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PROJECTIONS OF MUTUAL MULTIFRACTAL FUNCTIONS

ZIED DOUZI AND BILEL SELMI ∗

Abstract. The aim of this article is to study the behavior of the relative multifractal spectrum
under projections. First of all, we depict a relationship between the mutual multifractal spectra of
a couple of measures (μ ,ν) and its orthogonal projections in Euclidean space. As an application,
we improve Svetova’s results in [46] and study the mutual multifractal analysis of the projections
of measures.

1. Introduction

In the previous years, there has been great interest in understanding the fractal
dimensions of projections of sets and measures. The first significant work in this area
was the result of Marstrand [25] showed a well-known theorem according to which
the Hausdorff dimension of a planar set is preserved under orthogonal projections. In
[22], Kaufman had employed potential theoretic methods in order to prove Marstrand
result, which has been generalized later by Mattila in [26]. Let us mention that Falconer
et al [19, 20] have proved that the packing dimension of the projected set or measure
will be the same for almost all projections. Other works were carried out in this sense
for classes of similar measures in euclidean and symbolic spaces [7, 21]. However,
despite these substantial advances for fractal sets, only very little is known about the
multifractal structure of projections of measures [2, 6, 15, 16, 17, 32, 34, 35, 38, 39, 40,
41, 44, 45].

Recently, mixed (mutual and relative) multifractal spectra have generated an enor-
mous interest in the mathematical literature. Many authors were interested in mixed
multifractal spectra and their applications [1, 4, 5, 10, 12, 13, 14, 23, 24, 28, 29, 31, 42,
46, 47, 48]. Previously, only the scaling behavior

lim
r→0

logμ(B(x,r))
logr

of a single measure μ has been investigated (see for example [8, 30]). However, the
mixed multifractal analysis of measures on R

n investigates the simultaneous scaling
behavior

lim
r→0

logμ(B(x,r))
logr

, lim
r→0

logν(B(x,r))
logr
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of finitely many measures μ and ν . It combines local characteristics which depend
simultaneously on various different aspects of the underlying dynamical system and
provides the basis for a significantly better understanding of the underlying dynamics.
Olsen [31] conjectured a mixed multifractal formalism which links the mixed spectrum
to the Legendre transform of mixed Rényi dimensions. Olsen obtained a general upper
bound and proved that this bound is equality if both measures are self-similar with same
contracting similarities. We note also that Peyrière [33] has also guessed a general
vectorial multifractal formalism that is valid under some Frostman assumptions.

But the natural fractal-like objects that one wants to understand do not come al-
ways from simultaneous functions but from simultaneous measures. This is why, in
[28, 46, 47], a mixed multifractal formalism associated with the mixed multifractal
generalizations of Hausdorff and packing measures and dimensions is proved, in some
cases, based on a generalization of the well-known large deviation formalism. Fur-
thermore, a mixed multifractal formalism has been proved for the Gibbs-like measures.
In general, one needs some degree of similarity to prove the existence of Gibbs-like
measures. For example, in dynamic contexts, the existence of such measures is often
natural. More specifically, given two compactly supported Borel probability measures
μ and ν on R

n and α,β ∈ R , Svetova estimated the size of the iso-Hölder set

Eμ,ν(α,β ) =
{

x ∈ supp μ ∩ supp ν; αμ(x) = α and αν (x) = β
}
,

where αμ(x) = limr→0
logμ(B(x,r))

log r and B(x,r) is the closed ball of center x and radius r .
The mutual multifractal analysis of measures allows relating the Hausdorff and packing
dimensions of this level set to the Legendre transforms of some multifractal functions.
We write for γ � 0,

Bμ,ν(γ) =
{

x ∈ supp μ ∩ supp ν; lim
r→0

logμ(B(x,r))
logν(B(x,r))

= γ
}

.

It is clear that ⋃
(α ,β )∈R+×R

∗
+,

α
β =γ

Eμ,ν
(
α,β

)⊆ Bμ,ν(γ).

The latter union is composed of an uncountable number of pairwise disjoint nonempty
sets. Then, the Hausdorff and packing dimension of Bμ,ν(γ) is fully carried by some
subset Eμ,ν

(
α,β

)
. Also, Selmi et al. investigated the projection properties of the

ν -Hausdorff, and the ν -packing dimensions of Bμ,ν (γ) in [15, 17]. In this article,
they derived global bounds on the relative multifractal dimensions of a projection of
measures in terms of its original relative multifractal dimensions. It is more difficult to
obtain a lower and upper bound for the dimension of the set BμV ,νV (γ) , where V is a
m-dimensional linear subspace of R

n .
The purpose of this paper is to improve Svetova’s results and to propose a suffi-

cient condition that gives the lower bound for the Hausdorff and the packing dimen-
sions of BμV ,νV (γ) . Our first aim is to study the behavior of the mutual Hausdorff,
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packing, and pre-packing dimensions under projections. The second aim is to investi-
gate a relationship between the mutual multifractal spectra and their projections onto a
lower-dimensional linear subspace.

