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ON THE LOCATION OF ZEROS OF QUASI–ORTHOGONAL

POLYNOMIALS WITH APPLICATIONS TO SOME

REAL SELF–RECIPROCAL POLYNOMIALS

VANESSA BOTTA ∗ AND MIJAEL HANCCO SUNI

Abstract. In this paper, we present new results on the location of zeros of some classes of quasi-
orthogonal polynomials. From the Chebyshev polynomials, we obtain some classes of real self-
reciprocal polynomials, and investigate the location and monotonicity of their zeros.

1. Introduction

Since its introduction, the concept of orthogonal polynomials has been an impor-
tant tool in the analysis of a large variety of problems in mathematics and engineering,
like moment problems and numerical quadrature, for example. Afterwards, many other
concepts related to orthogonal polynomials were proposed, as quasi-orthogonal poly-
nomials [12, 18, 32, 33], exceptional orthogonal polynomials [21, 23], para-orthogonal
polynomials [10, 14, 20, 24], among others.

In this paper, our focus is on the location of zeros of quasi-orthogonal polynomials.
Recent contributions we can see in references [6, 9, 16, 17, 25]. We present new results
on the location and monotonicity of zeros of some quasi-orthogonal polynomials. These
results were used to study the behaviour of zeros of some classes of real self-reciprocal
polynomials.

One of the motivations for the study of the location of zeros of quasi-orthogonal
polynomials of degree n is related to the positive quadrature formula with n nodes,
which is exact for polynomials of degree 2n− r− 1, 0 � r � n . More details and
further information about this connection can be found in [37].

This paper is organized as follows. The basic background is introduced in Sec-
tion 2. In Section 3, we present new results on the location of zeros of some classes
of quasi-orthogonal polynomials (Theorems 3, 4 and 5), generalizing [9]. Numerical
examples are given to illustrate them. In Section 4, we construct classes of real self-
reciprocal polynomials from the family of Chebyshev quasi-orthogonal polynomials of
order one and order two, respectively. A complete study on the location and monotonic-
ity behaviour of zeros of these real self-reciprocal polynomials is also given, including
numerical examples to illuminate the present work. Finally, we draw conclusions and
open issues in Section 5.
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2. Preliminary results

2.1. Sequence of orthogonal polynomials

Let us consider P = {Pn(x)}n�0 a sequence of polynomials such that Pn ∈ P has
degree n and the following orthogonality relation is satisfied

∫ b

a
Pm(x)Pn(x)dμ(x) = Kmδm,n, (1)

where μ is a positive Borel measure supported in an infinite set of the real line, δm,n

is the Kronecker delta function and Km are positive numbers. In particular, if μ has
support within some closed interval [a,b] , we will say that Pn belongs to the family of
orthogonal polynomials on [a,b] with respect to μ . If μ(x) is absolutely continuous,
then dμ(x) = w(x)dx , where w(x) is a non-negative function measurable in Lebesgue’s
sense for which

∫ b
a w(x)dx > 0. We shall call w(x) a weight function on [a,b] .

There are several important results which follow from the orthogonality properties
of these polynomials [11, 34]. We will present some of them in what follows.

1. Polynomials in the orthogonal sequence {Pn(x)}n�0 satisfy a three-term recur-
rence relation of the form

P−1(x) = 0, P0(x) = 1, Pn(x) = (γnx−βn)Pn−1(x)−αnPn−2(x), n � 1, (2)

where γn , βn and αn are real numbers with γn > 0 and αn > 0 for each n � 1.
We prefer to use the non-monic form of Pn(x) to facilitate the construction of
real self-reciprocal polynomials from the family of Chebyshev quasi-orthogonal
polynomials of order one and two, respectively, in Section 4.

2. The zeros of any polynomial Pn(x) , n > 0, lie all inside the orthogonality interval
(a,b) ⊂ R and they are all simple. Furthermore, Pn(x) and Pn+1(x) cannot have
common zeros.

3. The zeros of Pn+1(x) and Pn(x) , n � 1, interlace. In other words, between any
two consecutive zeros of Pn+1(x) there is one, and exactly one, zero of Pn(x) .

If w(x) is a positive and an even function on the interval [−c,c] , the sequence
P = {Pn(x)}n�0 that the orthogonality condition (1) is satisfied is called sequence of
symmetric orthogonal polynomials. For example, Hermite and Gegenbauer polynomi-
als are symmetric orthogonal polynomials. In this paper, we will use the following
properties of them:

1. Pn(−x) = (−1)nPn(x) ;

2. In the corresponding recurrence formula (2), βn = 0;

3. If we consider xk,n , k = 1, . . . ,n , the zeros of Pn(x) such that xn,n < xn−1,n < .. . <
x2,n < x1,n , then xk,n = −xn−k+1,n , k = 1, . . . ,

⌊
n
2

⌋
. For n odd, x� n

2�+1,n = 0.
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2.2. Sequence of quasi-orthogonal polynomials

An important concept related to a sequence of orthogonal polynomials is the quasi-
orthogonality [12].

DEFINITION 1. Let Rn be a polynomial of exact degree n � r . If Rn satisfies the
conditions

∫ b

a
xkRn(x)w(x)dx

{
= 0, for k = 0, . . . ,n−1− r
�= 0, for k = n− r

, (3)

where w is a positive weight function on [a,b] , then Rn is quasi–orthogonal of order r
on [a,b] with respect to w .

Clearly, xk can be replaced by Rk(x) in (3):

∫ b

a
Rk(x)Rn(x)w(x)dx

{
= 0, for k = 0, . . . ,n−1− r
�= 0, for k = n− r

.

We can cite the reference [12] for a more general definition of quasi-orthogonality,
where the following result is considered:

THEOREM 1. Let {Qn(x)}n�0 be the sequence of orthogonal polynomials on [a,b]
with respect to a positive weight function w(x) . A necessary and sufficient condition for
a polynomial Rn of degree n to be quasi-orthogonal of order r on [a,b] with respect
to w is that

Rn(x) = cn,0Qn(x)+ cn,1Qn−1(x)+ · · ·+ cn,rQn−r(x),

where cn,i , i = 0, . . . ,r , are numbers which can depend on n and cn,0cn,r �= 0 .

For r � 1, in the following we have a well-known result related to the location of
zeros of the quasi-orthogonal polynomial Rn .

THEOREM 2. If Rn is a quasi-orthogonal polynomial of order r on [a,b] with
respect to a positive weight function w, then at least n− r distinct zeros of Rn lie in
the interval (a,b) .

It is important to mention that the concept of quasi-orthogonality seems to have
been introduced by Riesz [32], for r = 1. Féjer [18] considered the case r = 2 and
the general case was first studied by Shohat [33]. We can cite the references [11, 12]
for more information on the properties of the zeros of quasi-orthogonal polynomials.
Furthermore, there are many problems involving linear combination of orthogonal poly-
nomials, as mentioned in [22], and this topic was studied by many authors as [1, 2, 3, 9],
for example.
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2.3. Self-reciprocal polynomials

Let P(z) = p0 + p1z+ . . .+ pnzn be a polynomial of degree n with complex coef-
ficients. Define the reciprocal polynomial P∗(z) by P∗(z) = znP(1/z) . If z1,z2, . . . ,zn

are the zeros of P(z) , it is clear that the zeros of P∗(z) are 1/z1,1/z2, . . . ,1/zn .
If there exists a complex number ω such that |ω | = 1 and P(z) = ωP∗(z) , we

say that P(z) is a self-reciprocal polynomial. Observe that if P(z) is a self-reciprocal
polynomial, then pi = ω pn−i , for i = 0,1, . . . ,n . Furthermore, their zeros are sym-
metric with respect to the unit circle. Further details and applications of self-reciprocal
polynomials can be found in [26, 31, 35].

In this paper, we consider real self-reciprocal polynomials (i.e., pi ∈ R) such that
ω = 1, and we present the location and monotonicity of zeros of some classes of these
polynomials.

