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FOURIER TRANSFORM INVERSION IN THE ALEXIEWICZ NORM

ERIK TALVILA

Abstract. If f € L'(R) itis proved that limg .|| f — f * Ds|| = 0, where Dg(x) = sin(Sx)/(7x)
is the Dirichlet kernel and ||f|| = supy.p \ff f(x)dx| is the Alexiewicz norm. This gives a
symmetric inversion of the Fourier transform on the real line. An asymmetric inversion is also
proved. The results also hold for a measure given by dF where F is a continuous function of
bounded variation. Such measures need not be absolutely continuous with respect to Lebesgue
measure. An example shows there is f € L' (R) such that limg_...||f — f*Dsl|1 #0.

1. Introduction

If f:R — R then its Fourier transform is f(s) = [*_ e ™ f(r)dt. Under the
condition f € L'(R) it is known that f is uniformly continuous on R. The Riemann-
Lebesgue lemma says that f vanishes at infinity. The inversion formula is f (x) =
e f(s)ds. Further assumptions, such as f € L!(R), are needed for this formula
to hold. See [2] and [7] for such background information.

In this paper we prove the Fourier inversion theorem in the Alexiewicz norm,
limg_,.o|| f — f*Ds|| = 0. The Alexiewicz normis || f|| = sup,. |fol£3 f(x)dx]|. Ttis use-
ful for conditionally convergent integrals [1], [4]. Note that || f ﬁ < ||f]l1 with equality
if and only if f is of one sign almost everywhere. For S > 0, the family of functions,
Dgs(x) = sin(Sx)/(mx), is known as the Dirichlet kernel. Notice that [*_ Dg(x)dx=1.

The Dirichlet kernel arises from a symmetric inversion integral. Let S > 0. By the
Fubini-Tonelli theorem,

7 7Se S)as = ) 756 N

:l/j" f(t)sin[(t—x)S] dr

T r—x

= fxDg(x).

The symmetric inversion formula is then written as convolution with the Dirichlet ker-
nel,

1 /S . 4
£ = lim = [ &) ds = lim £ Ds(x).
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For this formula to hold pointwise, further conditions must be imposed on f or f. For
example, it holds at points of differentiability of f [3] or everywhere if f is absolutely
continuous and f’ € L'(R) [6].

We prove in Theorem 1 that the inversion holds in the Alexiewicz norm, limg_...|| f
— f*Dg|| =0 forall f€L'(R). The proof is elementary and does not use any machin-
ery from Fourier analysis. For example, it does not use the Riemann—Lebesgue lemma.
It should be noted that the same result is false for the L' norm, i.e., there is fe L (R)
such that limg_...|| f — f * Ds||1 # 0. See Example 2, where f € L' (R) is given so that
||f*Ds||1 exists forno S > 0.

In Section 2 we prove that if F is a continuous function of bounded variation
and f = dF is the associated signed Lebesgue—Stieltjes measure then the inversion
formula holds for dF . Such measures need not be absolutely continuous with respect to
Lebesgue measure. An example shows that inversion can fail when F' is not continuous.

In Section 3 we prove the inversion still holds with an asymmetric inversion inte-
gral.

A similar result holds for Fourier series [5].

2. Alexiewicz norm inversion theorem

THEOREM 1. Let f € L'(R). Then limg_..||f — f * Ds|| = 0, where Dy is the
Dirichlet kernel.

Proof. Let —oo < ot < < oo and let S > 0. Let F(x) = [*_ f(t)dr. By the
Fubini-Tonelli theorem,

B B e
[ —rens@ax= [ [ [rx)Du0) = flx=0)Ds(0)] drds
LI P — s/ avar

T
1
T

t

R o
/:’o sin(r) [F(B)—F(B—1/S)—F(o)+F(o.—1/S)]dr.

Let T > 0. We split this last integral into integration over the intervals (—=7,7), (T,e°)
and (—eo, —T'). The supremum over ¢ < 3 of the absolute value of each such integral
is then shown to have limit 0 as S — oo.

First note that

’/_TT sin(z) [F(B)—F(B—1t/S)—F(a)+F(ax—1t/S)]dt

t

<2T | sup|F(B)—F(B—1t/S)|+ sup|F(a)— F(a—1/S)|
|E|§$ \lrx\iﬂ%

— 0 as § — oo since F is uniformly continuous on R.



FOURIER TRANSFORM INVERSION 85
Let € > 0. Let g(r) = sin(r)/r. Note that lim;—..F (8 —1/S) = 0. Note that

IE1FB—1/8)|de)S= [PT/S| f(w)|du < || f]| and limy—.. f§" g(t)dr = 0. Now inte-
grate by parts to get

F(B)—F(B—1t/S)—F(o)+ F(ax—1t/S)] dt

/g dt—/ /g Vaulf (B —1/S) — f(o—1/S)]dt/S
<3111 %78l < € for large enough 7.

Similarly for integration over the interval (—eo, —7). [

The essential parts of the proof of the theorem use the Fubini—Tonelli theorem
and the fact that F' is uniformly continuous and has finite variation. Thus, the theorem
extends to measures that arise from continuous functions of bounded variation. If u is
a signed measure then its Alexiewicz norm is

/<a,,3>dﬂ‘ = sup|u((a, B))].

oa<f

|44 = sup

o<f

COROLLARY 1. Let F € C(R) such that F is of bounded variation. Define a
signed measure [y = dF . Then limg_...||ur — r * Ds|| = 0.