2. Preliminaries

Let us recall the multifractal formalism introduced by Svetova in [46]. Let μ
and ν be two compactly supported Borel probability measures on R

n . We denote by
supp μ the topological support of μ .

DEFINITION 1. For q,t,s ∈ R , E ⊆ R
n and δ > 0, we define

P
q,t,s
μ,ν,δ (E) = sup∑

i
μ(B(xi,ri))qν(B(xi,ri))t (2ri)s,

where the supremum is taken over all centered δ -packings of E ,

P
q,t,s
μ,ν (E) = inf

δ>0
P

q,t,s
μ,ν,δ (E),

and we introduce the mutual packing measure relatively to μ and ν

Pq,t,s
μ,ν (E) = inf

E⊆⋃i Ei
∑
i

P
q,t,s
μ,ν (Ei).

In a similar way we define the mutual Hausdorff measure relatively to μ and ν by

H
q,t,s
μ,ν,δ (E) = inf∑

i
μ(B(xi,ri))qν(B(xi,ri))t(2ri)s,

where the infinimum is taken over all centered δ -coverings of E ,

H
q,t,s
μ,ν (E) = sup

δ>0
H

q,t,s
μ,ν,δ (E),

and we introduce the mutual Hausdorff measure relatively to μ and ν

H q,t,s
μ,ν (E) = sup

F⊆E
H

q,t,s
μ,ν (F),

with the conventions 0q = ∞ for q � 0 and 0q = 0 for q > 0.

REMARK 1.

1. The functions H q,t,s
μ,ν and Pq,t,s

μ,ν are metric outer measures and thus measures
on the Borel family of subsets of R

n . An important feature of the Hausdorff and
packing measures is that Pq,t,s

μ,ν � P
q,t,s
μ,ν and that there exists an integer ξ ∈ N ,

such that H q,t,s
μ,ν � ξPq,t,s

μ,ν (see [48]).

2. In the special case where q = 0 or t = 0, the mutual multifractal spectra is strictly
related to Olsen’s multifractal formalism [30].
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3. The mutual multifractal spectra represent the relative multifractal analysis intro-
duced by Cole [9] in the case where s = 0. Other works were carried out in this
sense in probability and symbolic spaces [3, 10, 36, 37, 43].

The functions P
q,t,s
μ,ν , Pq,t,s

μ,ν and H q,t,s
μ,ν assign in the usual way a dimension to

each subset E of R
n . They are respectively denoted by Λq,t

μ,ν(E) , Bq,t
μ,ν (E) and bq,t

μ,ν(E)
and satisfy

bq,t
μ,ν(E) = inf

{
s ∈ R; H q,t,s

μ,ν (E) = 0
}
, Bq,t

μ,ν(E) = inf
{

s ∈ R; Pq,t,s
μ,ν (E) = 0

}
,

Λq,t
μ,ν(E) = inf

{
s ∈ R; P

q,t,s
μ,ν (E) = 0

}
.

PROPOSITION 1. ([46, 48])

1. There exists a unique number bq,t
μ,ν(E) ∈ [−∞,+∞] such that

H q,t,s
μ,ν (E) =

⎧⎨⎩
∞ if s < bq,t

μ,ν(E),

0 if bq,t
μ,ν(E) < s.

2. There exists a unique number Bq,t
μ,ν(E) ∈ [−∞,+∞] such that

Pq,t,s
μ,ν (E) =

⎧⎨⎩
∞ if s < Bq,t

μ,ν(E),

0 if Bq,t
μ,ν(E) < s.

3. There exists a unique number Λq,t
μ,ν(E) ∈ [−∞,+∞] such that

P
q,t,s
μ,ν (E) =

⎧⎨⎩
∞ if s < Λq,t

μ,ν(E),

0 if Λq,t
μ,ν (E) < s.

Let E ⊆ R
n and q,t ∈ R. We can remark that

bq,t
μ,ν(E) � Bq,t

μ,ν(E) � Λq,t
μ,ν (E).

Then we are able to define the multifractal dimension functions bμ,ν , Bμ,ν and Λμ,ν :
R

2 → [−∞,+∞] by

bμ,ν(q, t) = bq,t
μ,ν(supp μ ∩ supp ν), Bμ,ν(q,t) = Bq,t

μ,ν(supp μ ∩ supp ν)

and Λμ,ν (q,t) = Λq,t
μ,ν(supp μ ∩ supp ν).

