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A NOTE ON ENESTRÖM–KAKEYA THEOREM

W. M. SHAH AND RAIHANA RASHID ∗

Abstract. We develop a technique to find a region containing all the zeros of a polynomial

P(z) :=
n

∑
j=0

ajz
j of degree n with real coefficients by adding suitable weights to its coefficients.

This technique enables one to use computer programming to convert any polynomial of degree
n to Kakeya polynomial and thereby obtain best possible region containing all its zeros.

1. Introduction

The impossibility of solving polynomial equations of degree greater or equal to
five by radicals is an important milestone in the history of mathematics, occasioned
with the ground breaking discoveries in algebra by N. H. Abel and E. Galois in the first
quarter of nineteenth century. This motivated the study of identifying suitable regions
in the complex plane containing all the zeros of a given polynomial of degree n � 5.
Gauss and Cauchy were the first to contribute in this field. A classical result due to
Cauchy [3] in this direction may be stated as:

THEOREM A. If P(z) :=
n

∑
j=0

a jz
j is a complex polynomial of degree n, then all

the zeros of P(z) lie in

|z| < 1+M,

where M := max
0� j�n−1

∣∣a j/an
∣∣.

The study of the distribution of zeros of polynomials due to numerous applications
in various fields has been the inspiration for much theoretical research. But algebraic
and analytic methods for finding zeros of polynomials or the regions where the zeros lie,
in general are quite complicated. Since zeros of a polynomial are continuous functions
of its coefficients, therefore, for attaining better and sharp bounds it is desirable to
put some restrictions on the coefficients of the polynomials. In this connection the
following elegant result betterly known as Eneström-Kakeya Theorem (for refrences
see [6], [7]) can be stated as:
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THEOREM B. If P(z) :=
n

∑
j=0

a jz
j is a polynomial of degree n with real coeffi-

cients, such that
an � an−1 � . . . � a0 > 0,

then all the zeros of P(z) lie in |z| � 1.

This is a sharp result and has applications in various fields like Algebra, Algebraic
Geometry, Computer Science, Differential Geometry, Physics etc. Keeping in view the
importance of this result and the nature of restriction on coefficients, the attention was
paid to its generalizations in various ways.

Joyal, Labelle and Rahman [4] while maintaining the condition of monotonicity on
the coefficients, dropped the condition of these to be positive and proved the following
result.

THEOREM C. If P(z) :=
n

∑
j=0

a jz
j is a polynomial of degree n with real coefficients

such that

an � an−1 � . . . � a1 � a0,

then all the zeros of P(z) lie in

|z| � an−a0 + |a0|
|an| .

Aziz and Zargar [2] relaxed the hypothesis of Eneström-Kakeya theorem in a dif-
ferent way and proved the following result.

THEOREM D. If P(z) :=
n

∑
j=0

a jz
j is a polynomial of degree n with real coefficients

such that for some k � 1,

kan � an−1 � . . . � a1 � a0,

then all the zeros of P(z) lie in

|z+ k−1|� kan −a0 + |a0|
|an| .

Liman, Tawheeda and Shah [5] assumed that if the first three coefficients of the
polynomial do not satisfy the condition of monotonicity and some weight k � 1 is
found such that the coefficients after putting this weight in a suitable way are made to
satisfy the Kakeya property, then following result holds.

THEOREM E. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n. If for some k � 1

k2an � kan−1 � an−2 � . . . � a1 � a0 > 0,
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then all the zeros of P(z) lie in

|z+ k−1|� k+2(k−1)
an−1

an
.

Recently Rather, Dar and Iqbal [8] generalized the above results in a different way
and proved:

THEOREM F. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real coeffi-

cients such that for some k j � 1, j = 1,2, . . . ,r, 1 � r � n,

k1an � k2an−1 � k3an−2 � . . . � kran−r+1 � an−r � . . . � a1 � a0,

then all the zeros of P(z) lie in

∣∣∣z+(k1−1)− (k2−1)
an−1

an

∣∣∣� 1
|an|

(
k1an− (k2−1)|an−1|

+2
r

∑
j=2

(k j −1)|an− j+1|−a0 + |a0|
)

.

