
Journal of
Classical

Analysis

Volume 19, Number 1 (2022), 49–63 doi:10.7153/jca-2022-19-05

UNICITY OF SHIFT POLYNOMIALS

GENERATED BY MEROMORPHIC FUNCTIONS

M. TEJUSWINI AND N. SHILPA ∗

Abstract. This paper aims to prove the uniqueness result for shift polynomials of a meromor-
phic function and its higher order derivative sharing polynomials under suitable conditions. The
result obtained generalizes the existing literature and examples given prove the acuteness of the
imposed conditions.

1. Introduction

Throughout this article, the phrase “meromorphic function” means that the func-
tion is analytic everywhere except for poles in C and “entire function” means that the
function is analytic everywhere in C . The fundamentals of Nevanlinna theory can be
read in [3, 7, 18]. Denote the set E = {x : x ∈ R+} . Let F = { f : f is non-constant
meromorphic function in C} . For f ,g ∈ F and b ∈ C∪{∞} , if f −b and g−b have
the identical zeros including multiplicities then f and g share b CM (counting multi-
plicities), if the multiplicities are ignored, then f and g share b IM (ignoring multiplic-
ities) and if 1/ f and 1/g share 0 CM then, f and g share ∞ CM [19]. We call b as
the b points of f and g or value points of f and g . For φ(z) ∈F , if T (r,φ) = S(r, f )
then φ is called the “small function” of f where T (r,φ) is the Nevanlinna characteris-
tic function and S(r, f ) = o(T (r, f )) , r �∈ E, r → ∞ .

DEFINITION 1. [6] Let Ek(b; f ) denote the set of all b points of f . The multi-
plicity m of b is counted m times if m � k and is counted k + 1 times if m > k . If
Ek(b; f ) = Ek(b;g) then f ,g share b with weight k .

Throughout this article, F∗ = f n and by the sentence f ,g shares (b,k) means that
f ,g shares the value b with weight k . f ,g shares (b,0)[(b,∞)] ⇐⇒ f ,g shares b
IM[(CM)].

DEFINITION 2. [17]

N

(
r,

1
f

)
=

r∫
0

n(t, f )−n(0, f )
t

dt +n(0, f ) logr,
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wherein n(r, f ) denotes the number of zeros of f in the interior of the disk |z| < r and

N
(
r, 1

f

)
is called as the counting function of f .

Let q ∈ Z
+ then Nq(r, 1

f−b ) denotes the counting function of f whose b -points

are counted with the multiplicity q , the counting function N(q(r,
1

f−b ) of f means
those b -points counted with proper multiplicity whose multiplicities are greater than
q and Nq)(r, 1

f−b) denotes the counting function of f whose b -points counted with
proper multiplicity where the multiplicities are less than q . Correspondingly the re-
duced counting functions are given by Nq(r, 1

f−b),N(q(r, 1
f−b ) and Nq)(r, 1

f−b) where
the multiplicities are ignored [15]. The following definitions play a major role in the
understanding of the main result:

DEFINITION 3. [16] Let f ∈ F . The “order of f ” is given by

ρ( f ) = limsup
r→∞

log+ T (r, f )
log r

. (1)

DEFINITION 4. [5]

Nk

(
r,

1
f −b

)
= N

(
r,

1
f −b

)
+

k

∑
j=2

N( j

(
r,

1
f −b

)
.

In 1920, R. Nevanlinna stated that if two entire functions f and g share five dis-
tinct values IM then the functions are identical or unique and the condition of sharing
five values is inevitable. From then on researchers round the globe have extended this
uniqueness result in various prospective. Many authors have implemented the unique-
ness result for class of meromorphic functions. In 2009, Zhang gave the following
noteworthy result:

THEOREM 1. [20] Let f ∈ F and n(� 7) ∈ Z . If F∗ and F ′∗ share 1 CM, then
F∗ ≡ F ′∗ , and f assumes the form f (z) = ce( z

n ) , where c �= 0 is a constant.

Gradually the first derivative in the above result was extended to kth derivative and
the sharing of small function was introduced in the same article as follows:

THEOREM 2. [20] Let f ∈F , n,k ∈ Z+ and a(z)(�≡ 0,∞) be a small function of
f . If suppose F∗−a and (F∗)(k)−a share the value 0 CM and (n−k−1)(n−k−4)>

3k+ 6 , then F∗ ≡ (F∗)(k) and f assumes the form f (z) = c1e( λz
n ) where c1 is a non-

zero constant and λ k = 1 .

