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UNIQUENESS OF NON–HOMOGENEOUS

DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC

FUNCTIONS SHARING A SMALL FUNCTION

DILIP CHANDRA PRAMANIK ∗ AND JAYANTA ROY

Abstract. In this paper, we study the uniqueness of differential polynomials of meromorphic
functions that share a small function. Our results improve and generalize results of Lahiri and
Pal [12].

1. Introduction and main results

Let C denote the finite complex plane and let f be a non-constant meromor-
phic function defined on C . We assume that the reader is familiar with the stan-
dard definitions and notations used in the Nevanlinna value distribution theory, such
as T (r, f ),m(r, f ),N(r, f ) (see [5, 17, 21]). By S(r, f ) we denote any quantity satisfy-
ing the condition S(r, f ) = ◦(T (r, f )) as r → ∞ possibly outside an exceptional set of
finite linear measure. A meromorphic function a is called a small function with respect
to f if either a ≡ ∞ or T (r,a) = S(r, f ) . We denote by S( f ) the collection of all small
functions with respect to f . Clearly C∪{∞} ⊂ S( f ) and S( f ) is a field over the set of
complex numbers. For b ∈ C∪{∞} the quantities

δ (b, f ) = 1− limsup
r→∞

N(r,b; f )
T (r, f )

and

Θ(b, f ) = 1− limsup
r→∞

N(r,b; f )
T (r, f )

are respectively called the deficiency and ramification index of b for the function f .
We write E(a, f ) = {z ∈ C : f (z)− a = 0} , where each zero with multiplicity m

is counted m times. If we ignore the multiplicity, then the set is denoted by E(a, f ) .
For any two non-constant meromorphic functions f and g , and a∈ S( f )∩S(g) we say
that f and g share a IM (CM) provided that E(a, f ) = E(a,g) (E(a, f ) = E(a,g)) .

In 1976 Yang [16] posted the following question:
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Suppose that f and g are two transcendental entire functions such that f and g
share the value 0 CM and f (1) , g(1) share the value 1 CM. What can be said about the
relationship between f and g?

Many authors, including Shibazaki [15], Yi [18, 19], Yang and Yi [20], Hua [6],
Mues and Reinders [14], Lahiri [8, 9] studied the question of Yang [16].

The following result of Yi [18] is an answer to the question of Yang [16] when the
n -th derivatives of f and g share the value 1 CM.

THEOREM 1. [18] Let f and g be two non-constant entire functions and let n
be a positive integer. If f , g share the value 0 CM, f (n) , g(n) share the value 1 CM
and δ (0; f ) > 1

2 , then either f ≡ g or f (n).g(n) ≡ 1 .

The following theorems are improvement of Theorem 1.

THEOREM 2. [22] Let n be a positive integer and f , g be two non-constant
meromorphic functions such that f (n) , g(n) share the value 1 CM. If

2δ (0; f )+ (n+4)Θ(∞; f ) > n+5

and
2δ (0;g)+ (n+4)Θ(∞;g) > n+5,

then either f ≡ g or f (n).g(n) ≡ 1 .

THEOREM 3. [22] Let n be a positive integer and f , g be two non-constant
meromorphic functions such that f (n) , g(n) share the value 1 IM. If

5δ (0; f )+ (4n+7)Θ(∞; f ) > 4n+11

and
5δ (0;g)+ (4n+7)Θ(∞;g)> 4n+11,

then either f ≡ g or f (n).g(n) ≡ 1 .

Let n � 2 be a positive integer. An expression of the form

L( f ) = f (n) +ak−1 f (n−1) + . . .+a0 f , (1)

where a0,a1, . . . ,an−1 are complex constants, is called a linear differential polynomial
of f .

In 2015, Li and Li considered the problem of replacing the n th derivatives in The-
orems 1–3 by the respective linear differential polynomials. They proved the following
theorems:

THEOREM 4. [13] Let f and g be two non-constant entire functions. Suppose
that f , g share the value 0 CM and L( f ) , L(g) share the value 1 CM and δ (0; f ) > 1

2 .
If ρ( f ) 
= 1 , then either f ≡ g or L( f ).L(g) ≡ 1 .
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THEOREM 5. [13] Let f and g be two non-constant entire functions. Suppose
that f , g share the value 0 CM and L( f ) , L(g) share the value 1 IM and δ (0; f ) > 4

5 .
If ρ( f ) 
= 1 , then either f ≡ g or L( f ).L(g) ≡ 1 .