It is well known that the functions bμ,ν , Bμ,ν and Λμ,ν are decreasing and Bμ,ν , Λμ,ν
are convex (see [48]).
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3. Projection results

Let m be an integer with 0 <m < n and Gn,m stand for the Grassmannian manifold
of all m-dimensional linear subspaces of R

n . We denote by γn,m the invariant Haar
measure on Gn,m such that γn,m(Gn,m) = 1. For V ∈ Gn,m , we define the projection
map, πV : R

n −→ V as the usual orthogonal projection onto V . Now, for a Borel
probability measure μ on R

n , supported on the compact set supp μ and for V ∈ Gn,m ,
we define μV , the projection of μ onto V , by

μV (A) = μ(π−1
V (A)), ∀A ⊆V.

Since μ has a compact support, then supp μV = πV (supp μ) for all V ∈ Gn,m .
In the following, we are interested in the behavior of mutual Hausdorff, packing,

and pre-packing dimensions under projections. Throughout this paper, we suppose that
K := supp μ = supp ν . We are based on the ideas of Selmi et al in [15, 17], to show
the following results.

THEOREM 1. Let μ and ν be two compactly supported Borel probability mea-
sures on R

n . Then, for (q,t) ∈ (]−∞,0]2
)∪ (]−∞,0]× [0,1]

)∪ ([0,1]×]−∞,0]
)
,

E ⊆ K and for all V ∈ Gn,m, we have

Λq,t
μV ,νV (E) � Λq,t

μ,ν (E).

Proof. Let s ∈ R such that Λq,t
μ,ν(E) < s. Consider V ∈ Gn,m and fix δ > 0. Let(

Bi = B(xi,ri)
)

i
be a δ -centered packing of πV (E) . Then there exists an integer Km

depending on m only such that we can divide up the balls B(xi,2ri) into K � Km

families of disjoint balls B1, . . . ,BK . Let 1 � l � K . For each B(xi,ri) ∈ Bl , de-
note Ei = E ∩π−1

V

(
B(xi,ri)

)
. We have Ei ⊂ ⋃

y∈Ei
B(y,ri) , so Besicovitch’s covering

theorem [27] provides a positive integer Kn as well as Ki � Kn families of pairwise

disjoint balls Bi,k =
{

B(i,k)
j = B(y(i,k)

j ,ri jk); ri jk =
ri

2

}
, 1 � k � Ki , extracted from{

B(y,ri)
}

y∈Ei
such that

Ei ⊆
Ki⋃

k=1

⋃
j

B(i,k)
j .

Case 1: For q � 0 and t � 0, we have

∑
i

μV (Bi)qνV (Bi)t(2ri)s � 2s ∑
i

μ
(
B(i,k)

j

)qν
(
B(i,k)

j

)t(2ri jk)s

� 2s ∑
i, j

Ki

∑
k=1

μ
(
B(i,k)

j

)qν
(
B(i,k)

j

)t(2ri jk)s.
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Case 2: For q � 0 and 0 � t � 1, we have

∑
i

μV (Bi)qνV (Bi)t(2ri)s � 2s∑
i

μ
(
B(i,k)

j

)qν

(
Ki⋃

k=1

⋃
j

B(i,k)
j

)t

(2ri jk)s

� 2s∑
i, j

Ki

∑
k=1

μ
(
B(i,k)

j

)qν
(
B(i,k)

j

)t(2ri jk)s.

Case 3: For 0 � q � 1 and t � 0. The proof of Case 3 is identical to the proof of
Case 2 and is therefore omitted.

In all these cases and by construction, since the balls B(xi,2ri) ∈ Bl are pairwise
disjoint, if B(y,r) ∈ Bi,k and B(y′,r′) ∈ Bi′ ,k′ with i �= i′ , then B(y,r)∩B(y′,r′) = /0 .
Consequently, we can collect the balls B(y,r) invoked in the above sum into at most
Kn centered packing of E . This holds for all 1 � l � K , which implies that

∑
i

μV (Bi)qνV (Bi)t(2ri)s � 2sKmKn sup

{
∑
j

μ(B(y j,r j))qν(B(y j,r j))t (2r j)s

}
,

where the supremum is taken over all centered δ -packings of E by closed balls of
radius r j . Now, we can deduce that

P
q,t,s
μV ,νV ,δ (πV (E)) � 2sKnKmP

q,t,s
μ,ν,δ (E).