The result of theorem 2 was obtained under different necessary condition for shar-
ing of small function a CM and a IM in [21]. Following the trend many authors

incorporated different sharing conditions for F∗ and F (k)
∗ like polynomial sharing, two

distinct polynomial sharing, set sharing [1] and so on. For related work, one can refer
[4, 13, 14, 20]. Lahiri and Majumder in [13] proved the uniqueness theorem for F∗
and F (k)

∗ sharing two distinct small functions by introducing the concept of weighted
sharing. The result is noted below:
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THEOREM 3. [4] Let the transcendental function f ∈ F such that N(r, f ) =
S(r, f ) and ai = ai(z)(�≡ 0, ∞) be small functions of f , where i = 1,2 . Let n,k ∈ Z+

such that n � k+1 . In addition if F∗−a1 and (F∗)(k)−a2 share (0,1) , then (F∗)(k) ≡
a2

a1
F∗ . Furthermore, if a1 ≡ a2 , then the conclusion of theorem 2 holds.

The results of theorem 1, theorem 2 and theorem 3 for the entire class of functions
can be referred in [9, 10, 11, 20, 21, 22]. With the advent of difference analogue of
Nevanlinna theory, uniqueness theorems have evolved in this regard as well. In this
direction Majumder-Saha [12] gave the below stated result:

THEOREM 4. [12] Let the transcendental function f ∈ F be of finite order with
finitely many poles. For constant c(�= 0) ∈ C , n,k ∈ N , let F∗(z)−Q1(z) and (F∗(z+
c))(k) −Q2(z) share (0,1) and f (z) , f (z+ c) share 0 CM. If n � k+1 , then (F∗(z+

c))(k) ≡ Q2(z)
Q1(z)

F∗(z) , where Q1,Q2 are polynomials with Q1, Q2 �≡ 0 . Furthermore, if

Q1 = Q2 , then the conclusion of theorem 2 holds.

Now it is interesting to see what happens to the conclusion of theorem 4 when
f n(z)P( f (z)) and [ f n(z+c)P( f (z+c))](k) replaces F∗(z) and (F∗(z+c))(k) . Taking a
cue from this, the main result of the paper is stated below:

THEOREM 5. Let f (z) be a transcendental meromorphic function of finite order

having poles of finite number. Define P( f ) =
m
∑
i=0

ai f i such that ai, i ∈ {0,1, · · · ,m}
are non zero constants. Let c be a non zero complex constant and m, n, k be positive
integers. If [ f n(z)P( f (z))]−Q1(z) and [ f n(z+ c)P( f (z+ c))](k) −Q2(z) share (0,1)
such that f (z) and f (z+ c) share 0 CM with n � m+ k + 1 then [ f n(z+ c)P( f (z+

c))](k) ≡ Q2

Q1
[ f n(z)P( f (z))] where Q1 and Q2 are non zero polynomials with Q1, Q2 �≡

0 . In addition if Q1 ≡ Q2 then f (z) = C e
λ

n+i , i ∈ {0,1, · · · ,m}, C, λ are constants
such that eλC = 1 and λ k = 1 .

REMARK 1. In the theorem 5 if ai = 0, i∈ {1,2, · · · ,m} and a0 = 1, then P( f ) =
1, m = 0 and the conclusion of theorem 4 holds. Thus the main outcome of this paper
is the generalization of result obtained in [12].

EXAMPLE 1. Let f (z) = ez +1, c = 2π i, P( f ) = f −2. Clearly f (z) and f (z+c)
share 0 CM. For Q1 = 1 and Q2 = 8, [ f (z)P( f (z))]−Q1(z) and [ f (z + c)P( f (z +

c))](2)−Q2(z) share 0 CM but [ f (z+c)P( f (z+c))](2) �≡ Q2

Q1
[ f (z)P( f (z))] as the con-

dition n � m+ k+1 is not satisfied.
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2. Lemmas

LEMMA 1. [2] Let f ∈ F be of finite order and c be non zero complex constant
then

m

(
r,

f (z+ c)
f (z)

)
+m

(
r,

f (z)
f (z+ c)

)
= S(r, f ), (2)

T (r, f (z+ c)) = T (r, f )+S(r, f ). (3)

LEMMA 2. [8] Let f ∈F be of finite order and c be non zero complex constant.
Let P(z, f ) be a polynomial in f (z+c) and its derivatives and Q(z, f ) be a polynomial
in f (z), f (z+ c) and its derivatives with meromorphic coefficients aλ ,λ ∈ Z such that
m(r,aλ ) = S(r, f ) . If f n(z)P(z, f ) = Q(z, f ) and the total degree of Q(z, f ) is n then

m(r,P(z, f )) = S(r, f ).