DEFINITION 1. Let n0 j,n1 j,n2 j, . . . ,nk j be non-negative integers. The expression

Mj[ f ] = ( f )n0 j ( f (1))n1 j ( f (2))n2 j . . . ( f (k))nk j

is called a differential monomial generated by f of degree d(Mj) =
k
∑
i=0

ni j and weight

ΓMj =
k
∑
i=0

(i+1)ni j . Let a j ∈ S( f ) and a j 
≡ 0 ( j = 1,2, . . . ,t) . The sum

P[ f ] =
t

∑
j=1

a jMj[ f ] (2)

is called a differential polynomial generated by f of degree d(P) , lower degree d(P),
where

d(P) = max{d(Mj) : 1 � j � t},
d(P) = min{d(Mj) : 1 � j � t}.

The quantity Q is defined by

Q = max{ΓMj −d(Mj) : 1 � j � t} = max

{
k

∑
i=0

i.ni j : 1 � j � t

}
.

Further, P[ f ] is said to be homogeneous differential polynomial of degree d if d(P) =
d(P) = d .

When we consider P[ f ] and P[g] are non-constant differential polynomials of
non-constant meromorphic functions f and g respectively, then we understand that the
coefficients a j ∈ S( f )∩S(g) .

Recently Lahiri and Pal [12] extended the results of Li and Li [13] to homogeneous
differential polynomials and proved the following theorem.

THEOREM 6. Let f and g be two non-constant meromorphic functions, a = a(z)
(
≡ 0,∞) ∈ S( f )∩S(g) .

Suppose P[ f ] = ∑t
j=1 a j ∏k

i=0( f (i))ni j and P[g] = ∑t
j=1 a j ∏k

i=0(g
(i))ni j are non-

constant homogeneous differential polynomials of f and g respectively. If P[ f ] and
P[g] share a IM, and

min

{
5δ (0, f )+

4Q+7
d

Θ(∞, f ),5δ (0,g)+
4Q+7

d
Θ(∞,g)

}
>

4Q+4d+7
d

, (3)

then either P[ f ] ≡ P[g] or P[ f ].P[g] ≡ a2 .
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REMARK 1. If P[ f ] and P[g] share a CM, then the condition (3) of Theorem 6
can be replaced by the condition

min

{
2δ (0, f )+

Q+4
d

Θ(∞, f ),2δ (0,g)+
Q+4

d
Θ(∞,g)

}
>

Q+d +4
d

.

One can ask the following question:

QUESTION 1. Can we get the same conclusion as in Theorem 6 when non-homo-
geneous differential polynomials P[ f ] and P[g] share a small function?

To present the main results we recall the following definition of weighted sharing
which is between CM and IM sharing.

DEFINITION 2. [10, 11] Let l be a non-negative integer or infinity and a∈ S( f ) .
We denote by El(a, f ) the set of all zeros of f − a , where a zero of multiplicity m is
counted m times if m � l and l +1 times if m > l . If El(a, f ) = El(a,g) , we say that
f , g share the function a with weight l . We write f and g share (a, l) to mean that
f and g share the function a with weight l . Since El(a, f ) = El(a,g) implies that
Es(a, f ) = Es(a,g) for any integer s(0 � s < l) , if f , g share (a, l) , then f , g share
(a,s) , (0 � s < l) . Moreover, we note that f and g share the function a IM or CM if
and only if f and g share (a,0) or (a,∞) respectively.

Suppose f and g share 1 IM and let z0 be a zero of f −1 of multiplicity p and
a zero of g−1 of multiplicity q . Throughout this paper we denote by NL(r, 1

f−1 ) the

reduced counting function of those 1-points of f and g where p > q � 1; NL(r, 1
g−1)

is defined similarly. By N1)
E (r, 1

f−1) the counting function of those 1-points of f and g

where p = q = 1 and denote by N
(2
E (r, 1

f−1 ) the counting function of those 1-points of
f and g where p = q � 2, where each such zero is counted only once.