In this paper, we devise a method to transform any given polynomial to a Kakeya-
type polynomial by adding suitable weights to its coefficients and prove the following
result.

2. Statements of the results

THEOREM 1. (Main) Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real

coefficients such that for some k j � 0, j = 1,2, . . . ,r, 1 � r � n,

kn +an � kn−1 +an−1 � . . . � kr +ar � ar−1 � . . . � a1 � a0,

then all the zeros of P(z) lie in∣∣∣∣z+
kn− kn−1

an

∣∣∣∣� 1
|an|

[
(kn − kn−1)+an−a0 + |a0|+2

n−r

∑
j=1

kn− j

]
. (1)

Theorem 1 is applicable to all those polynomials whose first r coefficients are not
monotonic. In this case we can find best possible weights k j, j = 1,2, . . . ,r, 1 � r � n,
so that these coefficients after adding these weights can be made monotonic.

REMARK 1. The essence of Theorem 1 is that we can make use of computer pro-
gramming to convert any polynomial of degree n to Kakeya-type polynomial and there
by locate the region containing all its zeros.

If we choose the transformation k j = (λ j − 1)a j, a j > 0, so that for k j � 0, we
have λ j � 1, for all j = 1,2, . . . ,r, 1 � r � n, then we obtain the following result which
is due to Rather, Dar and Iqbal [8].



42 W. M. SHAH AND R. RASHID

COROLLARY 1. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real coef-

ficients such that for some λ j � 1, j = 1,2, . . . ,r, 1 � r � n,

λnan � λn−1an−1 � . . . � λrar � ar−1 � . . . � a1 � a0

then all the zeros of P(z) lie in∣∣∣∣z+(λn−1)− (λn−1−1)
an−1

an

∣∣∣∣� 1
|an|

[
λnan− (λn−1−1)|an−1|−a0 + |a0|

+2
n−r

∑
j=1

(λn− j −1)|an− j|
]
.

Choosing k j = k, for all j = 1, . . . ,r, 1 � r � n, in Theorem 1 we get the following
result.

COROLLARY 2. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real coef-

ficients such that for some k � 0,

k+an � k+an−1 � . . . � k+ar � ar−1 � . . . � a1 � a0,

then all the zeros of P(z) lie in

|z| � 1
|an|

[
an−a0 + |a0|+2(n− r)k

]
.

Corollary 2 is very interesting and has practical application to a polynomial with
coefficients a j , j = 1,2, . . . ,n, such that for some r, 1 � r � n,

an � an−1 � . . . � ar � ar−1 � ar−2 � . . . � a0.

In this case we can easily find a real number k > 0, such that

k+an � k+an−1 � . . . � k+ar � ar−1 � ar−2 � . . . � a0

and the radius of the circle containing all the zeros of P(z) depends on this k, which
can be as small as possible.

REMARK 2. For k = 0, Corollary 2 reduces to a result due to Joyalle, Labelle and
Rahman [4].

If we choose the transformation k = (λ −1)a j, a j > 0, λ � 1, for all j = 1,2, . . . ,r,
1 � r � n, in Corollary 2, we obtain the following result.

COROLLARY 3. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real coef-

ficients such that for some λ � 1, a j > 0 , j = 1,2, . . . ,r, 1 � r � n,

λan � λan−1 � . . . � λar � ar−1 � . . . � a1 � a0,
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then all the zeros of P(z) lie in

|z| � 1
|an|

[
an−a0 + |a0|+2(λ −1)

n−r

∑
j=1

an− j

]
.

The following result can also be obtained by choosing the coefficients to be posi-
tive.

