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FOURIER TRANSFORM INVERSION IN THE ALEXIEWICZ NORM

ERIK TALVILA

Abstract. If f ∈ L1(R) it is proved that limS→∞‖ f − f ∗DS‖= 0 , where DS(x) = sin(Sx)/(πx)
is the Dirichlet kernel and ‖ f‖ = supα<β |∫ β

α f (x)dx| is the Alexiewicz norm. This gives a
symmetric inversion of the Fourier transform on the real line. An asymmetric inversion is also
proved. The results also hold for a measure given by dF where F is a continuous function of
bounded variation. Such measures need not be absolutely continuous with respect to Lebesgue
measure. An example shows there is f ∈ L1(R) such that limS→∞‖ f − f ∗DS‖1 �= 0 .

1. Introduction

If f : R → R then its Fourier transform is f̂ (s) =
∫ ∞
−∞ e−ist f (t)dt . Under the

condition f ∈ L1(R) it is known that f̂ is uniformly continuous on R . The Riemann-
Lebesgue lemma says that f̂ vanishes at infinity. The inversion formula is f (x) =
1
2π

∫ ∞
−∞ eisx f̂ (s)ds . Further assumptions, such as f̂ ∈ L1(R) , are needed for this formula

to hold. See [2] and [7] for such background information.
In this paper we prove the Fourier inversion theorem in the Alexiewicz norm,

limS→∞‖ f − f ∗DS‖= 0. The Alexiewicz norm is ‖ f‖= supα<β |
∫ β

α f (x)dx| . It is use-
ful for conditionally convergent integrals [1], [4]. Note that ‖ f‖ � ‖ f‖1 with equality
if and only if f is of one sign almost everywhere. For S > 0, the family of functions,
DS(x) = sin(Sx)/(πx) , is known as the Dirichlet kernel. Notice that

∫ ∞
−∞ DS(x)dx = 1.

The Dirichlet kernel arises from a symmetric inversion integral. Let S > 0. By the
Fubini–Tonelli theorem,

1
2π

∫ S

−S
eisx f̂ (s)ds =

1
2π

∫ ∞

−∞
f (t)

∫ S

−S
e−i(t−x)s dsdt

=
1
π

∫ ∞

−∞
f (t)

sin[(t− x)S]
t− x

dt

= f ∗DS(x).

The symmetric inversion formula is then written as convolution with the Dirichlet ker-
nel,

f (x) = lim
S→∞

1
2π

∫ S

−S
eisx f̂ (s)ds = lim

S→∞
f ∗DS(x).

Mathematics subject classification (2020): 42A38, 26A42, 46B99.
Keywords and phrases: Fourier transform, inversion, Lebesgue integral, Lebesgue space, Alexiewicz

norm.

c© � � , Zagreb
Paper JCA-19-07

83

http://dx.doi.org/10.7153/jca-2022-19-07


84 E. TALVILA

For this formula to hold pointwise, further conditions must be imposed on f or f̂ . For
example, it holds at points of differentiability of f [3] or everywhere if f is absolutely
continuous and f ′ ∈ L1(R) [6].

We prove in Theorem 1 that the inversion holds in the Alexiewicz norm, limS→∞‖ f
− f ∗DS‖= 0 for all f ∈ L1(R) . The proof is elementary and does not use any machin-
ery from Fourier analysis. For example, it does not use the Riemann–Lebesgue lemma.
It should be noted that the same result is false for the L1 norm, i.e., there is f ∈ L1(R)
such that limS→∞‖ f − f ∗DS‖1 �= 0. See Example 2, where f ∈ L1(R) is given so that
‖ f ∗DS‖1 exists for no S > 0.

In Section 2 we prove that if F is a continuous function of bounded variation
and f = dF is the associated signed Lebesgue–Stieltjes measure then the inversion
formula holds for dF . Such measures need not be absolutely continuous with respect to
Lebesgue measure. An example shows that inversion can fail when F is not continuous.

In Section 3 we prove the inversion still holds with an asymmetric inversion inte-
gral.

A similar result holds for Fourier series [5].

2. Alexiewicz norm inversion theorem

THEOREM 1. Let f ∈ L1(R) . Then limS→∞‖ f − f ∗DS‖ = 0 , where DS is the
Dirichlet kernel.

Proof. Let −∞ < α < β < ∞ and let S > 0. Let F(x) =
∫ x
−∞ f (t)dt . By the

Fubini–Tonelli theorem,

∫ β

α
[ f (x)− f ∗DS(x)]dx =

∫ β

α

∫ ∞

−∞
[ f (x)D1(t)− f (x− t)DS(t)] dt dx

=
1
π

∫ ∞

−∞

sin(t)
t

∫ β

α
[ f (x)− f (x− t/S)]dxdt

=
1
π

∫ ∞

−∞

sin(t)
t

[F(β )−F(β − t/S)−F(α)+F(α − t/S)] dt.