In particular, real self-reciprocal polynomials with all zeros on the unit circle con-
stitute an interesting topic to study and has many applications in some areas of math-
ematics [19, 27, 35]. Some results in this area can be found in [26, 28, 29, 30]. We
would like to highlight two important classes of real self-reciprocal polynomials with
all zeros on the unit circle: the classes of real para-orthogonal polynomials described
in [15] (referred as the first and second kind singular predictor polynomials), which
satisfy three-term recurrence formulas and have many interesting properties, as we can
see in [7, 15]. These classes of para-orthogonal polynomials are important from the
point of view of connecting real orthogonal polynomials on the unit circle to symmetric
orthogonal polynomials on the interval [−1,1] . The importance of this connection was
explored in [39] and in reference [8] it was used in the problem of frequency analysis.

The goal of this work is the construction of real self-reciprocal polynomials from
the linear combination of Chebyshev polynomials – more precisely, from Chebyshev
quasi-orthogonal polynomials of order one and order two, respectively. In fact, con-
sidering P(z) = p0 + p1z+ . . .+ p2nz2n a real self-reciprocal polynomial of degree 2n
such that ω = 1, it is easy to verify that

P(z) =
2n

∑
j=0

p jz
j = 2zn

[
p2n

2

(
zn +

1
zn

)
+ . . .+

pn+1

2

(
z+

1
z

)
+

pn

2

]
. (4)

In the case that a real self-reciprocal polynomial has odd degree (for example, S(z) has
degree 2n+1), it is obvious that it is possible to write S(z) as S(z) = s2n+1(z+1)Q(z) ,
where s2n+1 ∈ R−{0} and Q(z) is a real self-reciprocal polynomial of degree 2n .

We denote the unit circle by C = {z|z = eiθ ,0 � θ � 2π} . For z = eiθ with
0 � θ � 2π , we consider the transformation

x = x(z) =
1
2

(
z+

1
z

)
= cosθ . (5)

From basic manipulations it follows that
1
2

(
z j +

1
z j

)
= Tj(x) , j = 0,1,2, . . . ,

where {Tj(x)} is a sequence of Chebyshev polynomials of the first kind. So, from (4),

P(z) = 2zn
[
p2nTn(x)+ p2n−1Tn−1(x)+ . . .+ pn+1T1(x)+

pn

2
T0(x)

]
= 2znCn(x). (6)
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From relation (6) or, equivalently,

Cn(x) =
1
2
z−nP(z), (7)

it is evident that the zeros of Cn(x) are connected with the zeros of P(z) by transfor-
mation (5). In fact, if we denote by x j a zero of Cn(x) and z j a zero of P(z) , from (5)
it follows that

z j = x j ±
√

x2
j −1. (8)

This connection is an important tool for the analysis of the location and monotonicity
of the zeros of P(z) .

Mappings from the unit circle to the interval [−1,1] are used in the literature to
analyze asymptotic properties of orthogonal polynomials. For example, in the con-
text of orthogonal polynomials, the transformation (5) was used by Szegö to show that
real orthogonal polynomials on the unit circle can be mapped to orthogonal polyno-
mials on the interval [−1,1] [13]. Delsarte and Genin [15], from the transformation
2x(z) = z1/2 + z−1/2 , showed that real orthogonal polynomials on the unit circle can
be mapped to symmetric orthogonal polynomials on the interval [−1,1] . Furthermore,
from this transformation it is possible to show a connection between para-orthogonal
polynomials on the unit circle and orthogonal polynomials in [−1,1] . The importance
of this connection was explored in [39]. In a recent paper [36], the authors analyzed
the action of the Möbius transformations in a sequence of orthogonal polynomials on
the real line. Indeed, the Möbius transformation was used by [38] in the context of
biorthogonal rational functions.

3. Properties of the zeros of Rn(x)

Let us consider {Qn(x)}n�0 an orthogonal polynomial sequence on [a,b] with
respect to a given positive weight function w(x) . If we denote by xk,n , k = 1, . . . ,n , the
zeros of Qn(x) , then

a < xn+1,n+1 < xn,n < xn,n+1 < xn−1,n < .. . < x2,n+1 < x1,n < x1,n+1 < b,

i.e., the zeros of Qn(x) and Qn+1(x) interlace.
Let us begin our analysis considering the polynomial

Rn(x) = Qn(x)+anQn−1(x)+bnQn−2(x), an,bn ∈ R, (9)

whose zeros we denote by yi,n , i = 1, . . . ,n .
By Theorems 1 and 2 notice that, if bn = 0 and an �= 0, Rn(x) is a quasi-orthogonal

polynomial of order one on [a,b] with respect to w(x) and it has at least n−1 zeros in
(a,b) . If bn �= 0, Rn(x) is a quasi-orthogonal polynomial of order two on [a,b] with
respect to w(x) and it has at least n−2 zeros in (a,b) .
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Now, let us consider the function hn(x) = an +bn

(
γnx−βn

αn

)
, where an,bn ∈ R ,

and γn , βn and αn are the coefficients of the three-term recurrence relation given in
(2). Notice that γn,βn,αn ∈ R , γn > 0 and αn > 0, for each n � 1.

From (2) and (9) it follows that

Rn(xi,n) = Qn−1(xi,n)hn(xi,n), i = 1, . . . ,n, and (10)

Rn(xi,n−1) = Qn−2(xi,n−1)(bn −αn), i = 1, . . . ,n−1. (11)

In the following we shall present the main results of this work, where the location
of zeros of the polynomial Rn(x) represented by (9) is established. The proofs can
be easier derived from the sign analysis of Rn(xi,n) , i = 1, . . . ,n , and Rn(xi,n−1) , i =
1, . . . ,n−1, and some manipulations. We suppose, without loss of generality, that the
leading coefficients of all polynomials Qn(x) are positive.

THEOREM 3. If bn < αn , Rn(x) has n distinct and real zeros yn,n < yn−1,n <
.. . < y1,n such that

yn,n < xn−1,n−1, xi,n−1 < yi,n < xi−1,n−1 for i = 2, . . . ,n−1, and y1,n > x1,n−1. (12)

Furthermore,

1. If hn(x1,n) < 0 , then y1,n > x1,n . In addition, for a finite number b, if Rn(b) < 0 ,
then y1,n ∈ (b,∞) and if Rn(b) � 0 , y1,n ∈ (x1,n,b] .

2. If hn(x1,n) > 0 , x1,n−1 < y1,n < x1,n .

3. If hn(xn,n) < 0 , xn,n < yn,n < xn−1,n−1 .

4. If hn(xn,n) > 0 , yn,n < xn,n . Further, for a finite number a, if Rn(a) < 0 , yn,n ∈
(a,xn,n) (n odd) and yn,n ∈ (−∞,a) (n even). If Rn(a) � 0 , yn,n ∈ (−∞,a] (for
n odd) and yn,n ∈ [a,xn,n) (n even).

Moreover, if hn(xi,n) = 0 for a fixed i ( i = 1, . . . ,n), then yi,n = xi,n and

• For a finite number a, if Rn(a) < 0 , yn,n ∈ (−∞,a) (for n even) and yn,n ∈
(a,xn−1,n−1) (for n odd). If Rn(a) � 0 , yn,n ∈ [a,xn−1,n−1) (for n even) and
yn,n ∈ (−∞,a] (for n odd).

• For a finite number b, if Rn(b) < 0 , y1,n ∈ (b,∞) . If Rn(b) � 0 , then y1,n ∈
(x1,n−1,b] .

Proof. From (10) and (11), if hn(xi,n) �= 0 for i = 1, . . . ,n , and bn−αn �= 0,

sign(Rn(xi,n)) = (−1)i+1sign(hn(xi,n)) , i = 1, . . . ,n,

sign(Rn(xi,n−1)) = (−1)i+1sign(bn−αn), i = 1, . . . ,n−1.

For bn < αn , it follows that sign(Rn(xi,n−1)) = (−1)i , i = 1, . . . ,n−1, from which
we conclude that there exist n−2 distinct and real zeros y2,n,y3,n, . . . ,yn−1,n of Rn(x)
satisfying xi,n−1 < yi,n < xi−1,n−1 for i = 2, . . . ,n−1. Furthermore,
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1. If hn(x1,n) < 0, sign(Rn(x1,n)) =−1. Notice that lim
x→+∞

Rn(x) > 0. So, it follows

that there is a sign change of Rn(x) in (x1,n,∞) , showing that y1,n > x1,n and, of
course, y1,n > x1,n−1 .