DEFINITION 3. Let p be a positive integer and a ∈ S( f ) .
(i) Np)(r, 1

f−a ) denotes the counting function of those a -points of f whose multi-
plicities are not greater than p , where each a -point is counted only once.

(ii) N(p(r, 1
f−a ) denotes the counting function of those a -points of f whose mul-

tiplicities are not less than p , where each a -point is counted only once.

In this paper we take up Question 1 and prove the uniqueness of non-homogeneous
differential polynomials P[ f ] and P[g] .

THEOREM 7. Let f and g be two non-constant meromorphic functions, a =
a(z) (
≡ 0,∞) ∈ S( f )∩ S(g) . Suppose that P[ f ] and P[g] , as defined by (2), are non-
constant non-homogeneousdifferential polynomials of f and g respectively of the same
degree, lower degree and quantity Q. If P[ f ] and P[g] share (a, l) with one of the fol-
lowing conditions:
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(i) l � 2 and

min
{
2d(P)δ (0, f )+ (Q+4)Θ(∞, f ),2d(P)δ (0,g)+ (Q+4)Θ(∞,g)

}
> Q+4+d(P), (4)

(ii) l = 1 and

min{5d(P)δ (0, f )+ (3Q+9)Θ(∞, f ),5d(P)δ (0,g)+ (3Q+9)Θ(∞,g)}
> 3Q+3d(P)+9, (5)

(iii) l = 0 and

min{5d(P)δ (0, f )+ (4Q+7)Θ(∞, f ),5d(P)δ (0,g)+ (4Q+7)Θ(∞,g)}
> 4Q+4d(P)+7, (6)

then either P[ f ] ≡ P[g] or P[ f ].P[g] ≡ a2 .

THEOREM 8. Let f and g be two non-constant meromorphic functions, a =
a(z) (
≡ 0,∞) ∈ S( f )∩ S(g) . Let f and g share the values 0 CM and ∞ IM. Let
P[ f ] and P[g] be same as in Theorem 7. If P[ f ] and P[g] share (a, l) with one of the
following conditions:

(i) l � 2 and

2d(P)δ (0, f )+ (Q+4)Θ(∞, f ) > Q+4+d(P),

(ii) l = 1 and

5d(P)δ (0, f )+ (3Q+9)Θ(∞, f ) > 3Q+3d(P)+9,

(iii) l = 0 and

5d(P)δ (0, f )+ (4Q+7)Θ(∞, f ) > 4Q+4d(P)+7,

then either P[ f ] ≡ P[g] or P[ f ].P[g] ≡ a2 .

THEOREM 9. Let f and g be two non-constant entire functions, a = a(z) (
≡
0,∞) ∈ S( f )∩S(g) . Let f and g share the values 0 CM. Let P[ f ] and P[g] be same
as in Theorem 7. If P[ f ] and P[g] share (a, l) with one of the following conditions:

(i) l � 2 and

δ (0, f ) >
1
2
,

(ii) l = 1 and

δ (0, f ) >
3
5
,

(iii) l = 0 and

δ (0, f ) >
4
5
,

then either P[ f ] ≡ P[g] or P[ f ].P[g] ≡ a2 .
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COROLLARY 1. Let f and g be two non-constant entire functions such that f
and g share the value 0 CM. Suppose that L( f ) and L(g) are non-constant linear
differential polynomials of f and g respectively as defined by (1). If L( f ) and L(g)
share (1, l) with one of the following conditions:

(i) l � 2 and

δ (0, f ) >
1
2
,

(ii) l = 1 and

δ (0, f ) >
3
5
,

(iii) l = 0 and

δ (0, f ) >
4
5
,

then either f ≡ g or L( f ).L(g) ≡ 1 under any one of the following conditions:
(i) ρ( f ) 
= 1 ,
(ii) ρ( f ) = 1 and
(a) f has at most a finite number of zeros, or
(b) f has infinitely many zeros and f is of minimal type.

2. Lemmas

In this section we present some lemmas which will be needed in proofing the main
theorems.

