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ALTERNATING EULER SUMS AND BBP–TYPE SERIES

ANTHONY SOFO

Abstract. An investigation into a family of definite integrals containing log-polylog functions
with negative argument will be undertaken in this paper. It will be shown that Euler sums play
an important part in the solution of these integrals and some may be represented as a BBP type
formula. In a special case we prove that the corresponding log integral can be represented as a
linear combination of the product of zeta functions and the Dirichlet beta function.

1. Introduction, preliminaries and notation

In this paper we investigate a family of integrals with polylogarithmic integrand
containing some parameters. It will be shown that the solution of some of these fam-
ilies of integrals may be expressed as a BBP-type representation containing harmonic
numbers and include some classical constants such as the Riemann zeta function and
the Dirichlet beta function. In particular we investigation a family of integrals of the
type

I (a, p,q,t) =
∫

x

xa lnp (x)
1+ x2 Lit(−x4q+2)dx, (1)

where a � −2, p∈ N0 , q∈ N , t ∈ N0 and for the domain of x ∈ (0,1) . We also study
the integral

J (p,q,t) = I (0, p,q,t) =
∫

x

lnp (x)
1+ x2 Lit(−x4q+2)dx (2)

on the positive half line x � 0. In general for a mathematical constant K a BBP-type
formula has the form

K =
∞

∑
n=0

1
αn

k

∑
j=0

β j

(nk+ j)p

where α,k, p are integers, the base, length and degree of the BBP-type formula and β j

are rational numbers. Recently the following results have been published. In [1], we
find the alternating series,

π =
∞

∑
n=0

(−1)n

4n

(
2

4n+1
+

2
4n+2

+
1

4n+3

)
.

Mathematics subject classification (2020): 05A10, 11A25, 11M35.
Keywords and phrases: Definite integral, BBP type relations, Euler sums, Dirichlet beta functions.

c© � � , Zagreb
Paper JCA-18-12

157

http://dx.doi.org/10.7153/jca-2021-18-12


158 A. SOFO

In [8], we have

G =
3
4

∞

∑
n=0

(−1)n

4n

(
2

(4n+1)2
− 2

(4n+2)2
+

1

(4n+3)2

)

+
1
32

∞

∑
n=0

(−1)n+1

64n

(
8

(4n+1)2
+

4

(4n+2)2
+

1

(4n+3)2

)
.

In [9] we find

3
√

2 =
8
3

∞

∑
n=0

(−1)n
(

3n
n

)
54n

(
1

3n−2
− 1

3n−1

)
,

and [23] has published,√
10+2

√
5

50
π =

∞

∑
n=0

(−1)n

φ10n

(
1

φ2 (5n+2)
+

1
φ4 (5n+3)

)

where the golden ratio φ =
(
1+

√
5
)

/2. These types of representations are known as

BBP-type series and many other papers have recently been published [1], [2], [5], [20],
[22], [23] extending and generalizing various aspects of BBP type series. Some other
related papers dealing with Euler sums are [3], [10], [12], [13], [14] and the excellent
books [19] and [21]. The following special functions will be used in the analysis of the
integral (1). The polylogarithm function Lit(z) is, for |z| � 1

Lit(z) =
∞

∑
m=1

zm

mt . (3)

The classical Hurwitz zeta function

ζ (p,a) = ∑
n�0

1
(n+a)p

for Re (p) > 1 and by analytic continuation to other values of p �= 1, where any term
of the form (n+a) = 0 is excluded. The well known result

ζ (z)+ η (z) = 2λ (z)

connects the zeta function ζ (z) = ∑∞
n=1

1
nz , with the Dirichet eta function η (z) and

the Dirichlet lambda function λ (z) . The zeta function has a simple pole at z = 1. The
Dirichlet beta function, β (z) or Dirichlet L function is given by, see Finch [7]

β (z) =
∞

∑
n=0

(−1)n

(2n+1)z
; Re (z) > 0 (4)
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where β (2) = G is Catalan’s constant. The Dirichlet beta function can be represented
in powers of π at positive odd integer values of z , such that

β (2m+1) =
(−1)m E (2m)
22m+2 (2m)!

π2m+1

where E (·) are the Euler numbers generated by

sech(z) =
2ez

e2z +1
=

∞

∑
n=0

E (n)zn

n!
.

