x)

)
.

It follows that B(x) has the form

B(x) =
−24n+3

(4n+4)!

(
U2n+2(2x)cos(2x)+V2n+2(2x)sin(2x)+Ci(2x)

)
+

Qn(x)
x4n+4

+
2

(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)(
Uk(x)cosx+Vk+1(x)sinx+Ci(x)

)
.

It is easy to see that lim
b→∞

B(b) = 0. Using the fact that

2
(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)
=

1
(4n+4)!

2n+1

∑
k=0

(
4n+4
2k+1

)
=

24n+3

(4n+4)!
,

we can express B(x) as

B(x) =
−24n+3

(4n+4)!

(
U2n+2(2x)cos(2x)+V2n+2(2x)sin(2x)

)
+

Qn(x)
x4n+4

+
24n+3

(4n+4)!

(
Ci(x)−Ci(2x)

)

+
2

(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)(
Uk(x)cosx+Vk+1(x)sinx

)
.

The terms in the definite integral involving ln2 depend solely on the parts of B(x) that
contain the Ci function terms. We thus find that

24n+3

(4n+4)!
(
Ci(x)−Ci(2x)

)∣∣∣∞

0
= 0+

24n+3

(4n+4)!
lim

a→0+

(
Ci(2a)−Ci(a)

)
=

24n+3

(4n+4)!
ln2

gives the coefficient of ln2 for our integral.
Returning to the expression for B(x) and omitting the Ci terms, we can represent

each of the remaining terms as a Laurent series about the origin. Since the limit at 0
is known to exist, all of the terms with negative exponents must cancel and the desired
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limit at 0 is the constant term. By Lemma 5, we find that the constants corresponding
to the first and last terms are

24n+3

(4n+4)!
h4n+4 and

−2
(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)
h2k+1,

respectively. Adding these two results and multiplying by −1 yields

2
(4n+4)!

2n+1

∑
k=n+1

(
4n+4
2k+1

)
h2k+1− 24n+3

(4n+4)!
h4n+4

for the portion of − lim
a→0+

B(a) that does not involve ln2. A proof that this number is

negative (see the end of the proof of Theorem 6) is left to the reader. �
Since computer algebra systems such as Maple or Wolfram Alpha generate the

exact values of these integrals for small values of n , it is possible to check the equations
given in Theorems 6 and 7 for such cases. As expected, the results agree with the
formulas given for the integrals.

Given the nature of the proofs for Theorems 6 and 7, it is natural to ask if the
same approach will work for the four integrals listed at the beginning of the paper. The
answer is yes. As might be expected the details are a bit tedious but not quite as tedious
as those found in the proofs of Theorems 6 and 7. We offer some observations for
the reader interested in pursuing this path. It should come as no surprise that the sine
integral function Si(x) appears. It is defined by (see [1])

Si(x) =
∫ x

0

sin t
t

dt and satisfies lim
a→0+

Si(a) = 0, lim
b→∞

Si(b) =
π
2

.

The last fact explains why π appears in the values of these integrals; it does take some
effort to verify the appropriate coefficient using this method. Since the integrands in
every one of the four cases are even functions, the antiderivatives (using zero for the
constant of integration) are odd functions. This means that the coefficient of the con-
stant term in the Laurent series must be 0. Hence, there are no rational terms associated
with the values of these integrals.
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