3. Proof of Theorem

Let
F = f n(z)P( f (z)),

G = [ f n(z+ c)P( f (z+ c))](k).
(4)

Set

F1(z) =
F

Q1(z)
and G1(z) =

G
Q2(z)

. (5)

Excluding the zeros of Qi(z) , i = 1,2, F1(z) and G1(z) clearly share (1,1) hence

N

(
r,

1
F1−1

)
= N

(
r,

1
G1−1

)
+S(r, f ) . Using (3) of lemma 1, we see that S(r, f (z+

c)) = S(r, f ) and hence by (2) of lemma 1, we conclude that m(r, G
F ) = S(r, f ) . Define

φ =
F ′

1(F1−G1)
F1(F1−1)

. (6)

Case 1: Suppose φ �≡ 0. Evidently m(r,φ) = S(r, f ) . Assume z0 to be the zero
of f (z) with multiplicity p(� 1) and zero of P( f (z)) with multiplicity q(� 1) except
for the zeros of Qi(z), i = 1,2. As f (z) and f (z + c) share 0 CM, we see that z0

will be a zero of f (z+c) with multiplicity p and zero of P( f (z+c)) with multiplicity
q . From (5), z0 will be zero of F1 and G1 with multiplicities np+ q and np+ q− k
respectively. In this backdrop, (6) can be written as

φ(z) = O((z− z0)np+q−k−1). (7)

As n � m+ k + 1, it can be seen that φ(z) is holomorphic at z0 . Now lets say z1 is
a zero of F1 − 1 with multiplicity q1(� 2) except for the zeros of P( f ) and Qi(z) ,
i = 1,2. As F1 and G1 share (1,1) , we see that z1 is a zero of G1−1 with multiplicity
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r1(� 2) . In the neighbourhood of z1 , the Taylor series expansion of functions will be
as follows:

F1(z)−1 = aq1(z− z1)q1 +aq1+1(z− z1)q1+1 + . . . ,aq1 �= 0,

G1(z)−1 = br1(z− z1)r1 +br1+1(z− z1)r1+1 + . . . ,br1 �= 0,

F1(z)−G1(z) =

⎧⎪⎨
⎪⎩

aq1(z− z1)q1 +aq1+1(z− z1)q1+1 + . . . i f q1 < r1

−br1(z− z1)r1 −br1+1(z− z1)r1+1 . . . i f q1 > r1

(aq1 −bq1)(z− z1)q1 +(aq1+1−bq1+1)(z− z1)q1+1 . . . if q1 = r1.

F ′
1(z) = q1aq1(z− z1)q1−1 +(q1 +1)aq1+1(z− z1)q1 + . . . .

Let t1 � min{q1,r1} � 2. With this regard, (6) can be rewritten as

φ(z) = O((z− z1)t1−1). (8)

Clearly φ(z) is holomorphic at z1 . The zeros of Qi(z) , i = 1,2 and poles of f (z) forms
the poles of φ(z) which implies that φ(z) has finitely many poles hence N(r,φ) =
O(log r) in turn T (r,φ) = S(r, f ) . From (8), we see that

N(2

(
r,

1
F1−1

)
� N

(
r,

1
φ

)
� T (r,φ)+S(r, f ),

⇒ N(2

(
r,

1
F1−1

)
=S(r, f ).

Again as F1 and G1 share (1,1) except for the zeros of Qi(z) , i = 1,2, we see that

N(2

(
r,

1
G1 −1

)
= S(r, f ) . Rearranging the terms in (6), we get

1
F1

=
F ′

1

φF1(F1−1)

(
1− G1

F1

)
. (9)

From (5), we get
G1

F1
=

Q1 G
Q2 F

. Hence (9) will be of the form

1
F1

=
F ′

1

φF1(F1−1)

(
1− Q1 G

Q2 F

)
.

