
Journal of
Classical

Analysis

Volume 18, Number 2 (2021), 137–148 doi:10.7153/jca-2021-18-10

SHARPENING OF BERNSTEIN AND TURÁN–TYPE

INEQUALITIES FOR POLYNOMIALS

THANGJAM BIRKRAMJIT SINGH, MAISNAM TRIVENI DEVI ∗
AND BARCHAND CHANAM

Abstract. Let p(z) be a polynomial of degree n . The polar derivative of p(z) with respect to a
real or complex number α is defined by

Dα p(z) = np(z)+(α − z)p
′
(z).

Govil and Mctume [Acta Math. Hungar., 104, 115–126 (2004)] proved that if p(z) is a polyno-
mial of degree n having all its zeros in |z| � k , k � 1 , then for any complex number α with
|α | � 1+ k+ kn ,

max
|z|=1

|Dα p(z)|� n

( |α |− k
1+ kn

)
max
|z|=1

|p(z)|+n

( |α |− (1+ k+ kn)
1+ kn

)
min
|z|=k

|p(z)|.

In this paper, we prove an improvement of the above inequality. Further, we prove an improve-
ment of a result due to Govil [Proc. Natl. Acad. Sci., 50, 50–52 (1980)].

1. Introduction and statement of results

If p(z) is a polynomial of degree n . Then, according to a famous well-known
classical result due to Bernstein [7], we have

max
|z|=1

|p′
(z)| � nmax

|z|=1
|p(z)|. (1)

Inequality (1) is sharp and equality holds if p(z) has all its zeros at the origin.
Inequality (1) can be sharpened if the zeros of the polynomial are restricted. In

this direction, Erdös conjectured and later Lax [20] proved that if p(z) is a polynomial
of degree n having no zeros in |z| < 1, then

max
|z|=1

|p′
(z)| � n

2
max
|z|=1

|p(z)|. (2)

Inequality (2) is best possible and equality holds for p(z) = a+bzn , where |a| = |b| .
It was asked by R. P. Boas that if p(z) is a polynomial of degree n not vanishing

in |z| < k , k > 0, then how large can{
max
|z|=1

|p′(z)|
/

max
|z|=1

|p(z)|
}

be?
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A partial answer to this problem was given by Malik [21], who proved that if p(z) is a
polynomial of degree n having no zeros in |z| < k , k � 1, then

max
|z|=1

∣∣p′(z)∣∣� n
1+ k

max
|z|=1

|p(z)|. (3)

In literature, there exist generalizations and improvements of inequality (3) for polyno-
mials having no zeros in |z| < k with k � 1, one can refer to the following for a better
insight : Chan and Malik [9], Bidkham and Dewan [8], Qazi [22], Aziz and Zargar [5],
Aziz and Shah [4], Chanam and Dewan [10] etc.

For the class of polynomials not vanishing in |z| < k , k � 1, the precise estimate
for |p′(z)| on |z| = 1, in general, does not seem to be easily obtainable. For quite some
time, it was believed that if p(z) �= 0 in |z| < k , k � 1, then the inequality analogous
to (3) should be

max
|z|=1

∣∣p′(z)∣∣� n
1+ kn max

|z|=1
|p(z)|, (4)

till E. B. Saff gave the example p(z) =
(
z− 1

2

)(
z+ 1

3

)
to counter this belief.

Govil [12] obtained inequality (4) for polynomials having no zeros in |z| < k ,
k � 1, with additional hypothesis and proved

THEOREM 1. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having no zeros in

|z| < k , k � 1 , such that |p′(z)| and |p̃′(z)| attain their maxima at the same point on
|z| = 1 , then

max
|z|=1

|p′(z)| � n
1+ kn max

|z|=1
|p(z)|. (5)

where p̃(z) = znp( 1
z ) .