Let T > 0. We split this last integral into integration over the intervals (−T,T ) , (T,∞)
and (−∞,−T ) . The supremum over α < β of the absolute value of each such integral
is then shown to have limit 0 as S → ∞ .

First note that∣∣∣∣
∫ T

−T

sin(t)
t

[F(β )−F(β − t/S)−F(α)+F(α − t/S)] dt

∣∣∣∣

� 2T

⎛
⎜⎝ sup

β∈R

|t|�T

|F(β )−F(β − t/S)|+ sup
α∈R

|t|�T

|F(α)−F(α − t/S)|

⎞
⎟⎠

→ 0 as S → ∞ since F is uniformly continuous on R.
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Let ε > 0. Let g(t) = sin(t)/t . Note that limt→∞ F(β − t/S) = 0. Note that∫ ∞
T | f (β − t/S)|dt/S =

∫ β−T/S
−∞ | f (u)|du � ‖ f‖1 and limT→∞

∫ ∞
T g(t)dt = 0. Now inte-

grate by parts to get
∣∣∣∣
∫ ∞

T
g(t) [F(β )−F(β − t/S)−F(α)+F(α − t/S)] dt

∣∣∣∣
=

∣∣∣∣[F(β )−F(α)]
∫ ∞

T
g(t)dt−

∫ ∞

T

∫ t

T
g(u)du[ f (β − t/S)− f (α − t/S)]dt/S

∣∣∣∣
� 3‖ f‖1‖χ(T,∞)g‖ < ε for large enough T.

Similarly for integration over the interval (−∞,−T ) . �

The essential parts of the proof of the theorem use the Fubini–Tonelli theorem
and the fact that F is uniformly continuous and has finite variation. Thus, the theorem
extends to measures that arise from continuous functions of bounded variation. If μ is
a signed measure then its Alexiewicz norm is

‖μ‖ = sup
α<β

∣∣∣∣
∫

(α ,β )
dμ

∣∣∣∣ = sup
α<β

|μ((α,β ))|.

COROLLARY 1. Let F ∈ C(R) such that F is of bounded variation. Define a
signed measure μF = dF . Then limS→∞‖μF − μF ∗DS‖ = 0 .

If F is of bounded variation then limx→∞ F(x) and limx→−∞ F(x) exist so that if
F(∞) and F(−∞) are defined with these respective limits then F is continuous on the
extended real line [−∞,∞] .

The continuity condition in Corollary 1 cannot be dropped.

EXAMPLE 1. The Dirac measure, δ , is generated by the Heaviside step function,
H(x) = 0 for x < 0 and H(x) = 1 for x > 0. We have δ̂ = 1. This gives

1
2π

∫ S

−S
eisxδ̂ (s)ds =

1
2π

∫ S

−S
eisx ds = DS(x).

Let 0 < α < β . Then

∣∣∣∣
∫ β

α
dδ (x)− 1

π

∫ β

α

sin(Sx)
x

dx

∣∣∣∣ =
1
π

∣∣∣∣
∫ β

α

sin(Sx)
x

dx

∣∣∣∣ =
1
π

∣∣∣∣
∫ βS

αS

sin(x)
x

dx

∣∣∣∣ .
If we let α = 1/S2 and β = 1 then we see that limsupS→∞‖δ − δ ∗DS‖ � 1/2.

EXAMPLE 2. Let a > 0 and take f = χ(0,a) . For x > 0, integrate by parts to get

π f ∗DS(x) =
∫ xS

(x−a)S
sin(t)

dt
t

=
cos[(x−a)S]

(x−a)S
− cos(xS)

xS
−

∫ xS

(x−a)S
cos(t)

dt
t2

.
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Note that 1/(x−a) = 1/x+a/x2 +O(1/x3) as x → ∞ . Then

∣∣∣∣
∫ xS

(x−a)S
cos(t)

dt
t2

∣∣∣∣ �
∣∣∣∣
∫ xS

(x−a)S

dt
t2

∣∣∣∣ =
1

(x−a)S
− 1

xS
=

a
x2S

+O(1/x3) as x → ∞.

This gives

π f ∗DS(x) =
sin(aS)sin(xS)− [1− cos(aS)]cos(xS)

xS
+O

(
1
x2

)
as x → ∞.

Hence, if S �= 2nπ/a for some n ∈ N then f ∗DS �∈ L1(R) .
If we write fa = χ(0,a) then

π( fa + fb)∗DS(x)

=
[sin(aS)+ sin(bS)]sin(xS)− [2− cos(aS)− cos(bS)]cos(xS)

xS
+O

(
1
x2

)
.

It follows that ( fa+ fb)∗DS ∈L1(R) if and only if sin(aS)= sin(bS)= 0 and cos(aS)=
cos(bS) = 1. Taking a = 2π and b = 2 then gives an example of a function f ∈ L1(R)
such that ‖ f − f ∗DS‖1 fails to exist for each S > 0.