Hence

m

(
r,

1
F1

)
= S(r, f ) and m

(
r,

1
f

)
= S(r, f ). (10)

Case 1.1: Suppose n > m+ k+1. With reference to (7), we see that

N

(
r,

1
f

)
� N

(
r,

1
φ

)
� T

(
r,

1
φ

)
� T (r,φ)+S(r, f ). (11)
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Combining (10) and (11) we get,

m

(
r,

1
f

)
+N

(
r,

1
f

)
= S(r, f ),

⇒ T (r, f ) = S(r, f ), (12)

which proves contradiction.
Case 1.2: Suppose n = m+ k+1 with reference to (7), we write

N(2

(
r,

1
f

)
� N

(
r,

1
φ

)
� T (r,φ)+S(r, f ), but

T (r, f ) = N

(
r,

1
f

)
+m

(
r,

1
f

)
, hence

T (r, f ) = N1)

(
r,

1
f

)
+S(r, f ). (13)

By the definition of F and G , it is evident that

N(2

(
r,

1
F −Q1

)
= S(r, f ) and N(2

(
r,

1
G−Q2

)
= S(r, f ). (14)

As F−Q1 and G−Q2 share (0,1) there exists a meromorphic function say Γ of finite
order such that

G−Q2

F −Q1
= Γ (or) G−Q2 = Γ(F −Q1). (15)

Case 1.2.1: Now we consider the case when Γ is non constant. Let z2 be a zero
of Γ . As F −Q1 and G−Q2 share (0,1) it clearly means that z2 is a zero of F −Q1

with multiplicity say p2 and z2 is a zero of G−Q2 with multiplicity say q2 such that
p2 < q2 . In case if p2 > q2 then z2 becomes a pole of Γ . Since the poles of F and G
are finite it is evident that N(r,F) = S(r, f ) and N(r,G) = S(r, f ) . Therefore using (14)
and (15) we can write

N

(
r,

1
Γ

)
� N(2

(
r,

1
G−Q2

)
= S(r, f ),

N (r,Γ) � N(2

(
r,

1
F −Q1

)
= S(r, f ),

Differentiating (15), we get

G′ −Q′
2 = Γ′(F −Q1)+ Γ(F ′ −Q′

1). (16)

In (16), replacing the term F −Q1 and F from (15) and then rearranging, we arrive at

G′ F − Γ′

Γ
G F −G F ′ = Q1 G−

[
Γ′

Γ
Q1 +Q′

1

]
G−Q2 F ′ +

[
Q′

2 −
Γ′

Γ
Q2

]
F

+
Γ′

Γ
Q1 Q2 +Q2 Q′

1−Q1 Q′
2.

(17)



SHIFT POLYNOMIAL 55

Denote β =
Γ′

Γ
and consequently T (r,β ) = S(r, f ) . f (z) has finitely many poles and

in addition f (z) and f (z+ c) share 0 CM. Hence

f (z) = f (z+ c) ψ(z) eγ(z) (or)
f (z)

f (z+ c)
= ψ(z) eγ(z), (18)

where ψ(z) is a rational function and γ(z) is a polynomial. Differentiating (18), we
get

f ′(z) = f ′(z+ c) ψ(z) eγ(z) + f (z+ c) ψ ′(z) eγ(z) + f (z+ c) ψ(z) eγ(z) γ ′(z). (19)

Dividing (19) by (18), we get

f ′(z)
f (z)

=
f ′(z+ c)
f (z+ c)

+
ψ ′(z)
ψ(z)

+ γ ′(z).

m(r,ψ eγ) = m

(
r,

f (z)
f (z+ c)

)
.

From lemma 2, we conclude that

m(r,ψ eγ ) = S(r, f ) and T (r,ψ eγ) = S(r, f ).

From (4), we have

G(z) =
{
am f m+n(z+ c)+am−1 f m+n−1(z+ c)+ . . .+a1 f n+1(z+ c)

+a0 f n(z+ c)}(k) ,

= {Gm +Gm−1 + . . .+G1 +G0}(k)

=

{
m

∑
j=0

Gj

}(k)

, where Gj = ai f n+ j(z+ c).

(20)

For k = 1 differentiating the above equation,

G′
i =

m

∑
i=0

ai (n+ i) f n+i−1(z+ c) f ′(z+ c),

For k = 2 differentiating the above equation,

G′′
i =

m

∑
i=0

[
ai (n+ i)(n+ i−1) f n+i−2(z+ c) [ f ′(z+ c)]2

+ai (n+ i) f n+i−1(z+ c) f ′′(z+ c)
]
,

For k = 3 differentiating the above equation,

G′′′
i =

m

∑
i=0

[
ai (n+ i)(n+ i−1) (n+ i−2) f n+i−3(z+ c) [ f ′(z+ c)]3 +3ai (n+ i)

(n+ i−1) f n+i−2(z+ c) f ′(z+ c) f ′′(z+ c)+ai (n+ i) f n+i−1(z+ c) f ′′′(z+ c)
]
.
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In general differentiating k times we get,

