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ON STATISTICAL ω –LIMIT SETS IN

A DISCRETE DYNAMICAL SYSTEM

BABLU BISWAS

Abstract. Following the concept of statistical convergence, in this paper we introduce two more
subtle notions, viz. statistical ω -limit set and statistical ω -cluster set than the general ω -limit
set in a discrete dynamical system of a continuous function and study some properties related to
these two points.

1. Introduction

Discrete dynamical systems are used to model many phenomena coming from
different subjects, viz. Biology, Economics, Engineering etc. and the idea of ω -limit
set is an important and interesting concept defined in a dynamical system. The notion
of ω -limit sets have been studied in different aspects in the literature ([1], [2], [3], [4],
[5], [6], [14] etc.). It helps us to gain an idea about the behaviour of the dynamical
system. Let (X ,γ) be a compact metric space and f : X −→ X is a map. For some
point x ∈ X , the forward orbit of x is given by

Orb+(x) = { f i(x) : i ∈ Z, i � 0}.
Here, f ◦ is the identity map on X . Similarly, the backward orbit of x is given by,
Orb−(x) = {x−i}i�0 ⊂ X , where f (x−i) = x−i+1 , for i > 0.

For a sequence of points {xn} , the ω -limit set is the collection of all accumulation
points of {xn} . It is given by

ω({xn}) =
∞∩

n=0
{xk : k � n}.

If {xn} is the orbit of a point x ∈ X for a map f : X → X , then the ω -limit set is given
by,

ω(x, f ) =
∞∩

n=0
{ f k(x) : k � n}.

Our aim is to study the concept of ω -limit points in a more subtle way. For this purpose
we adopt the notion of statistical limit points to describe the ω -limit sets in this article.
In discrete dynamical system, orbits are some sequences of real numbers. We can say
that any orbit spends “almost all” the time in some ε -neighbourhood of an ω -limit
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point. The term “almost all” in general means that only a finite number of elements
of the orbit may remain out side the ε -neighbourhood of that point. As a result in
some practical problems this property does not hold good. The relaxation of the term
“almost all” is more realistic in case of statistical convergence, because in this case an
infinite number of elements may remain outside the ε -neighbourhood of a statistical
limit point.

The concept of statistical convergence was introduced by Fast [9] and Steinhaus
[22] using the idea of natural density [18] and later it was developed by many mathe-
maticians ([7], [8], [10], [12], [13], [16], [17], [19], [21], [23], [24], [25], [26] etc.).

A subset S of the set of natural numbers N is said to have natural density δ (S) , if

lim
n→∞

|S(n)|
n

= δ (S)

, where S(n) = {k < n : k ∈ S} and |S| denotes the cardinality of the set S . A sequence
{xn} in X is said to be statistically convergent to some element ξ ∈ X if for every
ε > 0, δ ({k ∈ N : γ(xk,ξ ) � ε}) = 0.

Fridy [11] studied the concept of statistical limit points and statistical cluster
points and established some interesting properties of these two types of limit points.

According to Fridy [11] , a subsequence {xnk} of a sequence {xn} is said to be of
density zero or thin subsequence if δ ({nk : k∈N}) = 0 and {xnk} is said to be non-thin
if either δ ({nk : k ∈ N}) > 0 or density of the set {nk : k ∈ N} does not exist.

A number λ is called a statistical limit point of a sequence {xn} if there is a non-
thin subsequence of {xn} that converges to λ and a number μ is said to be a statistical
cluster point of {xn} if for every ε > 0, {k ∈ N : γ(xk,μ) � ε} does not have density
zero.

It is shown that the set of statistical cluster points of a bounded sequence is non-
empty and if this set contains only one point then the sequence is statistically conver-
gence to that point. These ideas motivate us to study ω -limit sets of a dynamical system
using statistical convergence as a tool. We also study the concept of invariant sets [6]
which are central to control theory and to validation of systems, such as programs ,
physical systems or hybrid systems. In this connection we recall that a set A ⊂ X is
said to be invariant under a map f : X → X if f (A) ⊂ A and is strongly invariant (i.e.,
s-invariant) if f (A) = A .

2. Statistical ω -limit set

In this section we introduce two notions; viz. statistical ω -limit set and statistical
ω -cluster set according to the concepts of statistical limit point and statistical cluster
point and study some properties of the two sets.