For a finite number b , if we consider Rn(b) < 0, then there is a sign change of
Rn(x) in (b,∞) and, of course, Rn(x) has one real zero in (b,∞) , i.e., y1,n ∈
(b,∞) .

In the case that Rn(b) > 0, there is a sign change of Rn(x) in (x1,n,b) . Conse-
quently, Rn(x) has one real zero in (x1,n,b) and y1,n ∈ (x1,n,b) .

If Rn(b) = 0, y1,n = b .

2. If hn(x1,n) > 0, the proof follows from the fact that sign(Rn(x1,n)) = 1 and
sign(Rn(x1,n−1)) = −1. That is, there is a sign change of Rn(x) in (x1,n−1,x1,n)
and then Rn(x) has one real zero in (x1,n−1,x1,n) . So, it follows that
x1,n−1 < y1,n < x1,n .

3. If hn(xn,n) < 0, then sign(Rn(xn,n)) = (−1)n and sign(Rn(xn−1,n−1)) = (−1)n−1 .
Consequently, using the same arguments as above, xn,n < yn,n < xn−1,n−1 .

4. If hn(xn,n) > 0, sign(Rn(xn,n)) = (−1)n+1 . Furthermore, for n even,
lim

x→−∞
Rn(x) > 0 and, for n odd, lim

x→−∞
Rn(x) < 0. So, there is a sign change

of Rn(x) in (−∞,xn,n) , i.e., yn,n < xn,n and, of course, yn,n < xn−1,n−1 .

For a finite number a , in the case that Rn(a) < 0, for n odd, there is a sign change
of Rn(x) in (a,xn,n) and, consequently, Rn(x) has one real zero in (a,xn,n) , i.e.,
yn,n ∈ (a,xn,n) . For n even, there is a sign change of Rn(x) in (−∞,a) and Rn(x)
has one real zero in (−∞,a) , i.e., yn,n ∈ (−∞,a) .

If Rn(a) > 0, for n odd, there is a sign change of Rn(x) in (−∞,a) and, conse-
quently, Rn(x) has one real zero in (−∞,a) , i.e., yn,n ∈ (−∞,a) . For n even,
there is a sign change of Rn(x) in (a,xn,n) and Rn(x) has one real zero in
(a,xn,n) , i.e., yn,n ∈ (a,xn,n) .

If Rn(a) = 0, yn,n = a .

If hn(xi,n) = 0 for a fixed i ( i = 1, . . . ,n ), then Rn(xi,n) = 0 and, consequently,
yi,n = xi,n . The result follows using the same idea of the previous items, from the
analysis of sign change of Rn(x) in the intervals (−∞,a) and (a,xn−1,n−1) (for a finite
number a ), (b,∞) and (x1,n−1,b) (for a finite number b ). �

THEOREM 4. If bn = αn , Rn(x) has n real zeros. Furthermore, n− 1 zeros of
Rn(x) coincide with the zeros of Qn−1(x) and

1. If hn(x1,n)< 0 , then y1,n ∈ (x1,n,∞) . In addition, for a finite number b, if Rn(b)<
0 , y1,n ∈ (b,∞) and if Rn(b) � 0 , y1,n ∈ (x1,n,b] .

2. If hn(xn,n) > 0 , then yn,n ∈ (−∞,xn,n) . Furthermore, for a finite number a, if
Rn(a) < 0 , yn,n ∈ (−∞,a) (for n even) and yn,n ∈ (a,xn,n) (n odd). If Rn(a) � 0 ,
yn,n ∈ (−∞,a] (for n odd) and yn,n ∈ [a,xn,n) (n even).
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Moreover, if hn(xi,n) = 0 for a fixed i , i = 1, . . . ,n, then xi,n is zero of Rn(x) . Fur-
thermore, if an = βn− γnxi,n−1 for a fixed i , i = 1, . . . ,n−1 , xi,n−1 is a double zero of
Rn(x) .

Proof. From (11), if bn = αn , it follows that Rn(xi,n−1) = 0 for all i = 1, . . . ,n−1,
and then xi,n−1 is zero of Rn(x) , i = 1, . . . ,n−1. Furthermore,

1. If hn(x1,n) < 0, from (10) it follows that sign(Rn(x1,n)) = −1. As
lim

x→+∞
Rn(x) > 0, there is a sign change of Rn(x) in (x1,n,∞) . Using the same

arguments as the proof of item 1 of Theorem 3, the result follows.

2. If hn(xn,n) > 0, from (10) it follows that sign(Rn(xn,n)) = (−1)n+1 . Furthermore,
for n even, lim

x→−∞
Rn(x) > 0 and, for n odd, lim

x→−∞
Rn(x) < 0. From the same

arguments as the proof of item 4 of Theorem 3, the result follows.

If hn(xi,n) = 0 for a fixed i , i = 1, . . . ,n , it follows that Rn(xi,n) = 0. So, we
may consider y1,n = x1,n−1, . . . , yi−1,n = xi−1,n−1 , yi,n = xi,n , yi+1,n = xi,n−1, . . . , yn,n =
xn−1,n−1 . From the known properties of the zeros xi,n−1 , i = 1, . . . ,n−1, of Qn−1(x) ,
it is clear that

a < yn,n < yn−1,n < .. . < yi+1,n < yi,n < yi−1,n < .. . < y1,n < b.

The conclusions on the multiplicity of xi,n−1 for a fixed i , i = 1, . . . ,n− 1, are
easily obtained from the following expression

R′
n(xi,n−1) = Q′

n−1(xi,n−1)(γnxi,n−1−βn +an), i = 1, . . . ,n−1.

Notice that, as Q′
n−1(xi,n−1) �= 0 for all i = 1, . . . ,n− 1, we may conclude that, for a

fixed i , R′
n(xi,n−1) = 0 if and only if an = βn − γnxi,n−1 . So, if an = βn − γnxi,n−1 ,

as R′′
n(xi,n−1) = 2γnQ′

n−1(xi,n−1) �= 0 for all i = 1, . . . ,n− 1, it follows that xi,n−1 is a
double zero of Rn(x) . �

THEOREM 5. If bn > αn , Rn(x) has n− 2 distinct and real zeros such that be-
tween two zeros of Qn−1(x) there is exactly one zero of Rn(x) (interlacing property).
Furthermore, if the following conditions are satisfied, then we may conclude that the
two remaining zeros of Rn(x) are real:

1. hn(x1,n) < 0 , where the remaining zeros are located one in the interval
(x1,n−1,x1,n) and the other in (x1,n,∞) . For a finite number b, if Rn(b) < 0 ,
y1,n ∈ (b,∞) , and if Rn(b) � 0 , y1,n ∈ (x1,n,b] .

2. hn(x1,n) > 0 and Rn(b) � 0 (for a finite number b), where the remaining zeros
are located one in the interval (x1,n,b] and the other in (b,∞) .

3. hn(xn,n) < 0 and, for a finite number a, Rn(a) � 0 (for n even) and Rn(a) � 0
(for n odd), where the remaining zeros are located one in the interval [a,xn,n)
and the other in (−∞,a) .
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4. hn(xn,n) > 0 , where the remaining zeros are located one in the interval
(xn,n,xn−1,n−1) and the other in (−∞,xn,n) . For a finite number a, if Rn(a) < 0 ,
yn,n ∈ (a,xn,n) (n odd) and yn,n ∈ (−∞,a) (n even). If Rn(a) � 0 , yn,n ∈ [a,xn,n)
(n even) and yn,n ∈ (−∞,a] (n odd).

Moreover, if hn(xi,n) = 0 , then for a fixed i = 1, . . . ,n, xi,n is zero of Rn(x) .

Proof. According to (11), if bn > αn , sign(Rn(xi,n−1)) = (−1)i+1 , i = 1, . . . ,n−
1. So, there are n− 2 sign changes of Rn(x) in (xn−1,n−1,x1,n−1) , and then we have
the existence of n−2 real zeros satisfying the interlacing property.