Letting δ ↓ 0, we give

P
q,t,s
μV ,νV

(πV (E)) � 2sKnKmP
q,t,s
μ,ν (E), (1)

and the result yields. �

COROLLARY 1. Let μ and ν be two compactly supported Borel probability mea-
sures on R

n . Then for (q,t) ∈ (]−∞,0]2
)∪ (]−∞,0]× [0,1]

)∪ ([0,1]×]−∞,0]
)

and
for all V ∈ Gn,m, we have

ΛμV ,νV (q,t) � Λμ,ν (q,t).

Proof. It follows immediately from Theorem 1. �

THEOREM 2. Let μ and ν be two compactly supported Borel probability mea-
sures on R

n . Then for (q,t) ∈ (]−∞,0]2
)∪ (]−∞,0]× [0,1]

)∪ ([0,1]×]−∞,0]
)

and
for all V ∈ Gn,m, we have

BμV ,νV (q,t) � Bμ,ν (q,t).

Proof. Let s ∈ R such that Bμ,ν(q,t) < s. Consider F ⊆ R
n and V ∈ Gn,m . Due

to inequality (1), we have

P
q,t,s
μV ,νV

(πV (F)) � 2sKnKmP
q,t,s
μ,ν (F).
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Since Pq,t,s
μ,ν (K) = 0, there exists (Ei)i a covering of K such that

∑
i

P
q,t,s
μ,ν (Ei) < 1.

It follows that πV (K) ⊆
⋃
i

πV (Ei) and we have

Pq,t,s
μV ,νV (πV (K)) � ∑

i

P
q,t,s
μV ,νV

(πV (Ei))

� 2sKnKm ∑
i

P
q,t,s
μ,ν (Ei) < ∞.

Which implies that BμV ,νV (q,t) � s . �

THEOREM 3. Let μ , ν be two compactly supported Borel probability measures
on R

n . Then for (q, t) ∈ (]−∞,0[2
)∪(]−∞,0[×]0,1]

)∪(]0,1]×]−∞,0[
)

and for all
V ∈ Gn,m, we have

bμV ,νV (q,t) = bμ,ν(q,t).

Proof. Let’s prove that bμ,ν(q,t) � bμV ,νV (q,t). Fix s ∈R such that s < bμ,ν(q,t)

and choose F ⊆ K and V ∈ Gn,m . Let δ > 0 and
(
Bi = B(xi,ri)

)
i

be a δ -centered

covering of F . Let Ei such that π−1
V (Ei) = F ∩B(xi,ri) . We have Ei ⊂⋃y∈Ei

B(y,ri) ,
so Besicovitch’s covering theorem provides a positive integer Kn as well as Ki � Kn

families of pairwise disjoint balls Bi,k =
{

B(i,k)
j = B(y(i,k)

j ,ri jk); ri jk = ri
2

}
, 1 � k � Ki ,

extracted from
{

B(y,ri)
}

y∈Ei
and such that

Ei ⊆
Ki⋃

k=1

⋃
j

B(i,k)
j .

Case 1: For q < 0 and t < 0, we have

∑
i

μ(Bi)qν(Bi)t(2ri)s � 2s∑
i

μV
(
B(i,k)

j

)qνV
(
B(i,k)

j

)t(2ri jk)s

� 2s∑
i, j

Ki

∑
k=1

μV (B(i,k)
j )qνV (B(i,k)

j )t(2ri jk)s.

Case 2: For q < 0 and 0 < t � 1, we have

∑
i

μ(Bi)qν(Bi)t(2ri)s � 2s ∑
i

μV (B(i,k)
j )qνV

(
Ki⋃

k=1

⋃
j

B(i,k)
j

)t

(2ri jk)s

� 2s ∑
i, j

Ki

∑
k=1

μV (B(i,k)
j )qνV (B(i,k)

j )t(2ri jk)s.
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Case 3: For 0 < q � 1 and t < 0. The proof of Case 3 is identical to the proof of
Case 2 and is therefore omitted.

This implies that

H
q,t,s
μ,ν,δ (F) � 2sH

q,t,s
μV ,νV ,δ (πV (F)).

Letting δ ↓ 0, we obtain

H
q,t,s
μ,ν (F) � 2sH

q,t,s
μV ,νV

(πV (F)).

We can deduce that

H
q,t,s
μ,ν (F) � 2sH

q,t,s
μV ,νV

(πV (F))

� 2sH q,t,s
μV ,νV (πV (F))

� 2sH q,t,s
μV ,νV (πV (K)).

The arbitrary on F implies that

H q,t,s
μ,ν (K) � 2sH q,t,s

μV ,νV (πV (K)) (2)

and the result holds.
In order to prove the other inequality, let E ⊆R

n and s∈R such that bq,t
μ,ν(E) < s.