On the other hand, in 1939, Turán [25] provided a lower bound estimate of the
derivative size of the polynomial by restricting its zeros, and proved that if p(z) is a
polynomial of degree n having all its zeros in |z| � 1, then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (6)

Aziz and Dawood [2] further refined inequality (6) by involving min
|z|=1

|p(z)| ,

max
|z|=1

|p′(z)| � n
2

{
max
|z|=1

|p(z)|+ min
|z|=1

|p(z)|
}

. (7)

Both these inequalities (6) and (7) are best possible and equality holds if p(z) has all
its zeros on |z| = 1.

Inequalities (6) and (7) have been extended and generalized in different directions
(see [4], [6], [13], [14], [15]). For polynomial p(z) having all its zeros in |z|� k , k � 1,
Govil [13] proved that

max
|z|=1

|p′(z)| � n
1+ kn max

|z|=1
|p(z)|. (8)
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Govil [14] proved a refinement of inequality (8) and a generalization of (7) taking the
same class of polynomials and obtained

max
|z|=1

|p′(z)| � n
1+ kn

{
max
|z|=1

|p(z)|+min
|z|=k

|p(z)|
}

. (9)

Inequalities (8) and (9) are sharp and equality holds for p(z) = zn + kn .
The concept of derivative of a polynomial has been generalized to polar derivative

of a polynomial as follows.
If p(z) is a polynomial of degree n and α be any real or complex number, the

polar derivative of p(z) with respect to α , denoted by Dα p(z) , is defined as

Dα p(z) = np(z)+ (α − z)p′(z) .

It is easy to see that Dα p(z) is a polynomial of degree at most (n−1) and it generalizes
the ordinary derivative in the sense that

lim
α→∞

[
Dα p(z)

α

]
= p′(z).

In 1998, Aziz and Rather [3] extended inequality (8) to polar derivative by proving that
if p(z) is a polynomial of degree n having all its zeros in |z| � k , k � 1, then for every
real or complex number α with |α| � k ,

max
|z|=1

|Dα p(z)| � n

( |α|− k
1+ kn

)
max
|z|=1

|p(z)|. (10)

Govil and Mctume [16] established the polar derivative extension of inequality (9) and
proved

THEOREM 2. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then for every real or complex number α with |α| � 1+ k+ kn ,

max
|z|=1

|Dα p(z)| � n

( |α|− k
1+ kn

)
max
|z|=1

|p(z)|

+n

{ |α|− (1+ k+ kn)
1+ kn

}
min
|z|=k

|p(z)|. (11)

Recently, inequalities (5) and (10) have been improved by involving certain co-
efficients of the polynomial in different directions, for a better insight one can refer:
Govil and Kumar [15], Kumar [18], Kumar and Dhankar [19] and Rather et al. [24] etc.
In this direction, we obtain improved versions of inequalities (5) and (11).
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2. Main result

We first begin by presenting the following refinement of Theorem 1 due to Govil
[12].

THEOREM 3. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having no zeros in

|z| < k , k � 1 , such that |p′(z)| and |p̃′(z)| attain their maxima at the same point on
|z| = 1 , then

max
|z|=1

|p′(z)| �
{

n
1+ kn −

kn(|a0|− |an|kn)
(1+ kn)(|an|kn + |a0|)

}
max
|z|=1

|p(z)|, (12)

where p̃(z) = znp
(

1
z

)
.

Inequality (12) is best possible for p(z) = zn + kn .

REMARK 1. If p(z) =
n

∑
j=0

a jz
j = an

n

∏
j=0

(z− z j) where |z j| � k , j = 0,1,2, . . .n

then
n

∏
j=0

|z j| � kn,

which implies

|a0| � kn|an|.
This shows that Theorem 3 is a refinement of Theorem 1.

REMARK 2. Taking k = 1, Theorem 3 reduces to a refinement of inequality (1.2)
of Erdös and Lax [20] for the class of polynomials having no zeros in |z| < 1 with
the extra assumption that |p′(z)| and |p̃′(z)| attain their maxima at the same point on
|z| = 1.