LEMMA 1. [4] Let f be a non-constant meromorphic function and P[ f ] be de-
fined by (2), then

(i) N

(
r,

1
P[ f ]

)
� T

(
r,P[ f ]

)−d(P)T (r, f )+
(
d(P)−d(P)

)
m
(
r,

1
f

)

+d(P)N
(
r,

1
f

)
+S(r, f )+S(r,g),

(ii) N

(
r,

1
P[ f ]

)
� QN(r, f )+

(
d(P)−d(P)

)
m
(
r,

1
f

)

+d(P)N
(
r,

1
f

)
+S(r, f )+S(r,g).

LEMMA 2. [3] Let f be a non-constant meromorphic function and P[ f ] be de-
fined by (2), then

T (r,P[ f ]) � QN(r, f )+d(P)T (r, f )+S(r, f ).

LEMMA 3. [1] If F , G be non-constant meromorphic functions such that F

and G share (1,1) , then 2NL(r, 1
F−1 )+2NL(r, 1

G−1 )+N
(2
E

(
r, 1

F−1

)−NF>2(r, 1
G−1 ) �

N(r, 1
G−1)−N(r, 1

G−1 )+S(r,F)+S(r,G).
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LEMMA 4. [1] If F , G be non-constant meromorphic functions such that F and
G share (1,1) , then NF>2(r, 1

G−1 ) < 1
2N(r,F)+ 1

2N(r, 1
F )− 1

2N0(r, 1
F(1) ).

LEMMA 5. [2] If F , G be non-constant meromorphic functions such that F and
G share (1,0) , then NL(r, 1

F−1) < N(r,F)+N(r, 1
F )+S(r,F) .

LEMMA 6. [7] Let f be a transcendental meromorphic function and P[ f ] as
defined by (2) be non-constant with d(P) � 1 . Then

d(P)T (r, f )� N(r, f )+N

(
r,

1
P[ f ]−1

)
+d(P)N

(
r,

1
f

)
−N0

(
r,

1

(P( f ))(1)

)
+S(r, f ),

where N0
(
r, 1

(P[ f ])(1)

)
denotes the counting function corresponding to the zeros of (P[ f ])(1)

which are not the zeros of P[ f ] and P[ f ]−1 .

3. Proof of main theorems

Proof of Theorem 7. Let

F =
P[ f ]
a

, G =
P[g]
a

.

Since P[ f ] and P[g] share (a, l) , it follows that F , G share (1, l) except at the zeros
and poles of a . Also note that N(r,F) = N(r, f ) + S(r, f ) and N(r,G) = N(r,g) +
S(r,g) .

Define

H ≡
(

F(2)

F(1) −2
F (1)

F −1

)
−
(

G(2)

G(1) −2
G(1)

G−1

)
. (7)

We shall show that H ≡ 0. Suppose on the contrary that H 
≡ 0. Then from (7) we have
m(r,H) = S(r, f )+S(r,g) .

By second fundamental theorem of Nevanlinna we have

T (r,F)+T(r,G) � N(r,F)+N(r,
1
F

)+N
(
r,

1
F −1

)
+N(r,G)

+N
(
r,

1
G

)
+N

(
r,

1
G−1

)
−N0

(
r,

1

F (1)

)
−N0

(
r,

1

G(1)

)
+S(r,F)+S(r,G), (8)

where N0(r, 1
F(1) ) denotes the counting function corresponding to the zeros of F(1)

which are not the zeros of F and F −1. N0(r, 1
G(1) ) is defined similarly.

We consider the following cases:
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Case 1: l � 1. Then from (7) we have

N1)
E

(
r,

1
F −1

)
� N

(
r,

1
H

)
� T (r,H)+O(1)

� N(r,H)+S(r,F)+S(r,G).

� N(r,F)+N(2

(
r,

1
F

)
+N(r,G)+N(2

(
r,

1
G

)
+NL

(
r,

1
F −1

)
+NL

(
r,

1
G−1

)
+N0

(
r,

1

F (1)

)
+N0

(
r,

1

G(1)

)
+S(r,F)+S(r,G),

and so

N
(
r,

1
F −1

)
+N

(
r,

1
G−1

)
= N1)

E

(
r,

1
F −1

)
+NL

(
r,

1
F −1

)
+NL

(
r,

1
G−1

)

+N
(2
E

(
r,

1
F −1

)
+N

(
r,

1
G−1

)

� N(r,F)+N(r,G)+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+2NL

(
r,

1
F −1

)
+2NL

(
r,

1
G−1

)
+N

(2
E

(
r,

1
F −1

)