Fix V ∈ Gn,m , δ > 0 and suppose that
(
B(xi,ri)

)
i

is a centered δ -cover of πV (E) .

Denote Ei = E
⋂

π−1
V

(
B(xi,ri)

)
which implies that Ei =

⋃
y∈Ei ∩π−1

V ({xi})B(y, ri
n ) .

By applying Besicovitch covering theorem, we can find an integer Kn , depending

only on n as well as Ki � Kn families of pairwise disjoint balls Bi,k =
{

B(i,k)
j =

B(y(i,k)
j ,

ri jk
n ); ri jk = ri

2

}
, 1 � k � Ki such that

E ∩π−1
V

(
B(xi,ri)

)⊆ Ki⋃
k=1

⋃
j

B(i,k)
j .

Case 1: For q < 0 and t < 0, we have

∑
i

μV (Bi)qνV (Bi)t(2ri)s � 2s∑
i

μ
(
B(i,k)

j

)qν
(
B(i,k)

j

)t(2ri jk)s

� 2s∑
i, j

Ki

∑
k=1

μ(B(i,k)
j )qν(B(i,k)

j )t(2ri jk)s.

Case 2: For q < 0 and 0 < t � 1, we have

∑
i

μV (Bi)qνV (Bi)t(2ri)s � 2s ∑
i

μ(B(i,k)
j )qν

(
Ki⋃

k=1

⋃
j

B(i,k)
j

)t

(2ri jk)s

� 2s ∑
i, j

Ki

∑
k=1

μ(B(i,k)
j )qν(B(i,k)

j )t(2ri jk)s.
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Case 3: For 0 < q � 1 and t < 0. The proof of Case 3 is identical to the proof of
Case 2 and is therefore omitted.

Then
H

q,t,s
μV ,νV ,δ (πV (E)) � 2sH

q,t,s
μ,ν,δ (E).

Letting δ ↓ 0, we obtain

H
q,t,s
μV ,νV

(πV (E)) � 2sH
q,t,s
μ,ν (E).

Thus, given a subset E of K , πV (E) ⊆ πV (K) and

H
q,t,s
μV ,νV

(πV (E)) � 2sH
q,t,s
μ,ν (E)

� 2sH q,t,s
μ,ν (K).

The arbitrary on E implies that

H q,t,s
μV ,νV (πV (K)) � 2sH q,t,s

μ,ν (K)

and the result holds. This achieves the proof of Theorem 3. �

THEOREM 4. Let μ and ν be two compactly supported Borel probability mea-
sures on R

n . Then for q,t � 1 and all V ∈ Gn,m, we have

bμV ,νV (q,t) � bμ,ν(q,t).

Proof. Fix V ∈Gn,m and δ > 0 and suppose that
(
Bi = B(xi,ri)

)
i is a δ -cover of

πV (E) where E ⊆ K . For each i, we may use the Besicovitch covering theorem to find
a constant ξ , depending only on n, and a family of balls

(
Bi j = B(xi j,ri j)

)
j∈N

with

ri j = ri
2 which is a δ -cover of π−1

V (Bi)
⋂

E such that⋃
j

B(xi j,ri j) ⊆ π−1
V

(
B(xi,2ri))∩V

)
.

Note that B̃i = B(xi,2ri) . It follows that

∑
i

μV
(
B̃i
)qνV

(
B̃i
)t(4ri)s � ξ−(q+t) ∑

i
(4ri)s

(
∑
j

μ(Bi j)

)q(
∑
j

ν(Bi j)

)t

� ξ−(q+t) ∑
i, j

(4ri)sμ(Bi j)qν(Bi j)t

� 4sξ−(q+t)∑
i, j

μ(Bi j)qν(Bi j)t(2ri j)s.

Consequently, as (Bi)i way any centered δ -cover of πV (E) , we conclude that

H
q,t,s
μ,ν,δ (E) � 4−sξ (q+t)H

q,t,s
μV ,νV ,2δ (πV (E)).

Letting δ ↓ 0, gives that
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H
q,t,s
μ,ν (E) � 4−sξ (q+t)H

q,t,s
μV ,νV

(πV (E)).

Which implies that

H
q,t,s
μ,ν (E) � 4−sξ (q+t)H

q,t,s
μV ,νV

(πV (E))

� 4−sξ (q+t)H q,t,s
μV ,νV (πV (E))

� 4−sξ (q+t)H q,t,s
μV ,νV (πV (K)).

The arbitrary on E implies that

H q,t,s
μ,ν (K) � 4−sξ (q+t)H q,t,s

μV ,νV (πV (K))

and the result yields. �

REMARK 2. Notice that in the case where t = 0 or q = 0, the preceding results
were treated by O ′Neil in [32]. Also, when s = 0, Selmi et al. investigated the projec-
tion properties of the mutual Hausdorff, packing, and pre-packing measures in [15, 17].
They derived global bounds on the relative multifractal dimensions of a projection of
measures in terms of its original relative multifractal dimensions.