COROLLARY 1. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having no zeros in

|z| < 1 , such that |p′(z)| and |p̃′(z)| attain their maxima at the same point on |z| = 1 ,
then

max
|z|=1

|p′(z)| � 1
2

{
n+

|a0|− |an|
|a0|+ |an|

}
max
|z|=1

|p(z)|.

Our next result is an improvement of Theorem 2 due to Govil and Mctume [16].
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THEOREM 4. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then for any real or complex number α with |α| � 1+ k+ kn ,

max
|z|=1

|Dα p(z)|

� (|α|− k)
1+ kn

{
n+

kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

}
max
|z|=1

|p(z)|

+
{

n

( |α|− (1+ k+ kn)
1+ kn

)
+

(|α|− k)
1+ kn

(
kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

)}
m, (13)

where m = min
|z|=k

|p(z)| and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

REMARK 3. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros in

|z|� k , k � 1, then for any complex number |λ |eiθ0 with |λ |< 1, by Rouche’s theorem
it follows that the polynomial p(z)+ |λ |eiθ0m = (a0 + |λ |eiθ0m)+a1z+ · · ·+ cnzn has
all its zeros in |z| � k , where m = min

|z|=k
|p(z)| , then

kn �
∣∣∣∣a0 + |λ |eiθ0m

an

∣∣∣∣ ,
which implies that

kn|an| � |a0 + |λ |eiθ0m|.
Taking |λ | → 1, we get

kn|an| � |a0 + eiθ0m|.
From which we conclude that Theorem 4 is a refinement of Theorem 2.

REMARK 4. Dividing both sides of (13) by |α| and taking limit as |α| → ∞ , we
have the following refinement of inequality (9) due to Govil [14].

COROLLARY 2. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then

max
|z|=1

∣∣p′(z)∣∣ � 1
1+ kn

{
n+

kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

}
max
|z|=1

|p(z)|

+
{

n
1+ kn +

1
1+ kn

(
kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

)}
m, (14)

where m = min
|z|=k

p(z) and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

Inequality (14) is best possible for p(z) = zn + kn .
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REMARK 5. Taking k = 1 in Corollary 2, inequality (14) reduces to a refinement
of inequality (7) due to Aziz and Dawood [2].

COROLLARY 3. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros

in |z| � 1 , then

max
|z|=1

|p′(z)| � 1
2

{
n+

|an|− |a0 + eiθ0m|
|an|+ |a0 + eiθ0m|

}
max
|z|=1

|p(z)|

+
1
2

{
n+
( |an|− |a0 + eiθ0m|
|an|+ |a0 + eiθ0m|

)}
m, (15)

where m = min
|z|=1

|p(z)| and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

Further, we will extend Theorem 3 to the polar derivative version as follows.

THEOREM 5. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having no zeros in

|z| < k , k � 1 , such that |p′(z)| and |p̃′(z)| attain their maxima at the same point on
|z| = 1 , then for any real or complex number α with |α| > 1 ,

max
|z|=1

|Dα p(z)| �
{

n(|α|+ kn)
1+ kn − (|α|−1)kn(|a0|− |an|kn)

(1+ kn)(|an|kn + |a0|)
}

max
|z|=1

|p(z)|. (16)

3. Lemmas

For the proof of our theorems, we need the following lemmas.

LEMMA 1. If p(z) is a polynomial of degree n, then on |z| = 1 ,

|p′(z)|+ |p̃′(z)| � nmax
|z|=1

|p(z)|,

where p̃(z) = znp( 1
z ) .

This result is a special case of a result due to Govil and Rahman [17].