G(k)
i = ∑

λ i

aλ i ( f (z+ c))sλ i
0 ( f ′(z+ c))sλ i

1 ( f ′′(z+ c))sλ i
2 . . . ( f (k)(z+ c))sλ i

k , (21)

where sλ i

0 ,sλ i

1 , . . . ,sλ i

k ∈ Z+ such that
k
∑
j=0

sλ i

j = n+ i and n+ i− k � sλ i

0 � n+ i−1 for

i ∈ {0,1, . . . ,m} and aλ i are constants. Substituting (21) in (20), we get

G(z) = ∑
λ m

aλ m ( f (z+ c))sλm
0 ( f ′)(z+ c)sλm

1 ( f ′′(z+ c))sλm
2 . . . ( f (k)(z+ c))sλm

k +

∑
λ m−1

aλ m−1 ( f (z+ c))sλm−1
0 ( f ′(z+ c))sλm−1

1 ( f ′′(z+ c))sλm−1
2 . . . ( f (k)(z+ c))sλm−1

k

+ . . .+∑
λ 1

aλ 1 ( f (z+ c))sλ1
0 ( f ′(z+ c))sλ1

1 ( f ′′(z+ c))sλ1
2 . . . ( f (k)(z+ c))sλ1

k

+∑
λ 0

aλ 0 ( f (z+ c))sλ0
0 ( f ′(z+ c))sλ0

1 ( f ′′(z+ c))sλ0
2 . . . ( f (k)(z+ c))sλ0

k .

(22)
Differentiating (22), we get

G′(z) = ∑
λ m

bλ m ( f (z+ c))t
λm
0 ( f ′(z+ c))t

λm
1 ( f ′′(z+ c))t

λm
2 . . . ( f (k+1)(z+ c))t

λm
k+1+

∑
λ m−1

bλ m−1 ( f (z+ c))t
λm−1
0 ( f ′(z+ c))t

λm−1
1 ( f ′′(z+ c))t

λm−1
2 . . . ( f (k+1)(z+ c))t

λm−1
k+1

+ . . .+∑
λ 1

bλ 1 ( f (z+ c))t
λ1
0 ( f ′(z+ c))t

λ1
1 ( f ′′(z+ c))t

λ1
2 . . . ( f (k+1)(z+ c))t

λ1
k+1

+∑
λ 0

bλ 0 ( f (z+ c))t
λ0
0 ( f ′(z+ c))t

λ0
1 ( f ′′(z+ c))t

λ0
2 . . . ( f (k+1)(z+ c))t

λ0
k+1 ,

(23)

where tλ i

0 , tλ i

1 , . . . ,tλ i

k+1 ∈ Z+ such that
k+1
∑
j=0

tλ i

j = n+ i and n+ i−k−1 � tλ i

0 � n+ i−1

for i ∈ {0,1, . . . ,m} and bλ i are constants. From (4), we have

F(z) = f m+n(z)
[
am +

am−1

f (z)
+ . . .+

a1

f m−1(z)
+

a0

f m(z)

]
. (24)

Differentiating (24), we get

F ′(z) = f m+n(z) f ′(z)
[

am(m+n)
f (z)

+
am−1(m+n−1)

f 2(z)
+ . . .+

a1(n+1)
f m(z)

+
a0 n

f m+1(z)

]
.

(25)
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Substituting (22), (23), (24) and (25) in (17), we see that

f m+n(z)
{

G′
[
am +

am−1

f (z)
+ . . .+

a1

f m−1(z)
+

a0

f m(z)

]
−β G

[
am +

am−1

f (z)
+ . . .

+
a1

f m−1(z)
+

a0

f m(z)

]
−G

f ′(z)
f (z)

[
am (m+n)+

am−1(m+n−1)
f (z)

+ . . .

+
a1(n+1)
f m−1(z)

+
a0 n
f m(z)

]}
= Q(z),

(26)

where Q(z) is a differential polynomial in f (z) and f (z+ c) of degree n . Let

P1(z) = am +
am−1

f (z)
+ . . .+

a1

f m−1(z)
+

a0

f m(z)
,

P2(z) = am (m+n)+
am−1(m+n−1)

f (z)
+ . . .+

a1(n+1)
f m−1(z)

+
a0 n
f m(z)

,

G′(z) P1(z)−β G(z) P1(z)−G(z)
f ′(z)
f (z)

P2(z) = P(z).