DEFINITION 1. If {xn} is the orbit of a point x ∈ X for a map f : X → X , then
the collection of all statistical limit points of {xn} is said to be the statistical ω -limit
set of {xn} . Accordingly, the collection of all statistical cluster points of {xn} is the
statistical ω -cluster set of {xn} .
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We denote the statistical ω -limit set and statistical ω -cluster set of {xn} by
ωl(x, f ) and ωc(x, f ) respectively. Also ω(x, f ) denotes the ordinary ω -limit set.

Immediately the following results follows from [11] .

THEOREM 1. If {xn} is the orbit of a point x ∈ X for a map f : X → X , then
(a) ωl(x, f ) ⊂ ω(x, f ) .
(b) ωc(x, f ) ⊂ ω(x, f ) .
(c) ωl(x, f ) ⊂ ωc(x, f ) .
(d) ωl(x, f ) need not be a closed set.
(e) ωc(x, f ) is a closed point set and hence compact in X .
( f ) If {xn} and {yn} are orbits of two points x and y such that xk = yk for almost

all k ∈ N , then
ωl(x, f ) = ωl(y, f ) and ωc(x, f ) = ωc(y, f ).

(g) For the orbit {xn} of any point x ∈ X there exists an orbit {yn} of some point
y ∈ X such that

(i) ω(y, f ) = ωc(x, f ) and xk = yk for almost all k and
(ii) {yn : n ∈ N} ⊂ Orb+(x) .
(h) If the orbit of some point x ∈ X for a function f : X → X is bounded, then

ωc(x, f ) �= φ .

The following result can be verified from [15] .

THEOREM 2. If {xn} is the orbit of a point x ∈ X for a map f : X → X , then
ωl(x, f ) is an Fσ set.

In the following we study the invariant property for the sets ωc(x, f ) and ωl(x, f ) .

THEOREM 3. For a point x0 ∈ X and a continuous function f : X → X , ωc(x0, f )
is s-invariant.

Proof. Let A = ωc(x0, f ) .
Case I : If A∩Orb+(x0) = φ , then the result is trivially true.
Case II : Let x ∈ A∩Orb+(x0) and choose ε > 0. Since f is continuous, there

exists a real number δ with 0 < δ < ε for which

u ∈ γ(x,δ ) implies that f (u) ∈ γ( f (x),ε) . (1)

Again, x is a statistical cluster point of Orb+(x0) . So, for T = {k ∈ N : f k−1(x0) ∈
γ(x,δ )} we have δ (T ) �= 0.

Consider S = {k ∈ N : f k(x0) ∈ γ( f (x),ε)} . If k ∈ T then f k−1(x0) ∈ γ(x,δ ) .
Using (1) we have, f k(x0) ∈ γ( f (x),ε) . Clearly, k ∈ S and consequently T ⊂ S . So,
δ (T ) �= 0 implies that δ (S) �= 0. i.e., f (x) ∈ ωc(x, f ) = A and thus f (A) ⊂ A .

We now prove A ⊂ f (A) . Let y ∈ A and ε be arbitrary. Then

δ{n ∈ N : f n(x0) ∈ γ(y,ε)} �= 0.
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Let U = {n∈N : f n(x0)∈ γ(y,ε)}= {n1,n2, . . .} . Then f nk(x0)∈ γ(y,ε) for all k∈N .
Since A is compact { f nk−1(x0)} has a statistical cluster point z , say in A ([11],

Theorem 3, page: 1191). Since f is continuous at z , there exists a real number ε ′
with

0 < ε ′
< ε for which

u ∈ γ(z,ε ′
) implies that f (u) ∈ γ( f (x),ε) . (2)

Let V = {nk − 1 : f nk−1(x0) ∈ γ(z,ε ′
)} . Then δ (V ) �= 0 and p ∈ V implies that

p+1∈U .
If p ∈ V , then f p(x0) ∈ γ(z,ε ′

) . Using (2) we have f p+1(x0) ∈ γ( f (z),ε) for
some p+1∈U .

Since, δ (V ) �= 0, f p+1(x0) ∈ γ( f (z),ε)∩ γ(y,ε) for infinitely many p+ 1 ∈U .
This implies that f (z) = y and thus y = f (z) ∈ f (A) . So, A ⊂ f (A) and hence A =
f (A) . Therefore, we conclude that ωc(x, f ) is s-invariant. �

The following Corollary follows from the first part of the proof of the previous
theorem.