The Dirichlet beta function can be analytically extended to the whole complex plane,
has no singularities in the complex plane and is given by the functional equation

β (1− z) =
(

2
π

)z

sin
(πz

2

)
Γ(z)β (z) .

For real values of x, ψ(x) is the digamma (or psi) function defined by

ψ(x) :=
d
dx

{logΓ(x)} =
Γ′(x)
Γ(x)

.

We know that for n � 1, ψ(n + 1)−ψ(1) = Hn with ψ(1) = −γ, where γ is the

Euler Mascheroni constant ψ(n) is the digamma function and Hn =
n
∑
j=1

1
j is the nth.

harmonic number with n ∈ N. The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)k+1 k!

∞

∑
r=0

1

(r+ z)k+1

and has the recurrence

ψ(k)(z+1) = ψ(k)(z)+
(−1)k k!

zk+1 .

The connection of the polygamma function with harmonic numbers is,

H(m+1)
z = ζ (m+1)+

(−1)m

m!
ψ(m) (z+1) , z �= {−1,−2,−3, . . .} .

=
(−1)m

m!

1∫
0

(1− tz)
1− t

lnm t dt. (5)

The multiplication formula for the polygamma function is

ψ(p) (mz) = δm,0 ln(m)+
1

mp+1

p−1

∑
j=0

ψ(p)
(

z+
j
m

)
(6)
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where m ∈ N and δm,0 is the Kronecker delta. We expect that integrals of the type (1)
may be represented by Euler sums and therefore in terms of special functions such as
the Riemann zeta function. The paper of [23] gives some examples for the representa-
tion BBP and Euler type sums. The following papers [15], [16], and [17] also examined
some integrals in terms of Euler sums. Some examples will be given highlighting spe-
cific cases of the integrals, some of which are not amenable to a computer mathematical
package.

2. Analysis of integrals

Consider the following.

THEOREM 1. Let (p,q,t) ∈ N0 , a � −2, the following integral,

I (a, p,q,t) =
1∫

0

xa lnp (x)
1+ x2 Lit(−x4q+2)dx (7)

=

π
4∫

0

(tanθ )a lnp (tanθ )Lit(− tan4q+2 θ )dθ

= (−1)p p! ∑
n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1

((4q+2)n+2 j +a+1)p+1 (8)

where H(t)
n are nth. generalized harmonic numbers of order t.

Proof. For x ∈ (0,1) , from (3) and a Taylor series expansion

Lit(−x4q+2) = ∑
n�1

(−1)n x(4q+2)n

nt ,
1

1+ x2 = ∑
n�0

(−1)n x2n.

It is known that the Cauchy product of two convergent series, see Bromwich and Wat-
son, [4] (

∑
n�0

anx
n

)(
∑
n�0

bnx
n

)
= ∑

n�0

cnx
n

where cn = ∑n
j=0 a jbn− j , it then follows that

xaLit(−x4q+2)
1+ x2 = ∑

n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1 x(4q+2)n+2 j+a

and therefore

xa lnp (x)Lit(−x4q+2)
1+ x2 = ∑

n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1 x(4q+2)n+2 j+a lnp (x) .
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Integrating both sides for x ∈ (0,1) , we have, after reversing the order of summation
and integration, which is justified by the uniform convergence theorem

1∫
0

xa lnp (x)Lit(−x4q+2)
1+ x2 dx = ∑

n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1
1∫

0

x(4q+2)n+2 j+a lnp (x)dx

= (−1)p p! ∑
n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1

((4q+2)n+2 j +a+1)p+1

and this is the BBP-type representation for the integral (7) containing harmonic num-
bers of order t. The second integral in (7) is obtained by the substitution x = tanθ . �

The next corollary deals with an alternative representation for the integral (7).

COROLLARY 1. For (p,t) ∈0 , a � −2, and q ∈ R > − 1
2 then

I (a, p,q, t) =
1∫

0

xa lnp (x)
1+ x2 Lit(−x4q+2)dx

=
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

(
H(p+1)

n(q+ 1
2 )+ a−1

4
−H(p+1)

n(q+ 1
2 )+ a−3

4

)
, (9)

where H(p+1)
n(q+ 1

2 )+ a−1
4

are shifted harmonic numbers of order p+1.