Furthermore,

1. From (10) and (11), we deduce that sign(Rn(x1,n)) =−1 and sign(Rn(x1,n−1)) =
1, respectively. So, Rn(x) has one zero in (x1,n−1,x1,n) . As lim

x→+∞
Rn(x) > 0,

from sign(Rn(x1,n)) = −1 it follows that there is a sign change of Rn(x) in
(x1,n,∞) , i.e., the other zero of Rn(x) is located in (x1,n,∞) .

For a finite number b , if we consider Rn(b) < 0, from lim
x→+∞

Rn(x) > 0 it follows

that y1,n ∈ (b,∞) . If Rn(b) > 0, y1,n ∈ (x1,n,b) . If Rn(b) = 0, y1,n = b .

2. From (10) notice that sign(Rn(x1,n)) = 1.

For a finite number b , if Rn(b) < 0, there is a sign change of Rn(x) in (x1,n,b) ,
proving the existence of one zero of Rn(x) in (x1,n,b) . From the fact that
lim

x→+∞
Rn(x) > 0, the existence of other zero of Rn(x) in (b,∞) follows.

The case Rn(b) = 0 is obvious.

3. If hn(xn,n) < 0, from (10) it follows that sign(Rn(xn,n)) = (−1)n .

For a finite number a , considering Rn(a) < 0 (for n even) and Rn(a) > 0 (for
n odd), there is a sign change of Rn(x) in (a,xn,n) and, consequently, Rn(x) has
one zero in the interval (a,xn,n) . Furthermore, for n even, lim

x→−∞
Rn(x) > 0 and,

for n odd, lim
x→−∞

Rn(x) < 0. So, there is a sign change of Rn(x) in (−∞,a) ,

showing the existence of a zero of Rn(x) in (−∞,a) .

The case Rn(a) = 0 is obvious.

4. From (10) and (11) it follows that sign(Rn(xn,n)) = (−1)n+1 and
sign(Rn(xn−1,n−1)) = (−1)n , respectively.

Consequently, using the same arguments as above, Rn(x) has one zero in
(xn,n,xn−1,n−1) and the other in (−∞,xn,n) .

For a finite number a , if Rn(a) > 0 (for n even) and Rn(a) < 0 (for n odd), there
is a sign change of Rn(x) in (a,xn,n) and, consequently, Rn(x) has one zero in
the interval (a,xn,n) . Furthermore, for n even, lim

x→−∞
Rn(x) > 0 and, for n odd,

lim
x→−∞

Rn(x) < 0. So, there is a sign change of Rn(x) in (−∞,a) , proving the

existence of a zero of Rn(x) in (−∞,a) .

The case Rn(a) = 0 is obvious.



98 V. BOTTA AND M. H. SUNI

From Rn(xi,n) = Qn−1(xi,n)hn(xi,n) , i = 1, . . . ,n , if hn(xi,n) = 0 for a fixed i , then
xi,n is zero of Rn(x) . �

For simplicity, the sign of Rn(a) and Rn(b) we may calculate from the follow-
ing expressions. If γna− βn + an + (bn −αn) fn−2(a) �= 0 and γnb−βn + an + (bn −
αn) fn−2(b) �= 0, for finite numbers a and b , we have

sign(Rn(a)) = (−1)n−1sign(γna−βn +an +(bn−αn) fn−2(a)) and

sign(Rn(b)) = sign(γnb−βn +an +(bn−αn) fn−2(b)),

where fn−2(x) =
Qn−2(x)
Qn−1(x)

.

These expressions are easily obtained from relations (2) and (9):

Rn(x) = Qn−1(x) [γnx−βn +an +(bn−αn) fn−2(x)] .

THEOREM 6. If bn < αn , each real zero yi,n , i = 1, . . . ,n, is a decreasing function
of an .

Proof. We consider ε � 0 and

Rnε (x) = Qn(x)+ (an + ε)Qn−1(x)+bnQn−2(x)

with n real zeros
y1,nε > y2,nε > .. . > yn,nε .

It is clear that yi,n = yi,n0 , i = 1, . . . ,n , and

Rnε (x) = Rn(x)+ εQn−1(x).

Consequently, Rnε (yi,n) = εQn−1(yi,n) , i = 1, . . . ,n .
So, for ε > 0 and from (12),

sgn(Rnε (yi,n)) = (−1)i+1, i = 1, . . . ,n. (13)

Since the zeros of Rnε (x) are real, from (13) it follows that yi,n > yi,nε , completing
the proof. �

3.1. Special case: sequence of symmetric orthogonal polynomials

Considering {Qn(x)}n�0 be a sequence of symmetric orthogonal polynomials on
the finite interval [−c,c] with respect to a positive and even weight function w(x) , it
follows immediately that βn = 0 in (2). Furthermore, the zeros of Qn(x) are symmetric
with respect to the origin and then 0 < x1,n =−xn,n . So, as a consequence of Theorems
3, 4 and 5, we present the following results.

COROLLARY 1. The zeros of Rn(x) are located in [−c,c] when
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1. bn < αn , an < −|bn|γnx1,n
αn

and Rn(c) � 0 ;

2. bn < αn , an >
|bn|γnx1,n

αn
, Rn(−c) � 0 (n odd) and Rn(−c) � 0 (n even);

3. bn < 0 ,
bnγnx1,n

αn
< an <− bnγnx1,n

αn
, Rn(c) � 0 , Rn(−c) � 0 (n odd) and Rn(−c) �

0 (n even);

4. 0 < bn < αn and − bnγnx1,n
αn

< an <
bnγnx1,n

αn
;

5. bn � αn , an < − bnγnx1,n
αn

and Rn(c) � 0 ;

6. bn � αn , an >
bnγnx1,n

αn
, Rn(−c) � 0 (n odd) and Rn(−c) � 0 (n even).

REMARK 1. If bn = αn and an = −γnxi,n−1 for a fixed i ( i = 1, . . . ,n−1), xi,n−1

is a double zero of Rn(x) . In this case, all the zeros of Rn(x) are located in [−c,c] .

COROLLARY 2. Rn(x) has only one zero outside the interval [−c,c] if

1. bn < αn , an <
bnγnx1,n

αn
and Rn(c) < 0 ;

2. bn < αn , an >
|bn|γnx1,n

αn
, Rn(−c) > 0 (n odd) and Rn(−c) < 0 (n even);

3. bn < 0 ,
bnγnx1,n

αn
< an <− bnγnx1,n

αn
, Rn(c) < 0 , Rn(−c) � 0 (n odd) and Rn(−c) �

0 (n even);

4. bn < 0 ,
bnγnx1,n

αn
< an <− bnγnx1,n

αn
, Rn(c) � 0 , Rn(−c) > 0 (n odd) and Rn(−c) <

0 (n even);

5. bn � αn , an < − bnγnx1,n
αn

and Rn(c) < 0 ;

6. bn � αn , an >
bnγnx1,n

αn
, Rn(−c) > 0 (n odd) and Rn(−c) < 0 (n even);

7. bn > αn , an > − bnγnx1,n
αn

and Rn(c) < 0 ;

8. bn > αn , an <
bnγnx1,n

αn
, Rn(−c) > 0 (n odd) and Rn(−c) < 0 (n even).

COROLLARY 3. If bn < 0 ,
bnγnx1,n

αn
< an < − bnγnx1,n

αn
, Rn(c) < 0 , Rn(−c) < 0 (n

even) and Rn(−c)> 0 (n odd), Rn(x) has exactly two zeros outside the interval [−c,c] .
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3.2. Numerical examples

In this section we illustrate the behaviour of the zeros of polynomial
R4(x) = Q4(x)+ a4Q3(x)+ b4Q2(x) , considering two families of orthogonal polyno-
mials: Chebyshev polynomials of the first kind and Laguerre polynomials.

EXAMPLE 1. Let {Tn(x)}n�0 be the sequence of Chebyshev polynomials of the

first kind. They are orthogonal with respect to the weight function w(x) =
1√

1− x2
on

[−1,1] . From the recurrence formula Tn(x) = 2xTn−1(x)−Tn−2(x) (n � 2, T0(x) = 1
and T1(x) = x ) it follows that γn = 2, βn = 0 and αn = 1 for each n � 2.

The following figures display the behaviour of the zeros of polynomial
R4(x) = T4(x)+a4T3(x)+b4T2(x) for certain values of a4 and b4 .