LEMMA 2. If {zi}n
j=1 is a finite collection of real numbers such that 0 � z j � 1 ,

j = 1,2, · · · ,n, then

n

∑
j=1

1− z j

1+ z j
�

1−
n

∏
j=1

z j

1+
n

∏
j=1

z j

,

The above Lemma is due to Rather et al. [23].
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LEMMA 3. If p(z) is a polynomial of degree n having all its zeros in |z| � k ,
k � 1 , then

max
|z|=k

|p(z)| � 2kn

1+ kn max
|z|=1

|p(z)|.

The above result appears in Aziz [1].

LEMMA 4. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros in

|z| � 1 , then for |z| = 1 in which p(z) �= 0 , we have

Re

(
p′(z)
p(z)

)
� 1

2

{
n+

|an|− |a0|
|an|+ |a0|

}
.

The above result was proved by Dubinin [11] where the author made use of famous
Boundary Schwartz Lemma. Here we present an alternative proof by using Lemma 2.

Proof of Lemma 4. Let p(z) =
n

∑
j=0

a jz
j = an

n

∏
j=1

(z− z j) , where |z j| � 1, j =

1,2, · · · ,n . Then for |z| = 1, in which p(z) �= 0,

ℜ

(
zp

′
(z)

p(z)

)
=

n

∑
j=1

ℜ
(

z
z− z j

)
. (17)

For |z| = 1 and |z j| � 1, j = 1,2, . . . ,n some straight forward calculations give

ℜ
(

z
z− z j

)
� 1

1+ |z j| . (18)

Combining inequalities (17) and (18), we get

ℜ
(

zp′(z)
p(z)

)
�

n

∑
j=1

1
1+ |z j| =

1
2

{
n+

n

∑
j=1

1−|z j|
1+ |z j|

}
. (19)

Applying Lemma 2 in inequality (19), we get

ℜ
(

zp′(z)
p(z)

)
� 1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩n+

1−
n

∏
j=1

|z j|

1+
n

∏
j=1

|z j|

⎫⎪⎪⎪⎬⎪⎪⎪⎭=
1
2

{
n+

|an|− |a0|
|an|+ |a0|

}
, (20)

for |z| = 1 on which p(z) �= 0. �

REMARK 6. Govil and Kumar [15] also proved Lemma 4 by using the Principle
of Mathematical Induction. As a consequence of Lemma 4 we obtain the next Lemma
which is a special case of a result proved by Govil and Kumar [15].
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LEMMA 5. If p(z) =
n

∑
j=0

a jz
j is a polynomial of degree n having all its zeros in

|z| � k , k � 1 , then for any real or complex number α with |α| � k ,

max
|z|=1

|Dα p(z)| � (|α|− k)
{

n
1+ kn +

(kn|an|− |a0|)
(1+ kn)(kn|an|+ |a0|)

}
max
|z|=1

|p(z)|. (21)

Proof of Lemma 5. Since p(z) is a polynomial of degree n having all its zeros in
|z| � k , |k| � 1, hence all the zeros of p(kz) lie in |z| � 1. Now taking g(z) = p(kz) ,
and using Lemma 4, we get

ℜ
(

zg′(z)
g(z)

)
� 1

2

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
, for |z| = 1, p(z) �= 0, (22)

which implies ∣∣∣∣g′(z)g(z)

∣∣∣∣� ℜ
(

zp′(z)
p(z)

)
� 1

2

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
,

which is equivalent to

|g′(z)| � 1
2

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
|g(z)|, for |z| = 1, p(z) �= 0.