Proof. A Taylor series expansion of

Lit(−x4q+2) = ∑
n�1

(−1)n x(4q+2)n

nt and
1

1+ x2 = ∑
j�0

(−1) j x2 j

allows us to write, after reversing the order of summation and integration, which is
justified by the uniform convergence theorem

I (a, p,q, t) = ∑
n�1

(−1)n

nt ∑
j�0

(−1) j
1∫

0

x(4q+2)n+2 j+a lnp (x)dx

= (−1)p p! ∑
n�1

1
nt ∑

j�0

(−1) j

((4q+2)n+2 j +a+1)p+1

=
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

⎛
⎝ ζ

(
p+1, 1

4 ((4q+2)n+a+1)
)

−ζ
(
p+1, 1

4 ((4q+2)n+a+3)
)
⎞
⎠

=
(−1)p p!
22p+2 ∑

n�1

(−1)p(−1)n

p!nt

⎛
⎝ ψ(p) ((q+ 1

2

)
n+ a+3

4

)
−ψ(p) ((q+ 1

2

)
n+ a+1

4

)
⎞
⎠ .
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From the identity (5) we obtain the required identity

I (a, p,q, t) =
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

(
H(p+1)

n(q+ 1
2 )+ a−1

4
−H(p+1)

n(q+ 1
2 )+ a−3

4

)
. �

REMARK 1. For (p,q) ∈ N0, we see from (8) and (9) the remarkable Euler sum
identity

∑
n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1

((4q+2)n+2 j +a+1)p+1

=
1

22p+2 ∑
n�1

(−1)n

nt

(
H(p+1)

n(q+ 1
2 )+ a−1

4
−H(p+1)

n(q+ 1
2 )+ a−3

4

)
.

The next corollary deals with some special significant cases of the integral (7).

REMARK 2. For the special case q = 0, (p,t) ∈ N0 we have

I (a, p,0,t) =
1∫

0

xa lnp (x)
1+ x2 Lit(−x2)dx

=
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

(
H(p+1)

n
2+ a−1

4
−H(p+1)

n
2 + a−3

4

)

= (−1)p p! ∑
n�1

(−1)n H(t)
n

(2n+a+1)p+1 (10)

and if we choose a as an odd integer a = 2m−1, m ∈ N , say a = 1, we can obtain the
representation

I (1, p,0,t) =
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

(
H(p+1)

n
2

−H(p+1)
n
2− 1

2

)

and using the multiplication formula (6)

H(p+1)
n = η (p+1)+

1
2p+1 H(p+1)

n
2

+
1

2p+1 H(p+1)
n
2− 1

2

we have the simplification

I (1, p,0, t) =
(−1)p p!
22p+2 ∑

n�1

(−1)n

nt

⎛
⎜⎝ 2H(p+1)

n
2

−2p+1H(p+1)
n

+2p+1 (−1)p p!η (p+1)

⎞
⎟⎠ . (11)

From (10) and (11) we have for t ∈ N � 2, p ∈ N0

η (t)η (p+1) =
1
2p ∑

n�1

(−1)n+1

nt

(
2pH(p+1)

n −H(p+1)
n
2

)
+ ∑

n�1

(−1)n+1 H(t)
n

(n+1)p+1 ,
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re-ordering the counter in the third sum yields

η (t)η (p+1)−η (p+ t +1) = ∑
n�1

(−1)n+1

nt

(
H(p+1)

n − 1
2p H(p+1)

n
2

)

− ∑
n�1

(−1)n+1 H(t)
n

np+1

where η (0) = 1
2 and η (1) = ln2. In the case p + 1 = t we find the new Euler sum

identity, for t ∈ N

∑
n�1

(−1)n+1 H(t)
n
2

nt = 2t−1 (η (2t)−η2 (t)
)
,

since we know, for integer t � 2

∑
n�1

H(t)
n

nt =
1
2

(
ζ (2t)+ ζ 2 (t)

)
it follows that

∑
n�1

H(t)
n
2

nt = 2t−1 (η (2t)−η2 (t)
)
+

1
2t

(
ζ (2t)+ ζ 2 (t)

)
.

For the case a = 0, q = − 1
4 we have

I

(
0, p,−1

4
,t

)
=

(−1)p p!
22p+1 ∑

n�1

(−1)n

nt

(
H(p+1)

n
4− 1

4
−H(p+1)

n
4− 3

4

)

and for p = 1, t = 4

I

(
0,1,−1

4
,4

)
=

1∫
0

ln(x)
1+ x2 Li4(−x)dx

=
7
8

ζ (4)G+
9
8

ζ (2)β (4)− 5
2

β (6) .