4. Application

This section is devoted to studying the behavior of projections of measures obeying
the mutual multifractal formalism. More precisely, we prove that for

(q, t) ∈
{(

]−∞,0[2
)∪ (]−∞,0[×]0,1]

)∪ (]0,1]×]−∞,0[
)}

,

if the mutual multifractal formalism holds for the couple (μ ,ν) at α = − ∂Bμ ,ν(q,t)
∂q and

β = − ∂Bμ ,ν(q,t)
∂ t , it holds for (μV ,νV ) for all V ∈ Gn,m . Before detailing our results let

us recall the mutual multifractal formalism introduced by Svetova [46]. For α,β � 0,
let

Eμ,ν (α,β ) =

{
x ∈ K ; lim

r→0

log
(
μ(B(x,r))

)
logr

= α and lim
r→0

log
(
ν(B(x,r))

)
logr

= β

}
.

We are interested in the estimation of the Hausdorff and packing dimension of
Eμ,ν(α,β ) . Let us mention that in the last decay there has been a great interest for the
multifractal analysis and positive results have been written in various situations (see for
example [8, 9, 15, 30, 42]). Our purpose in the following theorem is to prove the result
of Theorem 3 in [46] under less restrictive hypotheses.

THEOREM 5. Let μ ,ν be two compactly supported Borel probability measures

on R
n . Suppose that Bμ,ν is differentiable at (q,t) , we set α = − ∂Bμ ,ν (q,t)

∂q and β =

− ∂Bμ ,ν(q,t)
∂ t , and assume that H

q,t,Bμ ,ν (q,t)
μ,ν

(
supp μ ∩ supp ν

)
> 0. Then, we have

dimH Eμ,ν(α,β ) = dimP Eμ,ν(α,β ) = B∗
μ,ν(α,β ) = b∗μ,ν(α,β ),
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where f ∗(α,β ) = inf
q,t

(
αq+β t + f (α,β )

)
denotes the Legendre transform of the func-

tion f . Here dimH and dimP denote the Hausdorff and packing dimensions (see [18]
for the definitions) and in this case we say that the mutual multifractal formalism is
valid.

Proof. It is known (for instance, see [46]) that, for all reals α and β , one has

dimP Eμ,ν(α,β ) � αq+ β t +Bμ,ν(q,t).

Then Theorem 5 is a immediately consequence from the following lemmas.

LEMMA 1. Let η1,η2 > 0 and we set α =− ∂Bμ ,ν (q,t)
∂q and β = − ∂Bμ ,ν(q,t)

∂ t . Then

H αq+β t+Bμ ,ν(q,t)−η1−η2
(
Eμ,ν(α,β )

)
� 2αq+β t−η1−η2H

q,t,Bμ ,ν (q,t)
μ,ν

(
Eμ,ν(α,β )

)
.

Proof. We treat the case q � 0 and t � 0. The other cases are proved similarly.
The result is true for q = t = 0, so we may assume that q < 0 and t < 0. For m ∈ N

∗ ,
write

Em :=
{

x ∈ Eμ,ν(α,β ) ;
log
(
μ(B(x,r))

)
logr

� α − η1

q

and
log
(
ν(B(x,r))

)
logr

� β − η2

t
for 0 < r <

1
m

}
.

Given F ⊆ Em , 0 < δ <
1
m

and
(
B(xi,ri)

)
i
a centered δ -covering of F , we have

logμ(B(xi,ri))
logri

� α − η1

q
and

logν(B(xi,ri))
logri

� β − η2

q
.

Which implies that

μ(B(xi,ri))q � ri
αq−η1 and ν(B(xi,ri))t � ri

β t−η2 .

Now, we can deduce that

μ(B(xi,ri))qν(B(xi,ri))t(2ri)Bμ ,ν (q,t) � 2Bμ ,ν(q,t)ri
αq+β t+Bμ ,ν(q,t)−η1−η2 .

So

H
q,t,Bμ ,ν (q,t)
μ,ν,δ (F) � ∑

i
μ(B(xi,ri))qν(B(xi,ri))t(2ri)Bμ ,ν(q)

� 2−αq−β t+η1+η2 ∑
i

(2ri)
αq+β t+Bμ ,ν(q,t)−η1−η2 .