Since the above inequality is trivially satisfied for p(z) = 0, we have

|g′(z)| � 1
2

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
|g(z)|, for |z| = 1. (23)

Since g(z) has all its zeros in |z|� 1, then using the fact that |g′(z)|� |g̃′(z)| on |z|= 1,
we have for |α

k | � 1 and |z| = 1,

|D α
k
g(z)| = |ng(z)+

(α
k
− z
)

g′(z)|

�
∣∣∣α
k

∣∣∣ |g′(z)|− |ng(z)− zg′(z)|

=
∣∣∣α
k

∣∣∣ |g′(z)|− |g̃′(z)|

�
(∣∣∣α

k

∣∣∣−1
)
|g′(z)|. (24)

Combining (23) and (24), we get

max
|z|=1

|D α
k
g(z)| � (|α|− k)

2k

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
max
|z|=1

|g(z)|,

which implies

max
|z|=1

|np(kz)+
(α

k
− z
)

kp′(kz)| � (|α|− k)
2k

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
max
|z|=1

|p(kz)|. (25)
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Using Lemma 3 and the fact that

max
|z|=1

|np(kz)+
(α

k
− z
)

kp′(kz)| = max
|z|=k

|Dα p(z)|,

inequality (25) gives

max
|z|=k

|Dα p(z)| � (|α|− k)
k

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
kn

1+ kn max
|z|=1

|p(z)|. (26)

As we can see Dα p(z) is a polynomial of degree at most (n−1) and k � 1, hence by
famous Bernstein inequality, we have

max
|z|=k

|Dα p(z)| � kn−1 max
|z|=1

|Dα p(z)|. (27)

Combining (26) and (27), we get

max
|z|=1

|Dα p(z)| � (|α|− k)
1+ kn

{
n+

kn|an|− |a0|
kn|an|+ |a0|

}
max
|z|=1

|p(z)|.

This completes the proof of Lemma 5. �

REMARK 7. Dividing both sides of inequality (21) by |α| and taking limit as
|α| → ∞ , we get

LEMMA 6. If p(z) = a0 +a1z+ . . .+anzn is a polynomial of degree n having all
its zeros in |z| � k , k � 1 , then

max
|z|=1

|p′(z)| �
{

n
1+ kn +

(|an|kn−|a0|)
(1+ kn)(|an|kn + |a0|)

}
max
|z|=1

|p(z)|.

4. Proofs of Theorems

Proof of Theorem 3. Since p(z) is a polynomial of degree n having no zeros in

|z| < k , k � 1, then p̃(z) = znp( 1
z ) has all its zeros in |z| � 1

k , 1
k � 1.

Hence, by Lemma 6, and using the fact that max
|z|=1

|p̃(z)| = max
|z|=1

|p(z)| , we have

max
|z|=1

|p̃′(z)| �
{

nkn

1+ kn +
kn(|a0|− |an|kn)

(1+ kn)(|a0|+ |an|kn)

}
max
|z|=1

|p(z)|. (28)

By Lemma 1, we have on |z| = 1

|p′(z)|+ |p̃′(z)| � nmax
|z|=1

|p(z)|. (29)

Since |p′(z)| and |p̃′(z)| attain their maxima at the same point on |z| = 1, we have

max
|z|=1

{|p′(z)|+ |p̃′(z)|} = max
|z|=1

|p′
(z)|+max

|z|=1
|p̃′(z)|. (30)
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Therefore, from (28), (29) and (30), we have

max
|z|=1

|p′(z)|+
{

nkn

1+ kn +
kn(|a0|− |an|kn)

(1+ kn)(|a0|+ |an|kn)

}
max
|z|=1

|p(z)| � nmax
|z|=1

|p(z)|,

which after proper rearrangement of terms gives

max
|z|=1

|p′(z)| �
{

n
1+ kn −

kn(|a0|− |an|kn)
(1+ kn)(|a0|+ |an|kn)

}
max
|z|=1

|p(z)|.