+N
(
r,

1
G−1

)
+N0

(
r,

1

F (1)

)
+N0

(
r,

1

G(1)

)
+S(r,F)+S(r,G). (9)

Subcase 1.1: l = 1. Using Lemmas 3 and 4 we have

2NL

(
r,

1
F −1

)
+2NL

(
r,

1
G−1

)
+N

(2
E

(
r,

1
F −1

)
+N

(
r,

1
G−1

)

� N
(
r,

1
G−1

)
+NF>2

(
r,

1
G−1

)
� N

(
r,

1
G−1

)
+

1
2
N(r,F)+

1
2
N
(
r,

1
F

)
− 1

2
N0

(
r,

1

F(1)

)
+S(r,F)+S(r,G). (10)

Thus from (9) and (10) we have

N
(
r,

1
F −1

)
+N

(
r,

1
G−1

)
� N(r,F)+N(2

(
r,

1
F

)
+N(r,G)+N(2

(
r,

1
G

)
+N
(
r,

1
G−1

)
+

1
2
N(r,F)+

1
2
N
(
r,

1
F

)
+

1
2
N0

(
r,

1

F (1)

)
+N0

(
r,

1

G(1)

)
+S(r,F)+S(r,G). (11)
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Using Lemma 1 and (11), we obtain from (8) that

T (r,F) � 2N(r,F)+2N(r,G)+N
(
r,

1
F

)
+N

(
r,

1
G

)
+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+

1
2
N(r,F)+

1
2
N
(
r,

1
F

)
+S(r,F)+S(r,G).

� 5
2
N(r,F)+2N(r,G)+N

(
r,

1
F

)
+N

(
r,

1
G

)
+

1
2
N
(
r,

1
F

)
+S(r,F)+S(r,G).

� 5
2
N(r, f )+2N(r,g)+T (r,F)−d(P)T (r, f )

+
(
d(P)−d(P)

)
m
(
r,

1
f

)
+d(P)N

(
r,

1
f

)
+QN(r,g)

+
(
d(P)−d(P)

)
m
(
r,

1
g

)
+d(P)N

(
r,

1
g

)
+

Q
2

N(r, f )

+
1
2

(
d(P)−d(P)

)
m
(
r,

1
f

)
+

d(P)
2

N
(
r,

1
f

)
+S(r, f )+S(r,g).

⇒ d(P)T (r, f ) � Q+5
2

N(r, f )+ (Q+2)N(r,g)+
3d(P)

2
N
(
r,

1
f

)
+d(P)N

(
r,

1
g

)
+

3
2

(
d(P)−d(P)

)
m
(
r,

1
f

)
+
(
d(P)−d(P)

)
m
(
r,

1
g

)
+S(r, f )+S(r,g).

� Q+5
2

N(r, f )+ (Q+2)N(r,g)+
3d(P)

2
N
(
r,

1
f

)
+d(P)N

(
r,

1
g

)
+

3
2

(
d(P)−d(P)

)
T (r, f )

+
(
d(P)−d(P)

)
T (r,g)+S(r, f )+S(r,g).

⇒
(

3d(P)−d(P)
2

)
T (r, f ) +

(
d(P)−d(P)

)
T (r,g)

� Q+5
2

N(r, f )+
3d(P)

2
N
(
r,

1
f

)
+(Q+2)N(r,g)+d(P)N

(
r,

1
g

)
+S(r, f )+S(r,g). (12)

Similarly,

⇒
(

3d(P)−d(P)
2

)
T (r,g)+

(
d(P)−d(P)

)
T (r, f )
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� Q+5
2

N(r,g)+
3d(P)

2
N
(
r,

1
g

)
+(Q+2)N(r, f )

+d(P)N
(
r,

1
f

)
+S(r, f )+S(r,g). (13)

Adding (12) and (13) we get(
5d(P)−3d(P)

2

){
T (r, f )+T (r,g)

}
� 3Q+9

2
N(r, f )+

5d(P)
2

N
(
r,

1
f

)
+

3Q+9
2

N(r,g)+
5d(P)

2
N
(
r,

1
g

)
+S(r, f )+S(r,g),

⇒ {
5d(P)δ (0, f )+ (3Q+9)Θ(∞, f )− (3Q+3d(P)+9)