We obtain

H
q,t,Bμ ,ν (q,t)
μ,ν,δ (F) � 2−αq−β t+η1+η2H

αq+β t+Bμ ,ν(q,t)−η1−η2
δ (F).
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Letting δ ↘ 0 gives that

H
q,t,Bμ ,ν (q,t)
μ,ν (F) � 2−αq−β t+η1+η2H

αq+β t+Bμ ,ν(q,t)−η1−η2(F)

� 2−αq−β t+η1+η2H αq+β t+Bμ ,ν(q,t)−η1−η2(Em)

for all F ⊆ Em. This implies that

H
q,t,Bμ ,ν (q,t)

μ,ν (Em) � 2−αq−β t+η1+η2H αq+β t+Bμ ,ν(q,t)−η1−η2(Em)

and the result follows since Eμ,ν(α,β ) =
⋃
m

Em . �

LEMMA 2. We have H
q,t,Bμ ,ν (q,t)

μ,ν

((
supp μ ∩ supp ν

)\Eμ,ν(α,β )
)

= 0.

Proof. Let us introduce, for α,β ∈ R

Fα ,β =

{
x; limsup

r→0

log
(
μ(B(x,r))

)
logr

> α, or limsup
r→0

log
(
ν(B(x,r))

)
logr

> β

}
,

F1
α ,β =

{
x; liminf

r→0

log
(
μ(B(x,r))

)
logr

< α, or liminf
r→0

log
(
ν(B(x,r))

)
logr

< β

}
,

F2
α ,β =

{
x; limsup

r→0

log
(
μ(B(x,r))

)
logr

> α, or liminf
r→0

log
(
ν(B(x,r))

)
logr

< β

}
,

F3
α ,β =

{
x; liminf

r→0

log
(
μ(B(x,r))

)
logr

< α, or limsup
r→0

log
(
ν(B(x,r))

)
logr

> β

}
.

We have to prove that

H
q,t,Bμ ,ν (q,t)

μ,ν (Fα ,β ) = 0 for everyα > −∂Bμ,ν(q,t)
∂q

and β > −∂Bμ,ν(q, t)
∂ t

(3)

H
q,t,Bμ ,ν (q,t)

μ,ν (F1
α ,β ) = 0 for everyα < −∂Bμ,ν(q,t)

∂q
and β < −∂Bμ,ν(q, t)

∂ t
(4)

H
q,t,Bμ ,ν (q,t)

μ,ν (F2
α ,β ) = 0 for everyα > −∂Bμ,ν(q,t)

∂q
and β < −∂Bμ,ν(q, t)

∂ t
(5)

and

H
q,t,Bμ ,ν (q,t)

μ,ν (F3
α ,β ) = 0 for everyα < −∂Bμ,ν(q,t)

∂q
and β > −∂Bμ,ν(q, t)

∂ t
. (6)

Let us sketch the proof of assertion (3). Given
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α > − ∂Bμ ,ν(q,t)
∂q and β > − ∂Bμ ,ν (q,t)

∂ t ,

then we can choose h > 0 such that

Bμ,ν(q−h, t) < Bμ,ν(q,t)+ αh and Bμ,ν(q,t−h) < Bμ,ν(q,t)+ βh .

Which implies that

P
q−h,t,Bμ ,ν(q,t)+αh
μ,ν

(
supp μ ∩ supp ν

)
= 0

and
P

q,t−h,Bμ ,ν(q,t)+βh
μ,ν

(
supp μ ∩ supp ν

)
= 0.

Let δ > 0. For each x ∈ Fα ,β , there exists 0 < rx < δ such that

μ(B(x,rx)) � rα
x or ν(B(x,rx)) � rβ

x .

The family
(
B(x,rx)

)
x∈Fα,β

is then a centered δ -covering of Fα ,β . By using Besicov-

itch’s covering theorem, we can construct ξ finite or countable sub-families(
B(x1 j,r1 j)

)
j
, . . . ,

(
B(xξ j,rξ j)

)
j

such that each Fα ,β ⊆
ξ⋃

i=1

⋃
j

B(xi j,ri j) and
(
B(xi j,ri j)

)
j

is a δ -packing of Fα ,β . It

follows that

μ(B(xi j,ri j))qν(B(xi j,ri j))t (2ri j)Bμ ,ν (q,t)

� μ(B(xi j,ri j))q−hν(B(xi j,ri j))t(2ri j)Bμ ,ν (q,t)+αh

or

μ(B(xi j,ri j))qν(B(xi j,ri j))t (2ri j)Bμ ,ν (q,t)

� μ(B(xi j,ri j))qν(B(xi j,ri j))t−h(2ri j)Bμ ,ν (q,t)+βh,

which implies that

H
q,t,Bμ ,ν (q,t)
μ,ν (Fα ,β ) � ξP

q−h,t,Bμ ,ν(q,t)+αh
μ,ν (Fα ,β )

or
H

q,t,Bμ ,ν (q,t)
μ,ν (Fα ,β ) � ξP

q,t−h,Bμ ,ν(q,t)+βh
μ,ν (Fα ,β ).