Thus the proof of Theorem 3 is complete. �

Proof of Theorem 4. If p(z) is a polynomial of degree n having atleast one zero
on |z| = k, then m = 0 and the result follows trivially from Lemma 5. So, without loss
of generality, let us assume that p(z) has all its zeros in |z| < k , k � 1, then it follows
by Rouche’s theorem that for any complex number λ with |λ | < 1, the polynomial
p(z) + λm = (a0 + λm) + a1z + · · ·+ anzn also has all its zeros in |z| < k , k � 1.
Therefore, applying Lemma 5 to p(z)+ λm , we get for |α| � 1+ k+ kn ,

max
|z|=1

|Dα (p(z)+ λm)|

� (|α|− k)
{

n
1+ kn +

kn|an|− |a0 + λm|
(1+ kn)(kn|an|+ |a0 + λm|)

}
max
|z|=1

|p(z)+ λm|. (31)

Let 0 � φ0 < 2π , be such that
∣∣p(eiφ0)

∣∣= max
|z|=1

|p(z)| . Then inequality (31) gives

max
|z|=1

|Dα p(z)+nλm|

� (|α|− k)
{

n
1+ kn +

kn|an|− |a0 + λm|
(1+ kn)(kn|an|+ |a0 + λm|)

}
|p(eiφ0)+ λm|. (32)

Now ∣∣p(eiφ0)+ λm
∣∣ =

∣∣∣|p(eiφ0)|eiθ0 + |λ |eiφ m
∣∣∣= ∣∣∣|p(eiφ0)|+ |λ |ei(φ−θ0)m

∣∣∣ .
Setting the argument φ such that φ = θ0 , then

∣∣p(eiφ0)+ λm
∣∣= ∣∣p(eiφ0)

∣∣+ |λ |m , then
it follows from inequality (32) that

max
|z|=1

|Dα p(z)|+n |λ |m

� (|α|− k)
{

n
1+ kn +

kn|an|− |a0 + |λ |eiθ0m|
(1+ kn)(kn|an|+ |a0 + |λ |eiθ0m|)

}(∣∣p(eiφ0)
∣∣+ |λ |m) ,

which is equivalent to

max
|z|=1

|Dα p(z)|

� (|α|− k)
1+ kn

{
n+

kn|an|− |a0 + |λ |eiθ0m|
kn|an|+ |a0 + |λ |eiθ0m|

}
max
|z|=1

|p(z)|

+|λ |
{

n

( |α|− (1+ k+ kn)
1+ kn

)
+

(|α|− k)
1+ kn

(
kn|an|− |a0 + |λ |eiθ0m|
kn|an|+ |a0 + |λ |eiθ0m|

)}
m.
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Taking |λ | → 1, the above inequality reduces to

max
|z|=1

|Dα p(z)| � (|α|− k)
1+ kn

{
n+

kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

}
max
|z|=1

|p(z)|

+
{

n

( |α|− (1+ k+ kn)
1+ kn

)
+

(|α|− k)
1+ kn

(
kn|an|− |a0 + eiθ0m|
kn|an|+ |a0 + eiθ0m|

)}
m.

This completes the proof of Theorem 4. �

Proof of Theorem 5. Using Lemma 1 we have on |z| = 1 and for any real or
complex number α with |α| � 1,

|Dα p(z)| =
∣∣np(z)+ (α − z)p′(z)

∣∣
�
∣∣np(z)− zp′(z)

∣∣+ |α| ∣∣p′(z)∣∣
=
∣∣ p̃′(z)∣∣+ |α| ∣∣p′(z)∣∣

� nmax
|z|=1

|p(z)|+(|α|−1)
∣∣p′(z)∣∣ . (33)

Applying Theorem 3 to inequality (33), we get for |z| = 1

|Dα p(z)| � nmax
|z|=1

|p(z)|+(|α|−1)
{

n
1+ kn −

kn(|a0|− |an|kn)
(1+ kn)(|an|kn + |a0|)

}
max
|z|=1

|p(z)|,

which gives

max
|z|=1

|Dα p(z)| �
{

n(|α|+ kn)
1+ kn − (|α|−1)kn(|a0|− |an|kn)

(1+ kn)(|an|kn + |a0|)
}

max
|z|=1

|p(z)|.

Thus the proof of Theorem 5 is complete. �
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