If F is of bounded variation then lim,_.. F(x) and lim,_,_. F(x) exist so that if
F(e) and F(—oo) are defined with these respective limits then F is continuous on the
extended real line [—eo,].

The continuity condition in Corollary 1 cannot be dropped.

EXAMPLE 1. The Dirac measure, 0, is generated ‘py the Heaviside step function,
H(x)=0 for x <0 and H(x) =1 for x > 0. We have 0 = 1. This gives

I /S s 1 /S,
Else’SXS(s)ds: ﬁ[SelsdeZDs(x).

Let 0 < o < 3. Then

B BS &
/ d6(x / sin(Sx )dx‘ 1 / sin(x) il
X T as X

If we let o = 1/5? and 8 =1 then we see that limsups_,..||8 — & * Ds|| > 1/2.

1
r

/ﬁMd

X
o X

EXAMPLE 2. Let a > 0 and take f' = x(gq). For x > 0, integrate by parts to get

cos(t) ﬂ

x5 dt  cos[(x—a)S] cos(xS) _/XS
( 2

nf*DS(x):/(xﬁ)Ssm(t)t T

x—a)S
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Note that 1/(x —a) = 1/x+a/x*+ O(1/x) as x — . Then

xS dt xS dt 1 1 a
| < = — =401/ co.
~/(x—a)SCOS(t) 12 ~/(x—a)S 12 (x—a)S xS x2S + ( /x ) asx —
This gives
7f # Dy(x) = sin(aS) sin(xS) — [iS— cos(aS)] cos(xS) +0 ()%) oo

Hence, if S # 2n7/a for some n € N then f*Ds & L'(R).
If we write fs = X(0,q) then

(fa+ fb) * Ds(x)
_ [sin(aS) + sin(bS)] sin(xS) — [2 — cos(aS) — cos(bS)] cos(xS) Lo ( 1 )

xS x2

It follows that (f,+ f;) * Ds € L' (R) if and only if sin(aS$) = sin(bS) = 0 and cos(aS) =
cos(bS) = 1. Taking @ = 27 and b = 2 then gives an example of a function f € L' (R)
such that ||f — f* Dg||; fails to exist for each S > 0.

3. Asymmetric kernel

Let S1,52 > 0. Consider the asymmetric inversion,

S2 . o S .
L/ ’ e f(s)ds ! / f(t)/ " s gy gy

2w J-s, T on -5

i [ j ; dt
- ¢ —i(t—x)Sy t(t—x)Sl] @
2” /;oof( ) |:e ¢ r—x

= f*AShSz (x),
where the asymmetric kernel is
xSy __ ,—ixS) D D
e e 5, (X S, (X
Aslasz(x) - - l( ) + 2( ) +le752(x)’

2mix 2 2

where

Bs, 5, (x) = %sin [(Sl ;Sz)x] sin [(Sl ;Sz)x] .

Notice that [ Ag, s,(x)dx = 1. As with Theorem 1 there is inversion in the Alex-
iewicz norm, provided the ratios S;/S, and S,/S; remain bounded.

THEOREM 2. Let ¢ > p > 0. Let f € L'(R). Let S1,8, — oo such that p <
S1/82 < q. Then ||f — fxAg,s,|| — 0.
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Proof. The proof is similar to that of Theorem 1. Let —oo < 00 < B < oo and let
S1,82>0. Let F(x) = [*_ f(t)dr. Write

f- frhsus, =5 (F= F*Ds)+ 5 (F = F+Ds) ~ fBss,

Due to Theorem 1 we just need to consider the last term above. Since B, s, is an odd
function we can write

B
—m'/ f*Bs, s,(x)dx
—m/f dx/ Bs, s, (1 dt—m// Fle—1)Bs, 5, (1) dt dx
_/ / flx— 2t/(S1+Sg))}sm()sin{(iilii) ]dtd

after the change of variables ¢ — 2¢/(S1 +53).
Let 7 > 0. Then

Flx—2t/(S1 + )] sin(t) sin Kg;izﬂ %dx‘

<27 | s F(B) = F(B=2t/(S1-+52))| + sup|Fler) = F(or=2t/ (51 +52)]
|I|ZT \(tx\iT

— 0 as S1,5, — oo since F is uniformly continuous on R.

[ Fmse ress=l(E )5
s s o) (255

+ similar terms involving o.

Let € > 0 be given. Let h(r) = cos(r)/t. Write Ay = 28,T/(S;1+S2) and Ay =
28,T/(S1+S2). Use the change of variables uy = 25,1 /(S1+S>) and uy =2817/(S1 +
S>). Integrate by parts as in the last paragraph of the proof of Theorem 1. Then

[ B)~ F =201+ [eos (P2 ) —eon ()] &

- / — F(B— u2/$5)| h{uz) dur — [[F(ﬁ)—F(ﬁ—ul/smh(undul

=F(B /hug duz—// h(v)dv f(B —uz/Sg)

B)/Al h“‘l)d’“*/Al /A h(v)dvf(ﬁ—ul/snds—“ll.
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Notice that Ay =28,T/(S1+82) 22T /(¢q+1) and S| =285T/(S1+S2) > 2T /(1 +
1/p). Hence, if T is large then so are A, and A;. This gives

‘/:[F(ﬁ)—F(ﬁ—2¢/(51+s2))] [COS(%)—“)S(%)] ?

<2011 (12 as,000hll + 1204, =Bl
< ¢ for large enough 7.

The same estimates hold for the terms containing ¢««. U
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