Figures 1, 2 and 3 illustrate the case b4 < α4 = 1. Observe that the interlacing
property (12) is satisfied by the zeros of R4(x) . In Figure 1 we consider a4 = −0.2,
where the conditions 1 and 4 of Theorem 3 are satisfied, i.e., y1,4 > 1 and y4,4 < −1,
respectively. In Figure 2, where a4 =−0.9, as h4(x1,4) < 0 and R4(1) > 0, then y1,4 ∈
(x1,4,1) (item 1 of Theorem 3); and h4(x4,4) < 0, wich implies that x4,4 < y4,4 < x3,3

by item 3 of Theorem 3. In Figure 3 we consider a4 =−1.53 and, as h4(x3,4) = 0, x3,4

is zero of R4(x) and y1,4 > 1.

Figure 1: a4 = −0.2 and b4 = −2. Figure 2: a4 = −0.9 and b4 = 0.5.

Figure 3: a4 = −1.53 and b4 = −2. Figure 4: a4 = −3.4 and b4 = 1.
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The case b4 = α4 = 1 is illustrated in Figures 4 and 5. Observe that three zeros
of R4(x) coincide with the zeros of T3(x) , according to Theorem 4. In Figure 4, where
a4 = −3.4, we have h4(x1,4) < 0 and R4(1) < 0, which implies that y1,4 > 1 (item 1
of Theorem 4). In Figure 5, a4 = −2x1,3 = −1.73 and, consequently, x1,3 is a double
zero of R4(x) .

Figure 5: a4 = −1.73 and b4 = 1. Figure 6: a4 = −2.5 and b4 = 1.3.

Figure 6 illustrates the case a4 = −2.5 and b4 = 1.3 > α4 . Observe that the zeros
of R4(x) satisfy the interlacing property of Theorem 5. As h4(x1,4) < 0 and R4(1) < 0,
by item 1 of Theorem 5 it follows that R4(x) has one real zero in the interval (x1,3,x1,4)
and the other in (1,∞) .

EXAMPLE 2. Let {Ln(x)}n�0 be the sequence of Laguerre polynomials. They are
orthogonal with respect to the weight function w(x) = e−x on [0,∞) .

Laguerre polynomials are generated by the following three-term recurrence rela-
tion

nLn(x) = (2n−1− x)Ln−1(x)− (n−1)Ln−2(x),n � 2,

with initial conditions L0(x) = 1 and L1(x) = −x+ 1. From this formula, for n odd,
the leading coefficient of Ln(x) is a negative number. In the hypothesis of Theorems 3,
4 and 5, we consider that the leading coefficients of all polynomials Qn(x) are positive.
So, it is necessary to consider, for n odd, the polynomial (−1)Ln(x) instead of Ln(x) .

Then, we obtain γn =
1
n

, βn =
2n−1

n
and αn =

n−1
n

.

In the following pictures we present the behaviour of the zeros of polynomial
R4(x) = L4(x)− a4L3(x)+ b4L2(x) for certain values of a4 and b4 , illustrating some
situations described in Theorems 3, 4 and 5.

In Figures 7 and 8 we consider b4 = −1 < α4 . Observe that the interlacing prop-
erty (12) is satisfied by the zeros of R4(x) . In Figure 7, a4 = 1 and x1,3 < y1,4 < x1,4

because h4(x1,4) > 0 (item 2 of Theorem 3); from item 4 of Theorem 3, as h4(x4,4) > 0
and Rn(0) < 0, it follows that y4,4 ∈ (−∞,0) . In Figure 8, where a4 = 0, as h4(x1,4) <
0, then y1,4 > x1,4 (item 1 of Theorem 3); indeed, as h4(x4,4) > 0, by item 4 of Theorem
3 it follows that y4,4 < x4,4 . In this case, R4(0) = 0 and then y4,4 ∈ [0,x4,4) .
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Figure 7: a4 = 1 and b4 = −1. Figure 8: a4 = 0 and b4 = −1.

In Figures 9 and 10, where b4 = α4 = 0.75, observe that the zeros of R4(x) co-
incide with the zeros of L3(x) , according to Theorem 4; in Figure 9, a4 = 2.2 and
h4(x4,4) > 0, which implies that y4,4 ∈ (−∞,x4,4) (item 2 of Theorem 4); in Figure 10,
a4 = 1.176 and x2,3 is a double zero of R4(x) .

Figure 9: a4 = 2.2, b4 = 0.75. Figure 10: a4 = 1.176 and b4 = 0.75.

In Figures 11 and 12, b4 > α4 = 0.75; observe that the zeros of R4(x) satisfy the
interlacing property of Theorem 5. In Figure 11, where a4 = −1.7, as h4(x1,4) < 0, by
item 1 of Theorem 5 it follows that R4(x) has one real zero in the interval (x1,3,x1,4)
and other in (x1,4,∞) . In Figure 12, a4 = −0.7983, h4(x1,4) = 0 and x1,4 is zero of
R4(x) .

EXAMPLE 3. The results on monotonicity of Theorem 6 we illustrate considering
the following polynomials

R7(x) = T7(x)+a7T6(x)+b7T5(x) (Chebyshev case) and

R7(x) = −L7(x)+a7L6(x)−b7L5(x) (Laguerre case) .

To plot the graph in Figures 13 and 14 we consider, on the horizontal axis, a7 ∈ [0,2]
and, on the vertical axis, the values of the real zero y1,7 of R7(x) (Chebyshev case,
Figure 13) and, in the Laguerre case, the values of the zero y6,7 of R7(x) (Figure 14).
In both cases we consider four values of b7 to show that the real zeros are decreasing
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Figure 11: a4 = −1.7 and b4 = 2. Figure 12: a4 = −0.7983 and b4 = 1.

functions of a7 : b7 = −0.25 (line with points), b7 = 0 (line with squares), b7 = 0.25
(line with diamonds) and b7 = 0.5 (line with triangles). Furthermore, in Tables 1 and
2 we present the values of y1,7 and y6,7 , respectively, for certain values of a7 and b7 .
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Table 1: y1,7 for certain values of a7 and b7 , in Chebyshev case.
�����a7

b7 -0.25 0 0.25 0.5

0 0.9787 0.9749 0.9719 0.9695
0.4 0.9754 0.9728 0.9706 0.9687
0.8 0.9734 0.9714 0.9697 0.9683
1.2 0.9721 0.9705 0.9691 0.9679
1.6 0.9712 0.9699 0.9687 0.9677
2.0 0.9705 0.9694 0.9684 0.9675
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Table 2: y6,7 for certain values of a7 and b7 , in Laguerre case.
�����a7

b7 -0.25 0 0.25 0.5

0 0.9423 1.0267 1.0904 1.1386
0.4 0.7941 0.9388 1.0448 1.1190
0.8 0.5056 0.7209 0.9323 1.0752
1.2 0.3202 0.3715 0.5655 0.9167
1.6 0.2745 0.2788 0.2885 0.3293
2.0 0.2575 0.2560 0.2537 0.2492

4. Applications: some classes of real self–reciprocal polynomials

In this section we present some results related to the location and monotonicity of
the zeros of the following real self–reciprocal polynomials

PT (z) = z2n +anT z2n−1 +bnT z2n−2 +bnT z2 +anT z+1 (14)

PU(z) = 2[z2n +anU (z2n−1 + z2n−3 + . . .+ z)+ (bnU +1)

(z2n−2 + z2n−4 . . .+ z2)+1] (15)

PV (z) = 2[z2n +(anV −1)z2n−1 +(−anV +bnV +1)

(z2n−2− z2n−3 + . . .+(−1)nzn + . . .+ z2)+ (anV −1)z+1] (16)

PW (z) = 2[z2n +(anW +1)z2n−1 +(anW +bnW +1)(z2n−2 + . . .+ z2)+
(anW +1)z+1]. (17)

PROPOSITION 1. The polynomials Pδ (z) , δ = T,U,V,W , represented by (14),
(15), (16) and (17), respectively, are generated by the Chebyshev polynomials of the
first, second, third and fourth kinds, Tn , Un , Vn and Wn , respectively.