In the next corollary we give two more special cases.

COROLLARY 2. For p ∈ N , t = 1 , a � −2, and q ∈ N then

I (a, p,q,1) = −
1∫

0

xa lnp (x)
1+ x2 ln(1+ x4q+2)dx

= (−1)p+1 p! ∑
n�1

(−1)n+1 Hn

2q

∑
j=0

(−1) j+1

((4q+2)n+2 j +a−1)p+1 . (12)
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For p ∈ N , t = 0 , a � −2, and q ∈ N then

I (a, p,q,0) = −
1∫

0

xa+4q+2 lnp (x)
(1+ x2)(1+ x4q+2)

dx

=
2q

∑
j=0

(−1) j+1

⎛
⎜⎜⎝

p
2p(4q+2)p+1

(
ψ(p−1)

(
2 j+a+1
2(4q+2) + 1

2

)
−ψ(p−1)

(
2 j+a+1
2(4q+2) +1

))

+ 2 j+a+1
2p+1(4q+2)p+2

(
ψ(p)

(
2 j+a+1
2(4q+2) + 1

2

)
−ψ(p)

(
2 j+a+1
2(4q+2) +1

))
⎞
⎟⎟⎠ .

(13)

Proof. For the case t = 1, we notice that Li1(−x4q+2) = −ln(1+ x4q+2) and (12)

follows from (8). For the case t = 0, we notice that Li0(−x4q+2) = − x4q+2

(1+x4q+2) . A

Taylor series expansion produces

x4q+2

(1+ x2) (1+ x4q+2)
= ∑

n�1

(−1)n+1 n
2q

∑
j=0

(−1) j x(4q+2)n+2 j

in which case

I (a, p,q,0) = (−1)p p!
2q

∑
j=0

(−1) j+1 ∑
n�1

(−1)n+1 n

((4q+2)n+2 j +a+1)p+1 .

A partial fraction decomposition and simplification leads to (13). �

Some examples follow.

EXAMPLE 1. Let (a, p,q,t) = (1,5,0,0)

I (1,5,0,0) =
465
256

ζ (6)− 225
128

ζ (5) .

Let (a, p,q, t) = (2,2,1,0)

I (2,2,1,0) =
1249
3675

− 1
3
G− π3

864
+

5
10368

(
ψ(2)

(
11
12

)
−ψ(2)

(
17
12

))

+
7

10368

(
ψ(2)

(
19
12

)
−ψ(2)

(
13
12

))

= 2 ∑
n�1

(−1)n n

(
1

(6n+3)3
− 1

(6n+5)3
+

1

(6n+7)3

)
.
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Let (a, p,q, t) =
(
0,5,− 1

4 ,2
)

I

(
0,5,−1

4
,2

)
= 840β (8)−40π2β (6)− 7

2
π4β (4)− 31

256
π6G

=
5!
212 ∑

n�1

(−1)n+1

n2

(
H(6)

n
4− 1

4
−H(6)

n
4− 3

4

)
.

=

π
4∫

0

ln5 (tanθ )Li2(− tanθ )dθ =
1∫

0

ln5 xLi2(−x)
1+ x2 dx

where G = ∑
n�0

(−1)n+1

(2n+1)2.
is Catalan’s constant, β (·) is the Dirichlet beta function.

Let (a, p,q, t) = (0,0,0,2) ,

I (0,0,0,2) =
1∫

0

Li2(−x2)
1+ x2 dx = ∑

n�1

(−1)n H(2)
n

(2n+1)

=
1
4 ∑

n�1

(−1)n

n2

(
Hn

2− 1
4
−Hn

2− 3
4

)

= 2G ln2− 11π3

96
− π

8
ln2 2− i

(
4Li3

(
1+ i

2

)
+

5π2

48
ln2− 1

12
ln3 2− 35

16
ζ (3)

)
.

From Lewin ([11], p. 164, 296) we have that

Re

(
Li3

(
1+ i

2

))
=

1
48

ln3 2+
35
64

ζ (3)− 5π2

192
ln2

and therefore

I (0,0,1,2) = 24Im

(
Li3

(
1+ i

2

))
+12G ln2− 31π3

48
− 3π

4
ln2 2.