}
T (r, f )

+
{
5d(P)δ (0,g)+ (3Q+9)Θ(∞,g)− (3Q+3d(P)+9)

}
T (r,g)

� S(r, f )+S(r,g),

which contradicts (5).
Subcase 1.2: l � 2. For this case we have

2NL

(
r,

1
F −1

)
+2NL

(
r,

1
G−1

)
+N

(2
E

(
r,

1
F −1

)
+N

(
r,

1
G−1

)

� N(r,
1

G−1
)+S(r,F)+S(r,G) (14)

From Lemma 1, (8), (9) and (14) we obtain

T (r,F) � 2N(r,F)+2N(r,G)+N
(
r,

1
F

)
+N

(
r,

1
G

)
+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+S(r,F)+S(r,G).

� 2N(r, f )+2N(r,g)+N
(
r,

1
F

)
+N

(
r,

1
G

)
+S(r,F)+S(r,G).

⇒ d(P)T (r, f ) � 2N(r, f )+2N(r,g)+d(P)N
(
r,

1
f

)
+
(
d(P)−d(P)

)
m
(
r,

1
f

)
+QN(r,g)+

(
d(P)−d(P)

)
m
(
r,

1
g

)
+d(P)N

(
r,

1
g

)
+S(r, f )+S(r,g).

� 2N(r, f )+ (Q+2)N(r,g)+d(P)N
(
r,

1
f

)
+d(P)N

(
r,

1
g

)
+
(
d(P)−d(P)

)
T (r, f )+

(
d(P)−d(P)

)
T (r,g)+S(r, f )+S(r,g).

⇒ d(P)T (r, f )+
(
d(P)−d(P)

)
T (r,g) � 2N(r, f )+d(P)N

(
r,

1
f

)
+(Q+2)N(r,g)

+d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g). (15)
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Similarly,

d(P)T (r,g)+
(
d(P)−d(P)

)
T (r, f )

� 2N(r,g)+d(P)N
(
r,

1
g

)
+(Q+2)N(r, f )

+d(P)N
(
r,

1
f

)
+S(r, f )+S(r,g). (16)

Adding (15) and (16) we get

(2d(P)−d(P))
{
T (r, f )+T (r,g)

}
� (Q+4)N(r, f )+2d(P)N

(
r,

1
f

)
+(Q+4)N(r,g)

+2d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g)

⇒ {
2d(P)δ (0, f )+ (Q+4)Θ(∞, f )− (Q+d(P)+4)

}
T (r, f )

+
{
2d(P)δ (0,g)+ (Q+4)Θ(∞,g)− (Q+d(P)+4)

}
T (r,g)

� S(r, f )+S(r,g),

which is a contradiction to the hypothesis (4).

Case 2: l = 0. Then we have

N1)
E

(
r,

1
F −1

)
= N1)

E

(
r,

1
G−1

)
+S(r,G)

N
(2
E

(
r,

1
F −1

)
= N

(2
E

(
r,

1
G−1

)
+S(r,G).

From (7) we have

N
(
r,

1
F −1

)
+N

(
r,

1
G−1

)
= N1)

E

(
r,

1
F −1

)
+N

(2
E

(
r,

1
F −1

)
+NL

(
r,

1
F −1

)
+NL

(
r,

1
G−1

)
+N

(
r,

1
G−1

)
� N1)

E

(
r,

1
F −1

)
+NL

(
r,

1
F −1

)
+N

(
r,

1
G−1

)
� N(r,F)+N(r,G)+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+2NL

(
r,

1
F −1

)
+NL

(
r,

1
G−1

)
+N
(
r,

1
G−1

)
+N0

(
r,

1

F (1)

)
+N0

(
r,

1

G(1)

)
+S(r,F)+S(r,G). (17)
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Now using (17), Lemma 1 and Lemma 5 we obtain from (8) that

T (r,F) � 2N(r,F)+2N(r,G)+N
(
r,

1
F

)
+N

(
r,

1
G

)
+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+2N(r,F)+2N

(
r,

1
F

)
+N(r,G)+N

(
r,

1
G

)
+S(r,F)+S(r,G).