Proof. Let C(δ )
n (x) = Q(δ )

n (x)+anδ Q
(δ )
n−1(x)+bnδ Q(δ )

n−2(x) be a polynomial of de-
gree n , where δ = T,U,V,W represents each family of Chebyshev polynomials, i.e.,

C(T )
n (x) = Tn(x)+anT Tn−1(x)+bnT Tn−2(x), (18)

C(U)
n (x) = Un(x)+anUUn−1(x)+bnUUn−2(x), (19)

C(V )
n (x) = Vn(x)+anVVn−1(x)+bnVVn−2(x), (20)

C(W)
n (x) = Wn(x)+anWWn−1(x)+bnWWn−2(x). (21)

From the known relations

Un(x)−Un−2(x) = 2Tn(x)
Vn(x)+Vn−1(x) = 2Tn(x)

Wn(x)−Wn−1(x) = 2Tn(x),n = 2,3, . . . ,
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and basic manipulations we can rewrite the equations (19), (20) and (21) in terms of
Chebyshev polynomials of the first kind as

C(U)
n (x) =

⎧⎪⎪⎨
⎪⎪⎩

2[Tn(x)+anU (Tn−1(x)+Tn−3(x)+ . . .+T1(x))+
(bnU +1)(Tn−2(x)+Tn−4(x)+ . . .+(T0(x))/2], for n even,

2[Tn(x)+anU (Tn−1(x)+Tn−3(x)+ . . .+(T0(x))/2)+
(bnU +1)(Tn−2(x)+Tn−4(x)+ . . .+T1(x)], for n odd,

(22)

C(V )
n (x) = 2[Tn(x)+ (anV −1)Tn−1(x)+ (bnV −anV +1)Tn−2(x)

−(bnV −anV +1)Tn−3(x)+ . . .+(−1)n−2(bnV −anV +1)T1(x)

+(−1)n−1(bnV −anV +1)(T0(x))/2], (23)

C(W)
n (x) = 2[Tn(x)+ (anW +1)Tn−1(x)+ (anW +bnW +1)(Tn−2(x)

+Tn−3(x)+ . . .+T1(x)+ (T0(x))/2]. (24)

Comparing the coefficients of (6) with (18), (22), (23) and (24), respectively, fol-
lows the result. �

The location of the zeros of polynomials C(T )
n (x) and C(U)

n (x) is determined by
Corollaries 1, 2 and 3, considering c = 1, αn = 1 for n = 2, . . . , and γn = 2 for n =
1, . . . . Because of the non-symmetry of Chebyshev polynomials of the third and fourth
kind, respectively, Theorems 3, 4 and 5 will be used to show the behaviour of the

zeros of polynomials C(V )
n (x) and C(W )

n (x) . Furthermore, Table 3 presents the values

of C(δ )
n (−1) and C(δ )

n (1) for each family of Chebyshev polynomials.

Table 3: C(δ )
n (−1) and C(δ )

n (1) for the family of Chebyshev polynomials.

Chebyshev C(δ )
n (−1) C(δ )

n (1)
polynomial

Tn(x) (−1)n+1(anT −bnT −1) anT +bnT +1
Un(x) (−1)n+1[n(anU −2)− n(anU +2)+

(n−1)(bnU −1)] (n−1)(bnU −1)
Vn(x) (−1)n+1[(2n−1)(anV −2)− anV +bnV +1

(2n−3)(bnV −1)]
Wn(x) (−1)n+1(anW −bnW −1) (2n−1)(anW +2)+

(2n−3)(bnW −1)

As a consequence of Theorems 3, 4 and 5, we present the following lemmas.

The notation x(δ )
k,n , k = 1, . . . ,n , δ = T,U,V,W , denotes the zeros of each family of

Chebyshev polynomials of degree n , where x(δ )
1,n > 0, and y(δ )

k,n are the zeros of C(δ )
n (x) .

LEMMA 1. The zeros of C(δ )
n (x) are located in [−1,1] if

1. bnδ < 1 , anδ < −2bnδ x
(δ )
n,n and C(δ )

n (1) � 0 ;
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2. 0 � bnδ < 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n

even);

3. bnδ < 0 , anδ > −2bnδ x
(δ )
1,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n even);

4. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) � 0 , C(δ )
n (−1) � 0 (n odd) and

C(δ )
n (−1) � 0 (n even);

5. 0 < bnδ < 1 and −2bnδ x(δ )
1,n < anδ < −2bnδ x

(δ )
n,n ;

6. bnδ � 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) � 0 ;

7. bnδ � 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n even).

LEMMA 2. C(δ )
n (x) has only one zero outside the interval [−1,1] if

1. bnδ < 0 , anδ < −2bnδ x
(δ )
n,n and C(δ )

n (1) < 0 ;

2. 0 � bnδ < 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

3. bnδ < 0 , anδ > −2bnδ x
(δ )
1,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even);

4. 0 � bnδ < 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n

even);

5. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) < 0 , C(δ )
n (−1) � 0 (n odd) and

C(δ )
n (−1) � 0 (n even);

6. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) � 0 , C(δ )
n (−1) > 0 (n odd) and

C(δ )
n (−1) < 0 (n even);

7. bnδ � 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

8. bnδ � 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even);

9. bnδ > 1 , anδ > −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

10. bnδ > 1 , anδ < −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even).

LEMMA 3. C(δ )
n (x) has exactly two zeros outside the interval [−1,1] if b(δ )

n < 0 ,

−2bnδ x
(δ )
n,n < anδ < −2bnδ x(δ )

1,n , C(δ )
n (1) < 0 , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0

(n even).

As a consequence of Lemmas 1, 2, 3 and transformation (5), we have the following
results.
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PROPOSITION 2. The zeros of Pδ (z) , δ = T,U,V,W , represented by (14), (15),
(16) and (17), respectively, are located on the unit circle when

1. bnδ < 1 , anδ < −2bnδ x
(δ )
n,n and C(δ )

n (1) � 0 ;

2. 0 � bnδ < 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n

even);

3. bnδ < 0 , anδ > −2bnδ x
(δ )
1,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n even);

4. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) � 0 , C(δ )
n (−1) � 0 (n odd) and

C(δ )
n (−1) � 0 (n even);

5. 0 < bnδ < 1 and −2bnδ x(δ )
1,n < anδ < −2bnδ x

(δ )
n,n ;

6. bnδ � 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) � 0 ;

7. bnδ � 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) � 0 (n odd) and C(δ )
n (−1) � 0 (n even).

Moreover, their zeros are represented by z(δ )
j,2n = eiθ (δ )

j,n , with θ (δ )
j,n = arccos(y(δ )

j,n ) , θ (δ )
j,n ∈

[0,π ] , j = 1, . . . ,n, where

0 � θ (δ )
1,n < θ (δ )

2,n < .. . < θ (δ )
n,n � π . (25)

The remaining zeros are the complex conjugate of z(δ )
j,2n , i.e., z(δ )

2n+1− j,2n = z(δ )
j,2n ,

j = 1, . . . ,n. Furthermore, if bnδ < 1 , θ (δ )
j,n are increasing functions of anδ .

Proof. The first part of the proof follows directly from Lemma 1 and transforma-
tion (5).

Under the hypothesis of proposition, from Theorems 3, 4 and 5 it is easy to see

that all the zeros of C(δ )
n (x) are simple and we can represent them by

y(δ )
n,n < y(δ )

n−1,n < .. . < y(δ )
2,n < y(δ )

1,n .

From (7) and using the mapping (5), half the zeros z(δ )
j,2n of the polynomials Pδ (z) ,

for δ = T,U,V,W , respectively, are represented by z(δ )
j,2n = eiθ (δ )

j,n , with θ (δ )
j,n = arccos(y(δ )

j,n ) ,

θ (δ )
j,n ∈ [0,π ] , where y(δ )

j,n , j = 1, . . . ,n , are the zeros of C(δ )
n (x) . The remaining zeros

are the complex conjugate of z(δ )
j,2n .