(27)

Using (27) in (26), we get

f m+n(z) P(z) = Q(z). (28)

From (20),
f ′(z)
f (z)

can be replaced by
f ′(z+ c)
f (z+ c)

+
ψ ′(z)
ψ(z)

+ γ ′(z) . Hence from (27),

P(z) = P1(z)

{
∑
λ m

bλ m ( f (z+ c))t
λm
0 ( f ′(z+ c))t

λm
1 . . . ( f (k+1)(z+ c))t

λm
k+1

+ ∑
λ m−1

bλ m−1 ( f (z+ c))t
λm−1
0 ( f ′(z+ c))t

λm−1
1 . . . ( f (k+1)(z+ c))t

λm−1
k+1

+ . . .+∑
λ 1

bλ 1 ( f (z+ c))t
λ1
0 ( f ′(z+ c))t

λ1
1 . . . ( f (k+1)(z+ c))t

λ1
k+1

+∑
λ 0

bλ 0 ( f (z+ c))t
λ0
0 ( f ′(z+ c))t

λ0
1 . . . ( f (k+1)(z+ c))t

λ0
k+1

−β

{
∑
λ m

aλ m ( f (z+ c))sλm
0 ( f ′(z+ c))sλm

1 . . . ( f (k)(z+ c))sλm
k

+ ∑
λ m−1

aλ m−1 ( f (z+ c))sλm−1
0 ( f ′(z+ c))sλm−1

1 . . . ( f (k)(z+ c))sλm−1
k + . . .

+∑
λ 1

aλ 1 ( f (z+ c))sλ1
0 ( f ′(z+ c))sλ1

1 . . . ( f (k)(z+ c))sλ1
k

+∑
λ 0

aλ 0 ( f (z+ c))sλ0
0 ( f ′(z+ c))sλ0

1 . . . ( f (k)(z+ c))sλ0
k

}}
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− f ′(z+ c) P2(z)

{
∑
λ m

aλ m( f (z+ c))sλm
0 −1 ( f ′(z+ c))sλm

1 . . . ( f (k)(z+ c))sλm
k

+ ∑
λ m−1

aλ m−1( f (z+ c))sλm−1
0 −1 ( f ′(z+ c))sλm−1

1 . . . ( f (k)(z+ c))sλm−1
k + . . .

+∑
λ 1

aλ1
( f (z+ c))sλ1

0 −1 ( f ′(z+ c))sλ1
1 . . . ( f (k)(z+ c))sλ1

k

+∑
λ 0

aλ0
( f (z+ c))sλ0

0 −1 ( f ′(z+ c))sλ0
1 . . . ( f (z+ c)(k))sλ0

k

}

−G

[
ψ ′(z)
ψ(z)

+ γ ′(z)
]

P2(z).

The term G

[
ψ ′(z)
ψ(z)

+ γ ′(z)
]

P2(z) in the above equation does not contain highest

power of f ′(z + c) and hence can be neglected. In general P(z) will be a differen-
tial polynomial in f (z+ c) of degree k+1 which can be written in the following form

P(z) = H [ f ′(z+ c)]k+1 + I∗( f ), (29)

where H is a suitable constant and I∗( f ) is a polynomial. In specific I∗( f ) is of the
form

I∗( f ) = S(β , β ′, ψ , ψ ′, γ ′)

{
∑
λ m

( f (z+ c))uλm
0 ( f ′(z+ c))uλm

1 . . . ( f (k+1)(z+ c))uλm
k+1

+ ∑
λ m−1

( f (z+ c))uλm−1
0 ( f ′(z+ c))uλm−1

1 . . . ( f (k+1)(z+ c))uλm−1
k+1 + . . .+

∑
λ 1

( f (z+ c))uλ1
0 ( f ′(z+ c))uλ1

1 . . . ( f (k+1)(z+ c))uλ1
k+1

+∑
λ 0

( f (z+ c))uλ0
0 ( f ′(z+ c))uλ0

1 . . .( f (k+1)(z+ c))uλ0
k+1

}
,

where uλ i

0 ,uλ i

1 , . . . ,uλ i

k+1 ∈Z
+ such that

k+1
∑
j=0

uλ i

j = n+2i and n+2i−k � uλ i

0 � n+2i−1

for i ∈ {0,1, . . . ,m} and S(β , β ′, ψ , ψ ′, γ ′) is a polynomial in β , β ′, ψ , ψ ′, γ ′ with
constant coefficients. With reference to (28), we take up two cases:

Case 1.2.1.1: Suppose P(z) �≡ 0. Using lemma 2, we see that m(r,P) = S(r, f )
and hence

T (r,P) = S(r, f ) and T (r,P′) = S(r, f ). (30)

Differentiating (29), we get

P′(z) = H (k+1) [ f ′(z+ c)]k f ′′(z+ c)+L S(z) [ f ′(z+ c)]k+1 +S1(z), (31)
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where L is a suitable constant, S(z) = S(β , β ′, ψ , ψ ′, γ ′) and S1(z) is a polynomial
of the form

S1(z) = S(z)

{
∑
λ m

( f (z+ c))vλm
0 ( f ′(z+ c))vλm

1 . . . ( f (k+1)(z+ c))vλm
k+1

+ ∑
λ m−1

( f (z+ c))vλm−1
0 ( f ′(z+ c))vλm−1

1 . . . ( f (k+1)(z+ c))vλm−1
k+1

+ . . .+∑
λ 1

( f (z+ c))vλ1
0 ( f ′(z+ c))vλ1

1 . . . ( f (k+1)(z+ c))vλ1
k+1

+∑
λ 0

( f (z+ c))vλ0
0 ( f ′(z+ c))vλ0

1 . . . ( f (k+1)(z+ c))vλ0
k+1

}
,

where vλ i

0 ,vλ i

1 , . . . ,vλ i

k+1 ∈Z+ such that
k+1
∑
j=0

vλ i

j = n+2i and n+2i−k � vλ i

0 � n+2i−1

for i ∈ {0,1, . . . ,m} . Assume z3 to be a simple zero of f (z+ c) except for the zeros of
Γ and Γ′ . So (29) and (31) can be written as

P(z3) = H [ f ′(z3 + c)]k+1, (32)

P′(z3) = H (k+1)[ f ′(z3 + c)]k f ′′(z3 + c)+L S(z3) [ f ′(z3 + c)]k+1. (33)

Using (32) in (33) and then rearranging, we get

P(z3) f ′′(z3 + c)− P′(z3) f ′(z3)
k+1

+
L S(z3) P(z3) f ′(z3 + c)

H (k+1)
= 0. (34)

Let K1(z) =
1

k+1
and K2(z) =

L S(z3)
H (k+1)

, so (34) becomes

P(z3) f ′′(z3 + c)− [K1(z) P′(z3)−K2(z) P(z3)] f ′(z3 + c) = 0.

Clearly z3 is a zero of P(z) f ′′(z+ c)− [K1(z) P′(z)−K2(z) P(z)] f ′(z+ c) and conse-
quently T (r,K1) = S(r, f ) and T (r,K2) = S(r, f ) . Lets define

φ1(z) =
P(z) f ′′(z+ c)− [K1(z) P′(z)−K2(z) P(z)] f ′(z+ c)

f (z+ c)
. (35)

Let

ν1(z) =
φ1(z)
P(z)

and ν2(z) =
K1(z) P′(z)

P(z)
−K2(z). (36)

Using (36), (35) can be written as

f ′′(z+ c) = ν1(z) f (z+ c)+ ν2(z) f ′(z+ c). (37)
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Clearly T (r,ν1) = S(r, f ) and T (r,ν2) = S(r, f ) . Suppose if φ1(z) ≡ 0 then ν1(z) = 0;
the detailed analysis of this case is on the same lines of the equation (3.24) in [12].
Lets suppose if φ1(z) �≡ 0, then from (36), we have

P′(z) =
[

ν2(z)
K1(z)

+
K2(z)
K1(z)

]
P(z). (38)

Substituting (29) in (38), we get

P′(z) =
[

ν2(z)
K1(z)

+
K2(z)
K1(z)

]
H [ f ′(z+ c)]k+1 +

[
ν2(z)
K1(z)

+
K2(z)
K1(z)

]
I∗( f ). (39)

Substituting (37) in (31), we get

P′(z) = H (k+1) ν1(z) [ f ′(z+ c)]k f (z+ c)+ [H (k+1) ν2(z)+L S(z)]

[ f ′(z+ c)]k+1 +S1(z).
(40)

Comparing equations (39) and (40), we see that[
H

(
ν2(z)
K1(z)

+
K2(z)
K1(z)

)
−H (k+1) ν2(z)−L S(z)

][
f ′(z+ c)

]k+1

−H (k+1) ν1(z)
[
f ′(z+ c)

]k
f (z+ c)+

[
ν2(z)
K1(z)

+
K2(z)
K1(z)

]
I∗( f )−S1(z) ≡ 0.