COROLLARY 1. For a point x0 ∈X and a continuous function f : X →X , ωl(x0, f )
is invariant.

REMARK 1. It is a fact that ωl(x, f ) may not be s-invariant. The claim can be
justified by the following example described in [11] .

EXAMPLE 1. Let {xk}k∈N be an orbit of some point x under a map f where,

xk =
1
p

for k = 2p−1(2q+1) . For this orbit,

ωl(x, f ) = { 1
p

: p ∈ N}.

Here, xk = 1 if and only if k is an odd integer. So, if y ∈ ωl(x, f ) and y �= 1, then
y = x2k for some positive integer k . This implies that f (y) = 1 and consequently
f (ωl(x, f )) consists of only two points. Hence ωl(x, f ) � f (ωl(x, f )) .

THEOREM 4. For some point x0 ∈X and for a function f : X →X if y0 ∈ωc(x0, f ) ,
then ωc(y0, f ) ⊂ ωc(x0, f ) .

Proof. Let ωc(x0, f ) =A and y0 ∈A . Since f (A)⊂A then Orb+(y0)⊂ωc(x0, f ) .
Again ωc(x0, f ) is closed. So, ωc(y0, f ) ⊂ ωc(x0, f ) . �

The property of weak incompressibility was first observed by Sarkovski. He
proved in [20] that it is an inherent property of ω -limit sets. It was originally stated
as a property of invariant sets, but Barwell et al. [4] modified the definition slightly to
remove the necessity of invariance.
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DEFINITION 2. [4] A set A ⊂ X is said to have weak incompressibility if for any
proper non-empty open subset U in A , f (U)∩ (A−U) �= φ . Equivalently, if for any
proper non-empty closed subset D in A we have D∩ f (A−D) �= φ .

Here we verify this property for ω -cluster point sets.

THEOREM 5. For x0 ∈ X , ωc(x0, f ) has weak incompressibility.

Proof. Let A = ωc(x0, f ) and D be a non-empty proper closed subset of A . If
possible let D∩ f (A−D) = φ .

Then, there exists two open sets U and V such that U ∩V = φ with D ⊂U and
f (A−D) ⊂V . This implies that A−D⊂ f−1(V ) .

Since f is continuous, f−1(V ) = W (say), is open in X . So, f (W ) = f (W ) = V
and consequently f (W )∩U = φ .

As D ⊂U and A−D ⊂W we have A ⊂U ∪W with A∩U �= φ and A∩W �= φ .
Since f (A) ⊂ A , there exists some natural number p such that f n(x0) ∈ U ∩W

for all n � p . Clearly, f n(x0) ∈ W for infinitely many n � p . Also f n(x0) ∈ U
for infinitely many n � p . Then for infinitely many n � p , f n(x0) ∈ W implies that
f n+1(x0) ∈U .

For S = {n ∈ N : f n(x0) ∈W} we have δ (S) �= 0 otherwise, A∩W = φ and this
will lead to a contradiction.

Similarly, for T = {n ∈ N : f n+1(x0) ∈U} we have δ (T ) �= 0.
We know that if a number sequence has a bounded non-thin subsequence, then the

sequence has an statistical cluster point ( [11] , Theorem 3, page: 1191). So, W has a
statistical cluster point α , say. Clearly, α ∈W and this implies that f (α) ∈ f (W ) .

Let ε > 0. Since f is continuous at α ∈ X , there exists a η > 0 such that x ∈
N(c,η) implies that f (x) ∈ γ( f (α),ε) . As, α is a cluster point of W , δ{n ∈ N :
γ( f n(x0),α) < η} �= 0.

Again, by continuity of f , γ( f n(x0),α) < η implies that γ( f n+1(x0), f (α)) < ε .
So, {n ∈ N : γ( f n(x0),α) < η} ⊂ {n ∈ N : γ( f n+1(x0), f (α)) < ε} and consequently,
δ{n∈ N : γ( f n+1(x0), f (α)) < ε} �= 0. Thus, f (α) is a cluster point of U and f (α) ∈
U . This gives a contradiction. So, we can conclude that D∩ f (A−D) �= φ and hence
ωc(x0, f ) has weak incompressibility. �
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