COROLLARY 4. Let P(z) :=
n

∑
j=0

a jz
j be a polynomial of degree n with real coef-

ficients such that for some k j � 0, j = 1,2, . . . ,r, 1 � r � n,

kn +an � kn−1 +an−1 � . . . � kr +ar � ar−1 � . . . � a1 � a0 > 0

then all the zeros of P(z) lie in

∣∣∣∣z+
kn − kn−1

an

∣∣∣∣� 1+
1
an

[
(kn− kn−1)+2

n−r

∑
j=1

kn− j

]
.

3. Computation and analysis

In this section we give some examples of polynomials to illustrate that Theorem
1 gives comparatively better bound for the region containing the zeros of a polynomial
than Theorem A. It is important to mention here that all the existing Eneström-Kakeya
type results are not applicable to the type of polynomials considered. Except for poly-
nomial in Example 1, where Theorem F is applicable but gives the same region as given
by Theorem 1.

EXAMPLE 1. Let P(z) = 2.5z4 +2.7z3 +3z2 + z+1.

Results Radius of Circle Area of Circle

Theorem A 2.2 15.205
Theorem F 1.32 5.4739
Theorem 1 1.32 5.4739

Actual Bound 0.96349 2.91638

Table 1: Example 1

Here the monotone hypothesis is violated. Therefore, we choose k4 = 0.5 and
k3 = 0.3,k2 = 0,k1 = 0, in Theorem 1 and it is evident that the above table gives better
bound with 43.18% than Theorem A.

While choosing k1 = 1.2 and k2 = 1.1111111111, in Theorem F, for this polyno-
mial, the radius of the circle containing all the zeros of P(z) is same as that of Theorem
1.

EXAMPLE 2. Let P(z) = 11z3 +12.5z2 +1.
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Results Raduis of Circle Area of Circle

Theorem A 2.136 14.266
Theorem F not applicable
Theorem 1 1.318 5.457

Actual Bound 1.1995 4.520

Table 2: Example 2

Here a1 = 0 and the monotone hypothesis is violated. Therefore, we choose k3 =
1.5 and k2 = 0,k1 = 1 in Theorem 1 and it is evident that the above table gives better
bound, with 61.7% than Theorem A.

EXAMPLE 3. Let P(z) = 17z5 +13z4 +11z3 +7z2 +1.5.

Results Raduis of Circle Area of Circle

Theorem A 1.764 9.7756
Theorem F not applicable
Theorem 1 1.176 4.344

Actual Bound 0.8055 2.038

Table 3: Example 3

Here a1 = 0 and the monotone hypothesis is violated. Therefore, we choose k1 =
1.5 and k2 = k3 = k4 = k5 = 0, in Theorem 1 and it is evident that the above table gives
better bound, with 55.5% improvement in the area over Theorem A.

EXAMPLE 4. Let P(z) = 20z6 +21z5 +21.5z4 +2z3 + z2 +1.

Results Raduis of Disk Area of Disk

Theorem A 2.075 13.52
Theorem F not applicable
Theorem 1 1.2 4.52

Actual Bound 0.95567 2.869

Table 4: Example 4

Here a1 = 0 and the monotone hypothesis is violated. Therefore, we choose k5 =
0.5 k6 = 1.5,k1 = 1 and k2 = k3 = k4 = 0, in Theorem 1 and it is evident that the above
table gives better bound, with 66% than Theorem A.
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4. Proof of the Theorem 1

Proof. Consider the polynomial

F(z) = (1− z)P(z)

= (1− z)(anz
n +an−1z

n−1 + . . .+a1z+a0)

= −anz
n+1 +(an−an−1)zn +(an−1−an−2)zn−1 + . . .+(ar+1−ar)zr+1

+(ar−ar−1)zr + . . .+(a1−a0)z+a0

= −anz
n+1 +

[
(kn +an)− (kn−1 +an−1)

]
zn

+
[
(kn−1 +an−1)− (kn−2 +an−2)

]
zn−1 + . . .

+
[
(kr+1 +ar+1)− (kr +ar)

]
zr+1 +

[
(kr +ar)−ar−1

]
zr + . . .