Sofo and Nimbran [18] have shown that the imaginary part of the trilogarithm:

W (3) := Im

(
Li3

(
1± i

2

))
= ∑

n�1

sin
(

nπ
4

)
2

n
2 n3

= ∑
n�1

(−1)n+1

22n

(
2

(4n−3)3
+

2

(4n−2)3
+

1

(4n−1)3

)
,

and finally we have

I (0,0,0,2) = 4W (3)+2G ln2− 11π3

96
− π

8
ln2 2.
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Let (a, p,q, t) = (0,0,2,1)

I (0,0,2,1) =
1∫

0

Li1(−x10)
1+ x2 dx = 5G− π

4
ln

(
20

5+8α

)

= ∑
n�1

(−1)n Hn

(
1

10n+1
− 1

10n+3
+

1
10n+5

− 1
10n+7

+
1

10n+9

)

where α =
(
1−√

5
)

/2.

Let (a, p,q, t) = (−2,1,0,4)

1∫
0

x−2 ln(x)Li4(−x2)
1+ x2 dx =

π
4∫

0

cot2 (x) ln(tanθ )Li4(− tan2 θ )dθ

= ∑
n�1

(−1)n+1 H(4)
n

(2n−1)2
=

1
24 ∑

n�1

(−1)n+1

n4

(
H(2)

n
2− 3

4
−H(2)

n
2− 5

4

)

= 16G−16π +6ζ (2)+3ζ (3)+
7
8

ζ (4)+32ln2+
31
2

πζ (5)− 7
8

ζ (4)G

−6ζ (2)β (4)−40β (6) .

In the next theorem we consider the integral (7) on the positive half line x � 0.

THEOREM 2. For (p,t) ∈ N , q > 0

J (p,q, t) =
∞∫

0

lnp (x)Lit(−x4q+2)
1+ x2 dx =

∞∫
0

g(x; p,q, t)dx (14)

=

π
2∫

0

lnp (tanθ )Lit(− tan4q+2 θ )dθ

=
(
1+(−1)p+t+1

)
I (0, p,q,t) (15)

+2(−1)p+t+1
� t

2 �
∑
j=0

(4q+2)t−2 j

(t−2 j)!
η(2 j)

1∫
0

lnp+t−2 j (x)
1+ x2 dx

where

g(x; p,q,t) =
lnp (x)Lit(−x4q+2)

1+ x2 , (16)

I (0, p,q, t) is given by (8) or (9) η(2 j) is the Dirichlet Eta function and � t
2� is the

Floor function.
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Proof. We begin with

J (p,q,t) =
∞∫

0

lnp (x)Lit(−x4q+2)
1+ x2 dx =

∞∫
0

g(x; p,q,t)dx

and put

J (p,q, t) =
∞∫

0

g(x; p,q,t)dx =
1∫

0

g(x; p,q,t)dx+
∞∫

1

g(x; p,q,t)dx.

We notice that g(x; p,q,t) is continuous, bounded and differentiable on the interval x∈
(0,1] , with lim

x→0+
g(x; p,q,t) = lim

x→1
g(x; p,q,t) = 0. Now we make the transformation

xy = 1 in the third integral so that

∞∫
0

g(x; p,q, t)dx =
1∫

0

g(x; p,q,t)dx+(−1)p
1∫

0

lnp (y)
1+ y2 Lit(−y−(4q+2))dy. (17)

From Lewin ([11], p. 299), Jonquiěre’s relation states

Lis(−z)+ (−1)t Lis
(
− 1

z

)
= −2

� t
2 �

∑
j=0

(lnz)t−2 j

(t−2 j)!
η(2 j) (18)

= 2
� t

2 �
∑
j=0

(lnz)t−2 j

(t−2 j)!
Li2 j(−1)

where Lis(z) is a polylogarithm, and this formula corrects a minor misprint in Lewin’s
book. The relation (18) can also be written in terms of Bernoulli numbers so that

Lit(−z)+ (−1)t Lit
(
− 1

z

)
=

1
t!

t

∑
j=0

(
1−21− j)( t

j

)
Bj (2π i) j (lnz)t−2 j (19)

where Bj are the Bernoulli numbers. Now we can substitute (18) into (17), so that

∞∫
0

g(x; p,q, t)dx =
(
1+(−1)p+t+1

) 1∫
0

g(x; p,q, t)dx

+2(−1)p+t+1
� t

2 �
∑
j=0

(4q+2)t−2 j

(t−2 j)!
η(2 j)

1∫
0

lnp+t−2 j (x)
1+ x2 dx.