� 4N(r,F)+3N(r,G)+N
(
r,

1
F

)
+2N

(
r,

1
G

)
+2N

(
r,

1
F

)
+S(r,F)+S(r,G).

� 4N(r, f )+3N(r,g)+T (r,F)−d(P)T (r, f )+
(
d(P)−d(P)

)
m
(
r,

1
f

)

+d(P)N
(
r,

1
f

)
+2QN(r,g)+2d(P)N

(
r,

1
g

)
+2
(
d(P)−d(P)

)
m
(
r,

1
g

)
+2QN(r, f )+2d(P)N

(
r,

1
f

)
+2
(
d(P)−d(P)

)
m
(
r,

1
f

)
+S(r, f )+S(r,g).

⇒ d(P)T (r, f ) � (2Q+4)N(r, f )+ (2Q+3)N(r,g)+3d(P)N
(
r,

1
f

)
+2d(P)N

(
r,

1
g

)
+2
(
d(P)−d(P)

)
T (r,g)

+3
(
d(P)−d(P)

)
T (r, f )+S(r, f )+S(r,g).

⇒ (
3d(P) − 2d(P)

)
T (r, f )+2

(
d(P)−d(P)

)
T (r,g)

� (2Q+4)N(r, f )+ (2Q+3)N(r,g)+3d(P)N
(
r,

1
f

)

+2d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g). (18)

Similarly, (
3d(P)−2d(P)

)
T (r,g)+2

(
d(P)−d(P)

)
T (r, f )

� (2Q+4)N(r,g)+ (2Q+3)N(r, f )+3d(P)N
(
r,

1
g

)
+2d(P)N

(
r,

1
f

)
+S(r, f )+S(r,g). (19)

Adding (18) and (19) we obtain(
5d(P)−4d(P)

){
T (r, f )+T (r,g)

}
� (4Q+7)N(r, f )+5d(P)N

(
r,

1
f

)
+(4Q+7)N(r,g)

+5d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g),
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⇒ {
5d(P)δ (0, f )+ (4Q+7)Θ(∞, f )− (4Q+4d(P)+7)

}
T (r, f )

+
{
5d(P)δ (0,g)+ (4Q+7)Θ(∞,g)− (4Q+4d(P)+7)

}
T (r,g)

� S(r, f )+S(r,g),

which contradicts (6).
Therefore H ≡ 0. So integrating twice we get

1
G−1

=
A

F −1
+B,

where A (
= 0) and B are constants.
Thus

G =
(B+1)F +(A−B−1)

BF +(A−B)
, (20)

and

F =
(B−A)G+(A−B−1)

BG− (B+1)
. (21)

Next we consider the following three subcases:
Subcase 2.1: B 
= 0,−1. Then from (21) we have

N

(
r,

1

G− B+1
B

)
= N(r,F).

By Nevanlinna second fundamental theorem and (ii) of Lemma 1 we get

T (r,G) � N(r,G)+N(r,
1
G

)+N

(
r,

1

G− B+1
B

)
+S(r,G)

� N(r,G)+N
(
r,

1
G

)
+N(r,F)+S(r,G)

� N(r,G)+T (r,G)−d(P)T (r,g)+d(P)N
(
r,

1
g

)
+
(
d(P)−d(P)

)
m
(
r,

1
g

)
+N(r,F)+S(r,F)+S(r,G).

⇒ d(P)T (r,g) � N(r, f )+N(r,g)+ (d(P)−d(P))T (r,g)

+d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g). (22)

If A−B−1 
= 0, then it follows from (20) that

N

(
r,

1

F − −A+B+1
B+1

)
= N

(
r,

1
G

)
.



78 D. C. PRAMANIK AND J. ROY

Again by Nevanlinna second fundamental theorem and Lemma 1 we have

T (r,F) � N(r,F)+N
(
r,

1
F

)
+N

(
r,

1

F − −A+B+1
B+1

)
+S(r,F)

� N(r,F)+T(r,F)−d(P)T (r, f )+d(P)N
(
r,

1
f

)

+
(
d(P)−d(P)

)
m
(
r,

1
f

)
+QN(r,g)+d(P)N

(
r,

1
g

)
+
(
d(P)−d(P)

)
m
(
r,

1
g

)
+S(r, f )+S(r,g).