+
[
a1−a0

]
z+a0−

n

∑
j=r+1

(k j − k j−1)z j − krz
r,

where k j � 0, j = 1,2, . . . ,r, 1 � r � n.
So that we have

|F(z)| � |z|n
[∣∣∣−anz− (kn− kn−1)

∣∣∣−{|(kn +an)− (kn−1 +an−1)|

+
|(kn−1 +an−1)− (kn−2 +an−2)|

|z| + . . .+
|(kr+1 +ar+1)− (kr +ar)|

|z|n−r−1

+
|(kr +ar)−ar−1|

|z|n−r + . . .+
|a1−a0|
|z|n−1 +

|a0|
|z|n +

n−1

∑
j=r+1

(|k j|+ |k j−1|)
|z|n− j +

|kr|
|z|n−r

}]
.

Let |z| > 1, so that
1

|z|n− j < 1, j = 0,1, . . . ,n−1, we have

|F(z)| > |z|n|an|
[∣∣∣∣∣z+

kn − kn−1

an

∣∣∣∣∣− 1
|an|

{
|(kn +an)− (kn−1 +an−1)|

+ |(kn−1 +an−1)− (kn−2 +an−2)|+ . . .+ |(kr+1 +ar+1)− (kr +ar)|

+ |(kr +ar)−ar−1|+ . . .+ |a1−a0|+ |a0|+
n−1

∑
j=r+1

(|k j|+ |k j−1|)+ |kr|
}]

= |z|n|an|
[∣∣∣∣∣z+

kn − kn−1

an

∣∣∣∣∣− 1
|an|

{
|(kn +an)− (kn−1 +an−1)|

+ |(kn−1 +an−1)− (kn−2 +an−2)|+ . . .+ |(kr+1 +ar+1)− (kr +ar)|

+|(kr+ar)−ar−1|+ . . .+|a1−a0|+|a0|−|kn−1|+2
n−1

∑
j=r

|k j|
}]

.
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Using the monotone assumption satisfied by the coefficients and the fact that k j � 0,
for all j = 1,2, . . . ,r, 1 � r � n, we get

|F(z)| > |z|n|an|
[∣∣∣∣∣z+

kn − kn−1

an

∣∣∣∣∣− 1
|an|

{
(kn +an)− (kn−1 +an−1)

+ (kn−1 +an−1)− (kn−2 +an−2)+ . . .+(kr+1 +ar+1)− (kr +ar)

+ (kr +ar)−ar−1 + . . .+a1−a0 + |a0|− kn−1 +2
n−r

∑
j=1

kn− j

}]

= |z|n|an|
[∣∣∣∣z+

kn − kn−1

an

∣∣∣∣− 1
|an|

{
kn +an−a0 + |a0|− kn−1 +2

n−r

∑
j=1

kn− j

}]

= |z|n|an|
[∣∣∣∣z+

kn − kn−1

an

∣∣∣∣− 1
|an|

{
kn− kn−1 +an−a0 + |a0|+2

n−r

∑
j=1

kn− j

}]

> 0,

if

∣∣∣∣z+
kn − kn−1

an

∣∣∣∣> 1
|an|

{
kn − kn−1 +an−a0 + |a0|+2

n−r

∑
j=1

kn− j

}
.

This implies that all the zeros of F(z) of modulus greater or equal to 1 lie in

∣∣∣∣z+
kn− kn−1

an

∣∣∣∣� 1
|an|

{
kn − kn−1 +an−a0 + |a0|+2

n−r

∑
j=1

kn− j

}
.

Since all the zeros of F(z) with modulus less or equal to 1 already lie in this region,
we conclude that all the zeros of F(z) and consequently those of p(z) lie in

∣∣∣∣z+
kn− kn−1

an

∣∣∣∣� 1
|an|

{
kn − kn−1 +an−a0 + |a0|+2

n−r

∑
j=1

kn− j

}
.

This completes the proof of Theorem 1. �
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