The integral

I (0, p,q,t) =
1∫

0

lnp (x)Lit(−x4q+2)
1+ x2 dx
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has been evaluated in Theorem 1 and therefore

J (p,q, t) =
(
1+(−1)p+t+1

)
I (0, p,q,t)

+2(−1)p+t+1
� t

2 �
∑
j=0

(4q+2)t−2 j

(t−2 j)!
η(2 j)

1∫
0

lnp+t−2 j (x)
1+ x2 dx

and the proof is finished. Note that the integral I (0, p,q,t) does not contribute to
J (p,q, t) in the case when p + t + 1 is an odd integer. The third integral in (14) is
obtained by the substitution x = tanθ . �

REMARK 3. It can be noted, from Jonquiěre’s relation (19) that we are able to
determine the value of the integral

1∫
0

lnp (x)Lit(−x−(4q+2))
1+ x2 dx = (−1)t+1 I (0, p,q,t) (20)

+2(−1)t+1
� t

2 �
∑
j=0

(4q+2)t−2 j

(t−2 j)!
η(2 j)

1∫
0

lnp+t−2 j (x)
1+ x2 dx.

Using the idea that the degree (p+ t +1) , in Theorem 2, can be either odd or even
we extract the following two special cases.

COROLLARY 3. Let p = t, then

J (t,q, t) =
∞∫

0

lnt (x)Lit(−x4q+2)
1+ x2 dx

=
(−1)t π2t+1

t!

� t
2 �

∑
j=0

(4q+2)t−2 j

22(t−2 j)+2

(
t
2 j

)
η(2 j)
ζ (2 j)

B2 jE2(t− j)

where B2 j are the Bernoulli numbers and E2(t− j) are the Euler numbers.
Let p+1 = t, then

J (t,q, t) =
∞∫

0

lnt−1 (x)Lit(−x4q+2)
1+ x2 dx

= 2(−1)t−1 (t−1)! ∑
n�1

(−1)n+1 H(t)
n

2q

∑
j=0

(−1) j+1

((4q+2)n+2 j +1)t

−(t−1)!
� t

2 �
∑
j=0

(4q+2)t−2 j
(

2t−2 j−1
t−2 j

)
η(2 j)β (2t−2 j)

where β (2t−2 j) is the Dirichlet beta functions and η(2 j) is the Dirichlet Eta func-
tion.
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Proof. The proof follows from (15) and in the evaluation of the integral when
p = t,

1∫
0

ln2t−2 j (x)
1+ x2 dx =

2(−1)t−2 j π2(t− j)+1

22(t− j)+2

(
t
2 j

)
E2(t− j)

and when p+1 = t,

1∫
0

ln2t−2 j−1 (x)
1+ x2 dx = −(2t−2 j−1)!β (2t−2 j) . �

Some examples follow.

EXAMPLE 2. Let (p,q,t) = (3,4,5)

J (3,4,5) =
∞∫

0

ln3 (x)Li5(−x18)
1+ x2 dx =

π
2∫

0

ln3 (tanθ )Li5(− tan18 θ )dθ

= −2
� 5

2 �
∑
j=0

(18)5−2 j

(5−2 j)!
η(2 j)

1∫
0

ln5−2 j (x)
1+ x2 dx

= −85345π9

4
.

Let (p,q, t) =
(
2, 1

2 ,3
)

J

(
2,

1
2
,3

)
=

∞∫
0

ln2 (x)Li3(−x4)
1+ x2 dx =

π
2∫

0

ln2 (tanθ )Li3(− tan4 θ )dθ

= − 3π3

512
√

2

(
ψ(2)

(
1
8

)
−ψ(2)

(
3
8

)
−ψ(2)

(
5
8

)
+ ψ(2)

(
7
8

))

+
π2

512
√

2

(
ψ(3)

(
1
8

)
−ψ(3)

(
3
8

)
+ ψ(3)

(
5
8

)
+ ψ(3)

(
7
8

))

+
π

2048
√

2

(
ψ(4)

(
1
8

)
−ψ(4)

(
3
8

)
−ψ(4)

(
5
8

)
+ ψ(4)

(
7
8

))

− 3
32

π3ζ (3) .