Since ν1(z) �≡ 0, from (41), we have

N1)

(
r,

1
f

)
= S(r, f ). (41)

Using equations (13) and (41), we see that T (r, f ) = S(r, f ) which is a contradiction.
Case 1.2.1.2: Suppose P(z) ≡ 0. From (28), we see that Q(z) ≡ 0 hence (17)

becomes

G′ F − Γ′

Γ
G F −G F ′ ≡ 0 (or)

G′

G
=

Γ′

Γ
+

F ′

F
. (42)

On Integrating (42), we get G = d ΓF where d is a non zero constant. We have n =

m+ k+1 and N(r,Γ) = S(r, f ) hence from (15) it follows that N

(
r,

1
f

)
= S(r, f ) and

consequently from (13), T (r, f ) = S(r, f ) which leads to a contradiction.
Case 1.2.2: Let us consider the case when Γ is a constant say D such that D �= 0.

From (15), we can write

G−Q2 = D(F −Q1) (or) G−DF = Q2 −DQ1. (43)

We have n = m+k+1, it follows that N

(
r,

1
f

)
= S(r, f ) and consequently from (13),

T (r, f ) = S(r, f ) which leads to a contradiction.
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Case 2: Suppose φ ≡ 0. From (6), we get F1 ≡ G1 i.e.,

[ f n(z+ c)P( f (z+ c))](k) ≡ Q2

Q1
[ f n(z)P( f (z))]. (44)

Furthermore if Q1 ≡ Q2 , then

[ f n(z+ c)P( f (z+ c))](k) ≡ [ f n(z)P( f (z))]. (45)

Lets assume z4 to be the zero of f (z) with multiplicity say r . As f (z) and f (z +
c) share 0 CM, z4 will be a zero of f (z + c) with multiplicity t , z4 is a zero of
[ f n(z)P( f (z))] with multiplicity (m+n)r and z4 is a zero of [ f n(z+ c)P( f (z+ c))](k)

with multiplicity (m + n)r− k . This will be a contradiction in the backdrop of (45).
Denote:

G2(z) = f n(z+ c)P( f (z+ c)) = ai f
n+i(z+ c), i ∈ {0,1, . . .m}. (46)

Clearly from (46), [G2(z)](k) �= 0 as f (z) �= 0 and f (z + c) �= 0. Now as f (z) is a
transcendental meromorphic function with finitely many poles and f (z) �= 0, f (z) must
be of the form

f (z) =
eL2(z)

L1(z)
, (47)

where L1(z) is a non zero polynomial and L2(z) is a non constant polynomial. Using
(47) in (46), G2(z) can be re-written as

G2(z) = ai
eL4(z)

L3(z)
, where L3(z) = Ln+i

1 (z+ c), L4(z) = (n+ i)L2(z+ c). (48)

Define:

χ(z) =
G′

2(z)
G2(z)

= L′
4(z)−

L′
3(z)

L3(z)
. (49)

Using (49) in lemma 2.4 of [12], we get

G(k)
2 (z)

G2(z)
= χk +Qk−1(χ), (50)

where Qk−1(χ) is a polynomial of degree k−1 in χ and its derivative.

Case 2.1: Suppose L′
4 is not a constant. Clearly

G(k)
2 (z)

G2(z)
∼ χk ∼ (L′

4)
k → ∞ as

z → ∞ . We know that every non-constant rational function assumes every value in
the closed complex plane. Hence G2(z)(k) ≡ 0 somewhere in the open complex plane
which is a contradiction.

Case 2.2: Suppose L′
4 is a constant. Let Ł′

4 = λ �= 0. Suppose if χ(z) is non
constant, then from (49), we have χ(z) = λ and consequently χ ′(z) = χ ′′(z) = . . . =

χ (k)(z) = 0 as z → ∞ . Using lemma 2.4 of [12],
G(k)

2 (z)
G2(z)

= λ k,z → ∞ . This means



62 M. TEJUSWINI AND N. SHILPA

that
G(k)

2 (z)
G2(z)

must have a zero in the open complex plane and incidentally χ(z) is a

constant. Therefore L′
4 = λ = χ(z) . From (50) we get,

G2(z) = eλ z+d, (51)

where d is a constant and consequently from (46) we get,

f (z) = C e

⎛
⎝ λ z

n+ i

⎞
⎠

, (52)

where C(�= 0) =
c∗
ai

is a constant such that eλC = 1, c∗ is an integration constant and

λ k = 1. �
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