Since y(δ )
n,n < y(δ )

n−1,n < .. . < y(δ )
2,n < y(δ )

1,n and θ (δ )
j,n = arccos(y(δ )

j,n ) is a decreasing
function in [−1,1] , we have

0 � θ (δ )
1,n < θ (δ )

2,n < .. . < θ (δ )
n,n � π .
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To prove that θ (δ )
j,n are increasing functions of anδ if bnδ < 1, we consider ε � 0,

C(δ )
n,ε (x) = Q(δ )

n (x)+ (anδ + ε)Q(δ )
n−1(x)+bnδ Q(δ )

n−2(x) with n zeros y(δ )
j,n,ε , and the poly-

nomials Pδ ,ε(z) obtained from Pδ (z) such that anδ ,ε = anδ + ε , whose zeros are rep-

resented by z(δ )
j,2n,ε = eiθ (δ )

j,n,ε , with θ (δ )
j,n,ε = arccos(y(δ )

j,n,ε) , j = 1, . . . ,n . It is clear that

C(δ )
n,0 (x) =C(δ )

n (x) , y(δ )
j,n,0 = y(δ )

j,n , Pδ ,0(z) = Pδ (z) , anδ ,0 = anδ and z(δ )
j,2n,0 = z(δ )

j,2n .

For εr < εs , from Theorem 6 it follows that y(δ )
n, j,εr

> y(δ )
n, j,εs

. Hence, since θ (δ )
j,n =

arccos(y(δ )
j,n ) is a decreasing function in [−1,1] , we have θ (δ )

j,n,εr
< θ (δ )

j,n,εs
. Then, for

anδ ,ε1 < anδ ,ε2 , θ (δ )
j,n,ε1

< θ (δ )
j,n,ε2

. �

PROPOSITION 3. The polynomials Pδ (z) , δ = T,U,V,W , represented by (14),
(15), (16) and (17), respectively, have only two zeros outside the unit circle when

1. bnδ < 0 , anδ < −2bnδ x
(δ )
n,n and C(δ )

n (1) < 0 ;

2. 0 � bnδ < 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

3. bnδ < 0 , anδ > −2bnδ x
(δ )
1,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even);

4. 0 � bnδ < 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n

even);

5. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) < 0 , C(δ )
n (−1) � 0 (n odd) and

C(δ )
n (−1) � 0 (n even);

6. bnδ < 0 , −2bnδ x
(δ )
n,n < anδ <−2bnδ x

(δ )
1,n , C(δ )

n (1) � 0 , C(δ )
n (−1) > 0 (n odd) and

C(δ )
n (−1) < 0 (n even);

7. bnδ � 1 , anδ < −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

8. bnδ � 1 , anδ > −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even);

9. bnδ > 1 , anδ > −2bnδ x
(δ )
1,n and C(δ )

n (1) < 0 ;

10. bnδ > 1 , anδ < −2bnδ x
(δ )
n,n , C(δ )

n (−1) > 0 (n odd) and C(δ )
n (−1) < 0 (n even).

In the cases 1, 2, 5, 7 and 9, Pδ (z) has two positive zeros z(δ )
k,2n ∈ (1,∞) and

1

z(δ )
k,2n

∈

(0,1) . In the cases 3, 4, 6, 8 and 10, Pδ (z) has two negative zeros z(δ )
k,2n ∈ (−∞,−1)

and
1

z(δ )
k,2n

∈ (−1,0) .
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Moreover, in the cases 1, 2, 5, 7 and 9, the positive zero z(δ )
k,2n is a decreasing

function of anδ and, consequently,
1

z(δ )
k,2n

is an increasing function of anδ . In the cases 3,

4, 6, 8 and 10, the negative zero z(δ )
k,2n is an increasing function of anδ and, consequently,

1

z(δ )
k,2n

is a decreasing function of anδ .

Proof. The first part of the proof follows directly from Lemma 2 and transforma-
tion (5).

The positive (negative) zeros z(δ )
k,2n and

1

z(δ )
k,2n

we obtain from the fact that the cor-

repondent zero y(δ )
i,n of C(δ )

n (x) is positive (negative), using the expression (8), i.e., for

y(δ )
1,n > 1, we have z(δ )

k,2n = y(δ )
1,n +

√
(y(δ )

1,n )2−1 > 0 and z(δ )
l,2n = y(δ )

1,n −
√

(y(δ )
1,n )2−1 =

1

z(δ )
k,2n

> 0. For y(δ )
n,n < −1, we have z(δ )

k,2n = y(δ )
n,n −

√
(y(δ )

n,n )2 −1 < 0 and z(δ )
l,2n = y(δ )

n,n +

√
(y(δ )

1,n )2−1 =
1

z(δ )
k,2n

< 0.

To prove the monotonicity of the positive zeros of Pδ (z) such that the conditions
1, 2, 5, 7 and 9 are satisfied, we consider anδ ,ε = anδ +ε , ε � 0, such that anδ ,ε satisfy
the conditions 1, 2, 5, 7 and 9 (to guarantee the existence of two positive zeros) and

PT,ε(z) = PT (z)+ ε(z2n−1 + z)

PU,ε(z) = PU(z)+2ε(z2n−1 + z2n−3 + . . .+ z)

PV,ε(z) = PV (z)+2ε(z2n−1− z2n−2 + . . .− (−1)nzn + . . .− z2 + z)

PW,ε(z) = PW (z)+2ε(z2n−1 + z2n−2 + . . .+ z2 + z)

with its real zeros represented by z(δ )
k,2n(ε) and

1

z(δ )
k,2n(ε)

.

Observe that z(δ )
k,2n = z(δ )

k,2n(0) and

PT,ε(z
(δ )
k,2n) = ε((z(δ )

k,2n)
2n−1 + z(δ )

k,2n)

PU,ε(z
(δ )
k,2n) = 2ε((z(δ )

k,2n)
2n−1 +(z(δ )

k,2n)
2n−3 + . . .+ z(δ )

k,2n)

PV,ε(z
(δ )
k,2n) = 2ε((z(δ )

k,2n)
2n−1− (z(δ )

k,2n)
2n−2 + . . .− (−1)n(z(δ )

k,2n)
n + . . .− (z(δ )

k,2n)
2 + z(δ )

k,2n)

PW,ε(z
(δ )
k,2n) = 2ε((z(δ )

k,2n)
2n−1 +(z(δ )

k,2n)
2n−2 + . . .+(z(δ )

k,2n)
2 + z(δ )

k,2n).

Then, for ε > 0, sign(Pδ ,ε(z
(δ )
k,2n)) = 1.

Hence, z(δ )
k,2n(0) > z(δ )

k,2n(ε) , showing that z(δ )
k,2n is a decreasing function of anδ .

Consequently,
1

z(δ )
k,2n(ε)

is an increasing function of anδ .
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Using the same arguments, it is easy to prove the monotonicity of the negative
zeros of Pδ (z) such that the conditions 3, 4, 6, 8 and 10 are satisfied. In these cases, for

ε > 0, sign(Pδ ,ε(z
(δ )
k,2n)) = −1. �

PROPOSITION 4. If bnδ < 0 , −2bnδ x(δ )
n,n < anδ < −2bnδ x

(δ )
1,n , C(δ )

n (1) < 0 ,

C(δ )
n (−1) > 0 (n odd) and C(δ )

n (−1) < 0 (n even), Pδ (z) , δ = T,U,V,W , repre-
sented by (14), (15), (16) and (17), respectively, have exactly four zeros outside the

unit circle: two positive zeros z(δ )
k,2n ∈ (1,∞) and

1

z(δ )
k,2n

∈ (0,1) and two negative zeros

z(δ )
k,2n ∈ (−∞,−1) and

1

z(δ )
k,2n

∈ (−1,0) . Moreover, the positive zero z(δ )
k,2n is a decreasing

function of anδ and, consequently,
1

z(δ )
k,2n

is an increasing function of anδ . The negative

zero z(δ )
k,2n is an increasing function of anδ and, consequently,

1

z(δ )
k,2n

is a decreasing

function of anδ .

Proof. The proof follows directly from Lemma 3, transformation (5) and (8), using
the same arguments of the proof of Proposition 3. �

PROPOSITION 5. Related to the zeros of Pδ (z) , δ = T,U,V,W, with multiplicity,
we have the following situations:

1. If bnδ = 1 and anδ = −2x(δ )
j,n−1 for a fixed j , j = 1, . . . ,n, z(δ )

j,2n = x(δ )
j,n−1 +√

1− x(δ )
j,n−1i is a double zero of Pδ (z) (z(δ )

2n+1− j,2n = z(δ )
j,2n = x(δ )

j,n−1−
√

1− x(δ )
j,n−1i

is a double zero too).