This allows us to also calculate, from (15)

1∫
0

ln2 (x)Li3(−x4)
1+ x2 dx = 4π2β (4)+1280β (6)− 3

32
π3ζ (3)

+
3π3

512
√

2

(
ψ(2)

(
1
8

)
−ψ(2)

(
3
8

)
−ψ(2)

(
5
8

)
+ ψ(2)

(
7
8

))
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+
π2

512
√

2

(
ψ(3)

(
1
8

)
−ψ(3)

(
3
8

)
+ ψ(3)

(
5
8

)
+ ψ(3)

(
7
8

))

+
π

2048
√

2

(
ψ(4)

(
1
8

)
−ψ(4)

(
3
8

)
−ψ(4)

(
5
8

)
+ ψ(4)

(
7
8

))
,

and from (20),

1∫
0

ln2 (x)Li3(−x−4)
1+ x2 dx = −2π2β (4)−640β (6)− 3

64
π3ζ (3)

+
3π3

1024
√

2

(
ψ(2)

(
1
8

)
−ψ(2)

(
3
8

)
−ψ(2)

(
5
8

)
+ ψ(2)

(
7
8

))

+
π2

1024
√

2

(
ψ(3)

(
1
8

)
−ψ(3)

(
3
8

)
+ ψ(3)

(
5
8

)
+ ψ(3)

(
7
8

))

+
π

4096
√

2

(
ψ(4)

(
1
8

)
−ψ(4)

(
3
8

)
−ψ(4)

(
5
8

)
+ ψ(4)

(
7
8

))
.

Let (p,q, t) = (2,1,3)

J (2,1,3) =
∞∫

0

ln2 (x)Li3(−x6)
1+ x2 dx =

π
2∫

0

ln2 (tanθ )Li3(− tan6 θ )dθ

=
π2

36
√

3

(
ψ(3)

(
5
6

)
−ψ(3)

(
1
6

))
− 419

36
π3ζ (3)− 4991

6
πζ (5)

also

1∫
0

ln2 (x)Li3(−x6)
1+ x2 dx =

π2

72
√

3

(
ψ(3)

(
5
6

)
−ψ(3)

(
1
6

))
− 419

72
π3ζ (3)

+3π2β (4)+2160β (6)− 4991
12

πζ (5)

= 2 ∑
n�1

(−1)n H(3)
n

(
1

(6n+1)3
− 1

(6n+3)3
+

1

(6n+5)3

)

and from (20),

1∫
0

ln2 (x)Li3(−x−6)
1+ x2 dx =

π2

72
√

3

(
ψ(3)

(
5
6

)
−ψ(3)

(
1
6

))
− 419

72
π3ζ (3)

−3π2β (4)−2160β (6)− 4991
12

πζ (5) .
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Finally we give the example, (p,q,t) = (0,2,3)

∞∫
0

Li3(−x10)
1+ x2 =

π
10

(
1+

1
φ

)(
ψ(2)

(
1
10

)
+ ψ(2)

(
9
10

))

− π
10φ

(
ψ(2)

(
3
10

)
+ ψ(2)

(
7
10

))
− π

5
ζ (3) ,

where the golden ration φ =
(
1+

√
5
)

/2. Similarly we have the result

1∫
0

Li3(−x10)
1+ x2 =

π
20

(
1+

1
φ

)(
ψ(2)

(
1
10

)
+ ψ(2)

(
9
10

))

− π
20φ

(
ψ(2)

(
3
10

)
+ ψ(2)

(
7
10

))
− π

10
ζ (3)

+5ζ (2)G+500β (4)

= ∑
n�1

(−1)n H(3)
n

(
1

10n+1
− 1

10n+3
+

1
10n+5

− 1
10n+7

+
1

10n+9

)
.

Concluding Remarks. We have carried out a systematic study of a family of inte-
grals containing log-polylog functions in terms of Euler sums. We believe most of our
results are new in the literature and have given many examples some of which are not
amenable to a mathematical computer package.
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[8] B. GOURÉVITCH, The world of Pi, http://www.pi314.net/eng/hypergse6.php .
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