⇒ d(P)T (r, f ) � N(r, f )+
(
d(P)−d(P)

)
T (r, f )+d(P)N

(
r,

1
f

)
+QN(r,g)+d(P)N

(
r,

1
g

)
+
(
d(P)−d(P)

)
T (r,g)

+S(r, f )+S(r,g). (23)

Combining (22) and (23)

d(P)T (r, f )+
(
2d(P)−d(P)

)
T (r,g)

� 2N(r, f )+d(P)N
(
r,

1
f

)
+(Q+1)N(r,g)

+2d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g).

⇒ {
d(P)δ (0, f )+2Θ(∞, f )−2

}
T (r, f )

+
{
2d(P)δ (0,g)+ (Q+1)Θ(∞,g)− (Q+d(P)+1)

}
T (r,g)

� S(r, f )+S(r,g),

which contradicts assumptions (4)–(6).
Therefore A−B−1 = 0. Then by (20)

N

(
r,

1

F + 1
B

)
= N(r,G).

By Nevanlinna second fundamental theorem and Lemma 1 we get

T (r,F) < N(r,F)+N
(
r,

1
F

)
+N

(
r,

1

F + 1
B

)
+S(r,F),

� N(r, f )+T (r,F)−d(P)T (r, f )+d(P)N
(
r,

1
f

)

+
(
d(P)−d(P)

)
m
(
r,

1
f

)
+N(r,g)+S(r, f )+S(r,g),
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⇒ d(P)T (r, f ) � N(r, f )+d(P)N
(
r,

1
f

)
+
(
d(P)−d(P)

)
T (r, f )

+N(r,g)+S(r, f )+S(r,g), (24)

Combining (22) and (24)

d(P)
{
T (r, f )+T (r,g)

}
� 2N(r, f )+d(P)N

(
r,

1
f

)
+2N(r,g)

+d(P)N
(
r,

1
g

)
+S(r, f )+S(r,g).

which violates assumptions (4)–(6).
Subcase 2.2: B = −1. Then

G =
A

A+1−F
,

and

F =
(1+A)G−A

G
.

If A+1 
= 0,

N

(
r,

1
F − (A+1)

)
= N(r,G),

N

(
r,

1

G− A
A+1

)
= N(r,

1
F

).

By similar argument as Subcase 2.1 we get a contradiction.
Therefore A+1 = 0 then FG = 1 ⇒ P[ f ].P[g] ≡ a2.
Subcase 2.3: B = 0. Then (20) and (21) gives G = F+A−1

A and F = AG+1−A .

If A− 1 
= 0, N
(
r, 1

A−1+F

)
= N

(
r, 1

G

)
and N

(
r, 1

G− A−1
A

)
= N(r, 1

F ) . Proceeding

similarly as in Subcase 2.1 we get a contradiction.
Therefore, A−1 = 0 then F ≡ G i.e., P[ f ] ≡ P[g]. This complete the proof. �

Proof of Theorem 8. Let

F =
P[ f ]
a

, G =
P[g]
a

.

Since P[ f ] and P[g] share (a, l) , it follows that F , G share (1, l) except at the zeros
and poles of a . By Lemma 2 and Lemma 6, we get

d(P)T (r, f ) � N(r, f )+N

(
r,

1
F −1

)
+d(P)N

(
r,

1
f

)
+S(r, f ),

= N(r,g)+N

(
r,

1
G−1

)
+d(P)N

(
r,

1
g

)
+S(r, f ),

�
(
1+Q+d(P)+d(P)

)
T (r,g)+S(r, f )+S(r,g). (25)
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Similarly,

d(P)T (r,g) �
(
1+Q+d(P)+d(P)

)
T (r, f )+S(r, f )+S(r,g). (26)

From (25) and (26) we get S(r, f ) = S(r,g) . The rest of the proof is similar to that of
Theorem 7. �

Proof of Theorem 9. Proof follows from the proof of Theorem 8 immediately. �

Proof of the Corollary 1. By Theorem 9 we get either L( f )≡ L(g) or L( f ).L(g)≡
1. Let L( f ) ≡ L(g) so that L( f − g) ≡ 0. Proceeding similarly as in the proof of
Corollary 1.2 of Lahiri and Pal [12], we can prove that f ≡ g . �
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