2. If C(δ )
n (±1) = 0 , z(δ )

k,2n = ±1 is a double zero of Pδ (z) .

Proof. The proof of item 1 follows directly from Remark 1. The proof of item 3
follows directly from (8). �

4.1. Numerical examples

To clarify the results of Section 4, in this subsection we present some examples
showing the behaviour of the zeros of polynomials Pδ (z) , δ = T,U,V,W , represented
by (14), (15), (16) and (17), respectively. We consider n = 5 (consequently, the poly-
nomials Pδ (z) have degree ten) and certain values of a5δ and b5δ . The zeros are
represented by black points.

In Figure 15, the small points represent the zeros of polynomial PU(z) , where
a5U = −1.55 and b5U = 0.5. The big points represent the zeros of polynomial PU(z)
for a5U = 0.8 and b5U = 0.5. In both cases, PU(z) has all zeros on the unit circle,
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where the first condition of Proposition 2 is satisfied. Observe that relations (25) of

Proposition 2 are satisfied. Furthermore, as b5U < 1, θ (U)
j,5 are increasing functions of

a5U .
In Figure 16 we consider a5T =−3.1 and b5T = 2. The polynomial PT (z) has two

positive zeros outside the unit circle (z(T )
1,10 = 2.1786 and 1/z(T)

1,10 = 0.459). In this case,

the condition 9 of Proposition 3 is satisfied. The fact that z(T )
1,10 is a decreasing function

of a5T (consequently, 1/z(T)
1,10 is an increasing function of a5T ) can be observed in

Table 4, where we give the values of z(T )
1,10 and 1/z(T)

1,10 for b5T = 2 and certain values
of a5T .

Figure 15: Zeros of PU(z) for b5U =
0.5 and a5U = −1.55 (black points)
and a5U = 0.8 (red points).

Figure 16: Zeros of PT (z) for a5T =
−3.1 and b5T = 2.

Table 4: z(T )
1,10 and 1/z(T)

1,10 for b5T = 2 and certain values of a5T .

a5T z(T )
1,10 1/z(T)

1,10

−3.1 2.1786 0.459
−3.3 2.498 0.4003
−3.5 2.7799 0.3597
−3.7 3.0422 0.3287

In Figure 17 we have a5W = 2 and b5W = 0. Observe that PW (z) has two negative

zeros outside the unit circle: z(W )
6,10 = −2.0029 and 1/z(W)

6,10 = −0.4993. In this case, the

item 4 of Proposition 3 is satisfied. In Table 5 we can see the values of z(W)
6,10 and 1/z(W)

6,10

for b5W = 0 and certain values of a5W , showing that z(W)
6,10 is an increasing function of

a5W and 1/z(W)
6,10 is a decreasing function of a5W .

In Figure 18, we represent the zeros of polynomial PU(z) , where a5U = 0 and
b5U = −3. The polynomial PU has exactly four zeros outside the unit circle, according

to Proposition 4 (two positive zeros z(U)
1,10 = 1.7221 and 1/z(U)

1,10 = 0.5807 and two neg-

ative zeros z(U)
7,10 = −1.7221 and 1/z(U)

7,10 = −0.5807). In Table 6 we can see the values
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of the zeros z(U)
1,10 , 1/z(U)

1,10 , z(U)
7,10 and 1/z(U)

7,10 for b5U = −3 and certain values of a5U .

Figure 17: Zeros of PW (z) for a5W = 2
and b5W = 0.

Figure 18: Zeros of PU(z) for a5U = 0
and b5U = −3.

Table 5: z(W )
6,10 and 1/z(W)

6,10 for b5W = 0 and certain values of a5W .

a5W z(W )
6,10 1/z(W)

6,10

2 −2.0029 −0.4993
2.2 −2.2014 −0.4542
2.4 −2.4007 −0.4165
2.6 −2.6004 −0.3845

Table 6: z(U)
1,10 , 1/z(U)

1,10 , z(U)
7,10 and 1/z(U)

7,10 for b5U = −3 and certain values of a5U .

a5U z(U)
1,10 1/z(U)

1,10 z(U)
7,10 1/z(U)

7,10

0 1.7221 0.5807 −1.7221 −0.5807
0.2 1.6197 0.6174 −1.8284 −0.5469
0.4 1.5202 0.6578 −1.9393 −0.5156
0.6 1.422 0.7032 −2.0551 −0.4866

Figure 19: Zeros of PT (z) for a5T =
−0.76 and b5T = 1.

Figure 20: Zeros of PV (z) for a5V = 2
and b5V = 1.

In Figure 19, as a5T = −2x(T)
2,4 = −0.76, z(T )

2,10 = 0.38+0.78i and z(T )
8,10 = 0.38−
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0.78i are zeros of multiplicity two of PT (z) . In Figure 20, C5(−1)(V )(−1) = 0 and,
consequently, −1 is zero of multiplicity two of PV (z) .

5. Conclusions and open issues

In this work we presented new results on the location of zeros of polynomi-
als Rn(x) = Qn(x)+ anQn−1(x)+ bnQn−2(x) , where an and bn are real numbers and
{Qn(x)}n�0 is an orthogonal polynomial sequence on [a,b] with respect to a given
positive weight function w(x) .

For certain values of an and bn (for example, an = 0 or bn = 0), similar results
of Theorems 3, 4 and 5 can be found in [5] and [9]. The case an = 0 and bn = λ −1,
λ ∈ R , for Qn(x) = Un(x) , was analised in [4].

A particular case when {Qn(x)}n�0 is a symmetric orthogonal polynomial se-
quence on [−c,c] with respect to a positive and even weight function w(x) , was also
commented and from the family of Chebyshev polynomials we obtain some classes of
real self-reciprocal polynomials. A complete study on the location of the zeros of these
classes of real self-reciprocal polynomials is also presented, when the polynomials have
even degree.

For real self-reciprocal polynomials of odd degree, as we mentioned before, we
can represent by S(z) = s2n+1(z+1)P(z) , where P(z) is a real self–reciprocal polyno-
mial of degree 2n . So, from the polynomials Pδ (z) , δ = T,U,V,W , we have

P̃T (z) = (z+1)PT (z) = z2n+1 +(anT +1)z2n +(anT +bnT )z2n−1 +bnT z2n−2 +
bnT z3 +(anT +bnT )z2 +(anT +1)z+1

P̃U(z) = (z+1)PU(z) = 2[z2n+1 +(anU +1)z2n +(anU +bnU +1)(z2n−1 + . . .+ z2)+
(anU +1)z+1]

P̃V (z) = (z+1)PV(z) = 2[z2n+1 +anV z2n +bnV z2n−1 +bnV z2 +anV z+1]

P̃W (z) = (z+1)PW (z) = 2[z2n+1 +(anW +2)z2n +(2anW +bnW +2)z2n−1 +

2(anW +bnW +1)(z2n−2 + . . .+ z3)+ (2anW +bnW +2)z2 +(anW +2)z+1].

The results on the location and monotonicity of the zeros of P̃δ (z) , δ = T,U,V,W ,
we obtain from the results applied to even polynomials.

If bn > αn , from Theorem 5, Rn(x) has n−2 distinct and real zeros which satisfy
the interlacing property. Furthermore, if

1. hn(x1,n) > 0 and Rn(b) > 0;

2. hn(xn,n) < 0 and Rn(a) > 0 (for n even) and Rn(a) < 0 (for n odd);

3. for a fixed i , i = 1, . . . ,n , hn(xi,n) = 0 and R′
n(xi,n) �= 0,

we need to investigate the conditions such that the two remaining zeros of Rn(x) are
both real or a pair of complex numbers.
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[34] G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. Vol 23. Amer. Math. Soc. Prov-

idence, RI 1975. Fourth Edition.
[35] R. S. VIEIRA, Polynomials with symmetric zeros, IntechOpen (2019). Available on

https://doi.org/10.5772/intechopen.82728 , doi:10.5772/intechopen.82728.
[36] R. S. VIEIRA, V. BOTTA, Orthogonal polynomials and Möbius transformations, Comput. Appl. Math.
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