Notice that, in the last inequality, we can replace Fα ,β by any arbitrary subset of Fα ,β .
Then, we can finally conclude that

H
q,t,Bμ ,ν (q,t)

μ,ν (Fα ,β ) � ξP
q−h,t,Bμ ,ν(q,t)+αh
μ,ν (Fα ,β )

� ξP
q−h,t,Bμ ,ν(q,t)+αh
μ,ν

(
supp μ ∩ supp ν

)
= 0



34 Z. DOUZI AND B. SELMI

or

H
q,t,Bμ ,ν (q,t)

μ,ν (Fα ,β ) � ξP
q,t−h,Bμ ,ν(q,t)+βh
μ,ν (Fα ,β )

� ξP
q,t−h,Bμ ,ν(q,t)+βh
μ,ν

(
supp μ ∩ supp ν

)
= 0.

The proof of (4), (5) and (6) is similar to (3) and is therefore omitted. �
Let us return to the proof of Theorem 5. By using Lemmas 1 and 2, we have for

all η1,η2 > 0,

H αq+β t+Bμ ,ν(q,t)−η1−η2
(
Eμ,ν(α,β )

)
� 2αq+β t−η1−η2H

q,t,Bμ ,ν (q,t)
μ,ν

(
Eμ,ν(α,β )

)
> 0.

Which implies that

dimH Eμ,ν(α,β ) � αq+ β t +Bμ,ν(q,t)−η1−η2.

Letting η1 → 0 and η2 → 0 yields

dimH Eμ,ν(α,β ) � αq+ β t +Bμ,ν(q,t).

Which achieves the proof of Theorem 5. �
As a consequence of this result, we finish our paper by establishing an important

result studying the validity of the multifractal formalism under projections.

THEOREM 6. Let μ ,ν be two compactly supported Borel probability measures
on R

n with supp μ = supp ν .
For (q, t) ∈ (]−∞,0[2

)∪ (]−∞,0[×]0,1]
)∪ (]0,1]×]−∞,0[

)
, suppose that

H1) H
q,t,Bμ ,ν (q,t)

μ,ν (supp μ ∩ supp ν) > 0,
H2) Bμ,ν is differentiable at (q,t) .
Then, for all V ∈ Gn,m , we have

dimH EμV ,νV

(
α,β

)
= dimP EμV ,νV

(
α,β

)
= dimH Eμ,ν

(
α,β

)
= dimP Eμ,ν

(
α,β

)
= B∗

μ,ν
(
α,β

)
= b∗μ,ν

(
α,β

)
,

where α = − ∂Bμ ,ν(q,t)
∂q and β = − ∂Bμ ,ν (q,t)

∂ t .

Proof. It follows from Theorems 2 and 3, and (H1) that

bμ,ν(q, t) = Bμ,ν(q,t) = bμV ,νV (q,t) = BμV ,νV (q,t), ∀V ∈ Gn,m. (7)

(H1) , (2) and (7) ensure that

H
q,t,BμV ,νV (q,t)

μV ,νV (supp μV ) � H
q,t,Bμ ,ν (q,t)

μ,ν (supp μ) > 0, ∀V ∈ Gn,m.

Now, Theorem 5 and the equalities (7) imply that

dimH EμV ,νV

(
α,β

)
� αq+ β t +Bμ,ν(q, t).
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The other estimation is satisfied since

dimP EμV ,νV

(
α,β

)
� αq+ β t +BμV ,νV (q, t)
= αq+ β t +Bμ,ν(q,t),

which achieves the proof of Theorem 6. �

REMARK 3. Let μ and ν be two compactly supported Borel probability mea-
sures on R

n . We write for γ � 0,

Bμ,ν (γ) =

{
x ∈ supp μ ∩ supp ν; lim

r→0

log
(
μ(B(x,r))

)
log
(
ν(B(x,r)

) = γ

}
.

It is clear that ⋃
(α ,β )∈R+×R

∗
+,

α
β =γ

Eμ,ν
(
α,β

)⊆ Bμ,ν(γ).

The latter union is composed of an uncountable number of pairwise disjoint nonempty
sets. Theorem 5 shows that surprisingly the Hausdorff and packing dimension of
Bμ,ν(γ) is fully carried by some subset Eμ,ν

(
α,β

)
. Together with Theorem 6, this

relationship provides a lower bound to the relative multifractal spectra of the projec-
tions of measures introduced in Theorem 4.2 in [15].
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