3. Asymmetric kernel

Let S1,S2 > 0. Consider the asymmetric inversion,

1
2π

∫ S2

−S1

eisx f̂ (s)ds =
1
2π

∫ ∞

−∞
f (t)

∫ S2

−S1

e−i(t−x)s dsdt

=
i

2π

∫ ∞

−∞
f (t)

[
e−i(t−x)S2 − ei(t−x)S1

] dt
t− x

= f ∗AS1,S2(x),

where the asymmetric kernel is

AS1,S2(x) =
eixS2 − e−ixS1

2π ix
=

DS1(x)
2

+
DS2(x)

2
+BS1,S2(x),

where

BS1,S2(x) =
1

π ix
sin

[(
S1 +S2

2

)
x

]
sin

[(
S1−S2

2

)
x

]
.

Notice that
∫ ∞
−∞ AS1,S2(x)dx = 1. As with Theorem 1 there is inversion in the Alex-

iewicz norm, provided the ratios S1/S2 and S2/S1 remain bounded.

THEOREM 2. Let q � p > 0 . Let f ∈ L1(R) . Let S1,S2 → ∞ such that p �
S1/S2 � q. Then ‖ f − f ∗AS1,S2‖→ 0 .
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Proof. The proof is similar to that of Theorem 1. Let −∞ < α < β < ∞ and let
S1,S2 > 0. Let F(x) =

∫ x
−∞ f (t)dt . Write

f − f ∗AS1,S2 =
1
2

( f − f ∗DS1)+
1
2

( f − f ∗DS1)− f ∗BS1,S2 .

Due to Theorem 1 we just need to consider the last term above. Since BS1,S2 is an odd
function we can write

−π i
∫ β

α
f ∗BS1,S2(x)dx

= π i
∫ β

α
f (x)dx

∫ ∞

−∞
BS1,S2(t)dt −π i

∫ β

α

∫ ∞

−∞
f (x− t)BS1,S2(t)dt dx

=
∫ β

α

∫ ∞

−∞
[ f (x)− f (x−2t/(S1 +S2))] sin(t)sin

[(
S1−S2

S1 +S2

)
t

]
dt
t

dx,

after the change of variables t �→ 2t/(S1 +S2) .
Let T > 0. Then∣∣∣∣

∫ β

α

∫ T

−T
[ f (x)− f (x−2t/(S1 +S2))]sin(t)sin

[(
S1−S2

S1 +S2

)
t

]
dt
t

dx

∣∣∣∣

� 2T

⎛
⎜⎝ sup

β∈R

|t|�T

|F(β )−F(β −2t/(S1 +S2))|+ sup
α∈R

|t|�T

|F(α)−F(α −2t/(S1 +S2))|

⎞
⎟⎠

→ 0 as S1,S2 → ∞ since F is uniformly continuous on R.

And,
∫ β

α

∫ ∞

T
[ f (x)− f (x−2t/(S1 +S2))] sin(t)sin

[(
S1−S2

S1 +S2

)
t

]
dt
t

dx

=
1
2

∫ ∞

T
[F(β )−F(β −2t/(S1 +S2))]

[
cos

(
2S2t

S1 +S2

)
− cos

(
2S1t

S1 +S2

)]
dt
t

+ similar terms involving α.

Let ε > 0 be given. Let h(t) = cos(t)/t . Write A1 = 2S1T/(S1 + S2) and A2 =
2S2T/(S1 +S2) . Use the change of variables u2 = 2S2t/(S1 +S2) and u1 = 2S1t/(S1 +
S2) . Integrate by parts as in the last paragraph of the proof of Theorem 1. Then

∫ ∞

T
[F(β )−F(β −2t/(S1 +S2))]

[
cos

(
2S2t

S1 +S2

)
− cos

(
2S1t

S1 +S2

)]
dt
t

=
∫ ∞

A2

[F(β )−F(β −u2/S2)]h(u2)du2−
∫ ∞

A1

[F(β )−F(β −u1/S1)]h(u1)du1

= F(β )
∫ ∞

A2

h(u2)du2−
∫ ∞

A2

∫ u2

A2

h(v)dv f (β −u2/S2)
du2

S2

−F(β )
∫ ∞

A1

h(u1)du1 +
∫ ∞

A1

∫ u1

A1

h(v)dv f (β −u1/S1)
du1

S1
.
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Notice that A2 = 2S2T/(S1 + S2) � 2T/(q+ 1) and S1 = 2S1T/(S1 + S2) � 2T/(1+
1/p) . Hence, if T is large then so are A2 and A1 . This gives

∣∣∣∣
∫ ∞

T
[F(β )−F(β −2t/(S1 +S2))]

[
cos

(
2S2t

S1 +S2

)
− cos

(
2S1t

S1 +S2

)]
dt
t

∣∣∣∣
� 2‖ f‖1

(‖χ(A2,∞)h‖+‖χ(A1,∞)h‖
)

< ε for large enough T.

The same estimates hold for the terms containing α . �
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